Knowledge (XXG)

Strain engineering

Source 📝

895:, creating strain between the layers. Due to the quantum confined Stark effect (QCSE), the electron and hole wave functions are misaligned within the quantum well, resulting in a reduced overlap integral, decreased recombination probability, and increased carrier lifetime. As such, applying an external strain can negate the internal quantum well strain, reducing the carrier lifetime and making the LEDs a more attractive light source for communications and other applications requiring fast modulation speeds. 63:, primarily with regards to sub-130 nm technologies. One key consideration in using strain engineering in CMOS technologies is that PMOS and NMOS respond differently to different types of strain. Specifically, PMOS performance is best served by applying compressive strain to the channel, whereas NMOS receives benefit from tensile strain. Many approaches to strain engineering induce strain locally, allowing both n-channel and p-channel strain to be modulated independently. 992:(DFT) simulations demonstrate distinct behaviors in the bandgap decreasing rates when strained along different directions. Straining along the <110> direction results in a higher bandgap decreasing rate, while straining along the <111> direction leads to a lower bandgap decreasing rate but a transition from an indirect to a direct bandgap. A similar indirect-direct bandgap transition can be observed in 1018:
rippling in black phosphorus leads to bandgap variations between +10% and -30%. In the case of ReSe2, the literature shows the formation of local wrinkle structures when the substrate is relaxed after stretching. This folding process results in a redshift in the absorption spectrum peak, leading to increased light absorption and changes in magnetic properties and bandgap. The research team also conducted
847:
self-organized, phase-separated, nanorod/nanopillar structures in numerous oxide films as reviewed here. In 2008, Thulin and Guerra published calculations of strain-modified anatase titania band structures, which included an indicated higher hole mobility with increasing strain. Additionally, in two dimensional materials such as
1009:
However, 2D materials have a greater range of elastic strain compared to bulk materials because they lack typical plastic deformation mechanisms like slip and dislocation. Additionally, it is easier to apply strain along a specific crystallographic direction in 2D materials compared to bulk materials.
1336:
Goyal, Amit; Kang, Sukill; Leonard, Keith; Martin, Patrick; Gapud, Albert; Varela, Maria; Paranthaman, M; Ijaduola, A; Specht, Eliot; Thompson, James; Christen, David; Pennycook, Steve; List, Fred (11 October 2005). "Irradiation-free, columnar defects comprised of self-assembled nanodots and nanorods
846:
Researchers more recently have achieved strain in thick oxide films larger than that achieved in epitaxial growth by incorporating nano-structured topologies (Guerra and Vezenov, 2002) and nanorods/nanopillars within an oxide film matrix. Following this work, researchers world-wide have created such
1022:
tests on the stretched samples and found that a 30% stretching resulted in lower resistance compared to the unstretched samples. However, a 50% stretching showed the opposite effect, with higher resistance compared to the unstretched samples. This behavior can be attributed to the folding of ReSe2,
971:
Typically, the maximum elastic strain achievable in normal bulk materials ranges from 0.1% to 1%. This limits our ability to effectively modify material properties in a reversible and quantitative manner using strain. However, recent research on nanoscale materials has shown that the elastic strain
771:
Strain relaxation at thin film interfaces via misfit dislocation nucleation and multiplication occurs in three stages which are distinguishable based on the relaxation rate. The first stage is dominated by glide of pre-existing dislocations and is characterized by a slow relaxation rate. The second
253:
is the lattice parameter of the substrate. After some critical film thickness, it becomes energetically favorable to relieve some mismatch strain through the formation of misfit dislocations or microtwins. Misfit dislocations can be interpreted as a dangling bond at an interface between layers with
942:
switching character at this critical Al composition. Studies have established a linear relationship between this critical composition within the active layer and the Al composition used in the substrate templating region, underscoring the importance of strain engineering in the character of light
66:
One prominent approach involves the use of a strain-inducing capping layer. CVD silicon nitride is a common choice for a strained capping layer, in that the magnitude and type of strain (e.g. tensile vs compressive) may be adjusted by modulating the deposition conditions, especially temperature.
1008:
movement in the microstructure of the material. Plastic deformation is not commonly utilized in strain engineering due to the difficulty in controlling its uniform outcome. Plastic deformation is more influenced by local distortion rather than the global stress field observed in elastic strain.
1012:
Recent research has shown significant progress in strain engineering in 2D materials through techniques such as deforming the substrate, inducing material rippling, and creating lattice asymmetry. These methods of applying strain effectively enhance the electric, magnetic, thermal, and optical
1017:
decreases at rates of approximately 45 and 120 meV/%, respectively, under 0-2.2% uniaxial strain. Additionally, the photoluminescence intensity of monolayer MoS2 decreases at 1% strain, indicating an indirect-to-direct bandgap transition. The reference also demonstrates that strain-engineered
105:
Epitaxial strain in thin films generally arises due to lattice mismatch between the film and its substrate and triple junction restructuring at the surface triple junction, which arises either during film growth or due to thermal expansion mismatch. Tuning this epitaxial strain can be used to
89:
of the underlying silicon-germanium. Conversely, compressive strain could be induced by using a solid solution with a smaller lattice constant, such as silicon-carbon. See, e.g., U.S. Patent No. 7,023,018. Another closely related method involves replacing the source and drain region of a
775:
Strain engineering has been well-studied in complex oxide systems, in which epitaxial strain can strongly influence the coupling between the spin, charge, and orbital degrees of freedom, and thereby impact the electrical and magnetic properties. Epitaxial strain has been shown to induce
843:. In alloy thin films, epitaxial strain has been observed to impact the spinodal instability, and therefore impact the driving force for phase separation. This is explained as a coupling between the imposed epitaxial strain and the system's composition-dependent elastic properties. 1411:
Chen, Aiping; Hu, Jia-Mian; Lu, Ping; Yang, Tiannan; Zhang, Wenrui; Li, Leigang; Ahmed, Towfiq; Enriquez, Erik; Weigand, Marcus; Su, Qing; Wang, Haiyan; Zhu, Jian-Xin; MacManus-Driscoll, Judith L.; Chen, Long-Qing; Yarotski, Dmitry; Jia, Quanxi (10 June 2016).
983:
In nanoscale elastic strain engineering, the crystallographic direction plays a crucial role. Most materials are anisotropic, meaning their properties vary with direction. This is particularly true in elastic strain engineering, as applying strain in different
766: 85:, to modulate channel strain. One manufacturing method involves epitaxial growth of silicon on top of a relaxed silicon-germanium underlayer. Tensile strain is induced in the silicon as the lattice of the silicon layer is stretched to mimic the larger 445: 1051:
U.S. Pat. No. 7,485,799; "Stress-induced bandgap-shifted semiconductor photoelectrolytic/photocatalytic/photovoltaic surface and method for making same," John M. Guerra, Priority Date May 7, 2002. Assigned to Nanoptek
1325:
U.S. Pat. No. 7,485,799, John M. Guerra, "Stress-induced bandgap-shifted semiconductor photoelectrolytic/photocatalytic/photovoltaic surface and method for making same", Priority Date May 7, 2002. Assigned to Nanoptek
2132:
Quereda, Jorge; San-Jose, Pablo; Parente, Vincenzo; Vaquero-Garzon, Luis; Molina-Mendoza, Aday J.; Agraït, Nicolás; Rubio-Bollinger, Gabino; Guinea, Francisco; Roldán, Rafael; Castellanos-Gomez, Andres (11 May 2016).
1984: 1174:
Bertoli, B.; Sidoti, D.; Xhurxhi, S.; Kujofsa, T.; Cheruku, S.; Correa, J. P.; Rago, P. B.; Suarez, E. N.; Jain, F. C. (2010). "Equilibrium strain and dislocation density in exponentially graded Si(1-x)Gex/Si (001)".
963:. All of these mechanisms compete across different thicknesses. By delaying strain accumulation to grow at a thicker epilayer before reaching the target relaxation degree, certain adverse effects can be reduced. 772:
stage has a faster relaxation rate, which depends on the mechanisms for dislocation nucleation in the material. Finally, the last stage represents a saturation in strain relaxation due to strain hardening.
1376:; Stocks, George; Goyal, Amit; Meng, Jianyong (12 November 2013). "Self-Assembly of Nanostructured, Complex, Multi-cation Films via Spontaneous Phase Separation and Strain-driven Ordering". 980:, semiconductor devices are continuously shrinking in size to the nanoscale. With the concept of "smaller is stronger", elastic strain engineering can be fully exploited at the nanoscale. 841: 1788:
Banerjee, Amit; Bernoulli, Daniel; Zhang, Hongti; Yuen, Muk-Fung; Liu, Jiabin; Dong, Jichen; Ding, Feng; Lu, Jian; Dao, Ming; Zhang, Wenjun; Lu, Yang; Suresh, Subra (20 April 2018).
583: 194: 1680:
Rienzi, Vincent; Smith, Jordan; Lim, Norleakvisoth; Chang, Hsun-Ming; Chan, Philip; Wong, Matthew S.; Gordon, Michael J.; DenBaars, Steven P.; Nakamura, Shuji (August 2022).
67:
Standard lithography patterning techniques can be used to selectively deposit strain-inducing capping layers, to deposit a compressive film over only the PMOS, for example.
2209:
Yang, Shengxue; Wang, Cong; Sahin, Hasan; Chen, Hui; Li, Yan; Li, Shu-Shen; Suslu, Aslihan; Peeters, Francois M.; Liu, Qian; Li, Jingbo; Tongay, Sefaattin (11 March 2015).
959:(IQE). Active layer thickness can trigger the bending and annihilation of threading dislocations, surface roughening, phase separation, misfit dislocation formation, and 1316:
NASA Contract No. NAS2-03114 with Nanoptek Corporation, "Stress-induced Bandgap-shifted Titania Photocatalyst for Hydrogen Generation"; J. Guerra and D. Vezenov, 2002.
528: 508: 575: 279: 251: 224: 488: 530:
is the angle between the Burgers vector and the vector normal to the dislocation's glide plane. The equilibrium in-plane strain for a thin film with a thickness (
859:
strain has been shown to induce conversion from an indirect semiconductor to a direct semiconductor allowing a hundred-fold increase in the light emission rate.
548: 468: 124: 1516:
Wu, Wei; Wang, Jin; Ercius, Peter; Wright, Nicomario; Leppert-Simenauer, Danielle; Burke, Robert; Dubey, Madan; Dongare, Avinash; Pettes, Michael (2018).
287: 898:
With appropriate strain engineering, it is possible to grow III-N LEDs on Si substrates. This can be accomplished via strain relaxed templates,
2264:
Wan, Wen; Chen, Li; Zhan, Linjie; Zhu, Zhenwei; Zhou, Yinghui; Shih, Tienmo; Guo, Shengshi; Kang, Junyong; Huang, Han; Cai, Weiwei (May 2018).
78:
techniques are used to selectively deposit a tensile silicon nitride film over the NMOS and a compressive silicon nitride film over the PMOS.
1946: 1264:
Lahiri, A.; Abinandanan, T. A.; Gururajan, M. P.; Bhattacharyya, S. (2014). "Effect of epitaxial strain on phase separation in thin films".
943:
emitted from DUV LEDs. Furthermore, any existing lattice mismatch causes phase separation and surface roughness, in addition to creating
887:
region. The composition of In within the InGaN layer can be tuned to change the color of the light emitted from these LEDs. However, the
1851:
Dang, C; Chou, JP; Dai, B; Chou, CT; Yang, Y; Fan, R; Lin, W; Meng, F; Hu, A; Zhu, J; Han, J; Minor, AM; Li, J; Lu, Y (1 January 2021).
1019: 1749:
Liu, Chenshu; Liu, Jianxun; Huang, Yingnan; Sun, Xiujian; Sun, Qian; Feng, Meixin; Xu, Qiming; Shen, Yanwei; Yang, Hui (1 May 2024).
1119:"Restructuring of emergent grain boundaries at free surfaces–An interplay between core stabilization and elastic stress generation" 1095: 996:. Theoretically, achieving this indirect-direct bandgap transition in silicon requires a strain of more than 14% uniaxial strain. 2009:
Conley, Hiram J.; Wang, Bin; Ziegler, Jed I.; Haglund, Richard F.; Pantelides, Sokrates T.; Bolotin, Kirill I. (14 August 2013).
906:
metal substrates have also shown promise in applying an external counterbalancing strain to increase the overall LED efficiency.
1615:
Du, Chunhua; Huang, Xin; Jiang, Chunyan; Pu, Xiong; Zhao, Zhenfu; Jing, Liang; Hu, Weiguo; Wang, Zhong Lin (14 November 2016).
39:
through the channel. Another example are semiconductor photocatalysts strain-engineered for more effective use of sunlight.
2082:
Rice, C.; Young, R. J.; Zan, R.; Bangert, U.; Wolverson, D.; Georgiou, T.; Jalil, R.; Novoselov, K. S. (15 February 2013).
1574:
Shih, Huei-Jyun; Lo, Ikai; Wang, Ying-Chieh; Tsai, Cheng-Da; Lin, Yu-Chung; Lu, Yi-Ying; Huang, Hui-Chun (17 March 2022).
914:
In addition to traditional strain engineering that takes place with III-N LEDs, Deep Ultraviolet (DUV) LEDs, which use
776:
metal-insulator transitions and shift the Curie temperature for the antiferromagnetic-to-ferromagnetic transition in
2084:"Raman-scattering measurements and first-principles calculations of strain-induced phonon shifts in monolayer MoS 2" 1951: 952: 24: 779: 1682:"Demonstration of III-Nitride Red LEDs on Si Substrates via Strain-Relaxed Template by InGaN Decomposition Layer" 989: 919: 1576:"Growth and Characterization of GaN/InxGa1−xN/InyAl1−yN Quantum Wells by Plasma-Assisted Molecular Beam Epitaxy" 1617:"Tuning carrier lifetime in InGaN/GaN LEDs via strain compensation for high-speed visible light communication" 761:{\displaystyle \epsilon _{||}={\frac {f}{|f|}}{\frac {b(1-\nu cos^{2}(\alpha )}{8\pi |f|(1+\nu )cos\lambda }}} 1013:
properties of the material. For example, in the reference provided, the optical gap of monolayer and bilayer
930:
at a critical Al composition within the active region. The polarity switch arises from the negative value of
2301: 935: 36: 132: 880: 872: 1724: 871:, one of the most ubiquitous and efficient LED varieties that has only gained popularity after the 2014 102:
Strain can be induced in thin films with either epitaxial growth, or more recently, topological growth.
1517: 1233:"Epitaxial strain induced metal insulator transition in La0.9Sr0.1MnO3 and La0.88Sr0.1MnO3 thin films" 1004:
In the case of elastic strain, when the limit is exceeded, plastic deformation occurs due to slip and
2222: 2156: 2032: 1960: 1864: 1801: 1628: 1532: 1425: 1283: 1184: 1130: 1014: 868: 2211:"Tuning the Optical, Magnetic, and Electrical Properties of ReSe 2 by Nanoscale Strain Engineering" 1117:
Zhang, Xiaopu; Wang, Mengyuan; Wang, Hailong; Upmanyu, Moneesh; Boland, John J. (1 January 2023).
81:
A second prominent approach involves the use of a silicon-rich solid solution, especially silicon-
2265: 2188: 2146: 2111: 2064: 2022: 1976: 1915: 1896: 1833: 1556: 1393: 1354: 1299: 1273: 1211: 956: 2135:"Strong Modulation of Optical Properties in Black Phosphorus through Strain-Engineered Rippling" 1947:"A study of strain-induced indirect-direct bandgap transition for silicon nanowire applications" 2266:"Syntheses and bandgap alterations of MoS2 induced by stresses in graphene-platinum substrates" 2246: 2238: 2180: 2172: 2103: 2056: 2048: 1888: 1880: 1825: 1817: 1770: 1703: 1662: 1644: 1597: 1548: 1498: 1459: 1441: 1156: 931: 915: 513: 32: 1751:"Toward High-Performance AlGaN-Based UV-B LEDs: Engineering of the Strain Relaxation Process" 493: 23:
manufacturing to enhance device performance. Performance benefits are achieved by modulating
2277: 2230: 2164: 2095: 2040: 1968: 1927: 1872: 1809: 1762: 1693: 1652: 1636: 1587: 1540: 1490: 1449: 1433: 1385: 1346: 1291: 1244: 1192: 1146: 1138: 1032: 993: 892: 86: 1852: 1414:"Role of scaffold network in controlling strain and functionalities of nanocomposite films" 553: 257: 229: 202: 988:
can have a significant impact on the material's properties. Taking diamond as an example,
927: 923: 876: 473: 106:
moderate the properties of thin films and induce phase transitions. The misfit parameter (
2226: 2160: 2134: 2036: 1964: 1868: 1805: 1632: 1536: 1429: 1287: 1188: 1134: 1103: 1080:
Martyniuk, M, Antoszewski, J. Musca, C.A., Dell, J.M., Faraone, L. Smart Mater. Struct.
1657: 1454: 1413: 977: 903: 533: 453: 109: 48: 2083: 1789: 1478: 1350: 2295: 2192: 1980: 1900: 1560: 1358: 1303: 939: 47:
The use of various strain engineering techniques has been reported by many prominent
20: 2115: 1397: 976:, exhibits up to 9.0% uniform elastic strain at the nanoscale. Keeping in line with 440:{\displaystyle h_{c}={\frac {b(2-\nu cos^{2}\alpha )}{8\pi |f|(1+\nu )cos\lambda }}} 2068: 1837: 1750: 985: 960: 948: 899: 884: 1931: 1142: 2281: 2168: 1544: 1295: 1945:
Li, Song; Chou, Jyh-Pin; Zhang, Hongti; Lu, Yang; Hu, Alice (28 February 2019).
1373: 1118: 1005: 944: 75: 74:(DSL) approach reported by IBM-AMD. In the DSL process, standard patterning and 2099: 1494: 28: 2242: 2210: 2176: 2107: 2052: 2010: 1884: 1821: 1774: 1707: 1648: 1601: 1502: 1445: 1160: 1063: 1876: 1813: 1766: 1616: 951:. The former results in local current leakage while the latter enhances the 82: 2250: 2184: 2060: 1892: 1829: 1666: 1552: 1463: 1437: 1389: 1698: 1681: 1592: 1575: 1518:"Giant Mechano-Optoelectronic Effect in an Atomically Thin Semiconductor" 888: 510:
is the angle between the Burgers vector and misfit dislocation line, and
1853:"Achieving large uniform tensile elasticity in microfabricated diamond" 1151: 973: 2234: 2044: 1972: 1640: 1196: 1249: 1232: 91: 2151: 1337:
resulting in strongly enhanced flux-pinning in YBa2Cu3O7−δ films".
2027: 1278: 1216: 60: 1479:"Calculations of strain-modified anatase TiO 2 band structures" 56: 52: 2011:"Bandgap Engineering of Strained Monolayer and Bilayer MoS 2" 972:
range is much broader. Even the hardest material in nature,
829: 816: 803: 254:
different lattice constants. This critical thickness (
1790:"Ultralarge elastic deformation of nanoscale diamond" 782: 586: 556: 536: 516: 496: 476: 456: 290: 260: 232: 205: 135: 112: 1210:Zhmakin, A. I. (2011). "Strain relaxation models". 891:of the LED quantum well have inherently mismatched 226:is the lattice parameter of the epitaxial film and 835: 760: 569: 542: 522: 502: 482: 462: 439: 273: 245: 218: 188: 118: 1231:Razavi, F. S.; Gross, G.; Habermeier, H. (2000). 1023:with the folded regions being particularly weak. 867:Strain engineering plays a major role in III-N 281:) was computed by Mathews and Blakeslee to be: 955:process, both reducing the device's internal 836:{\displaystyle {\ce {La_{1-x}Sr_{x}MnO_{3}}}} 8: 1477:Thulin, Lukas; Guerra, John (14 May 2008). 875:. Most III-N LEDs utilize a combination of 2150: 2026: 1697: 1656: 1591: 1453: 1277: 1248: 1215: 1150: 828: 823: 815: 810: 802: 793: 792: 788: 783: 781: 723: 715: 687: 657: 629: 621: 613: 607: 597: 592: 591: 585: 561: 555: 535: 515: 495: 475: 455: 402: 394: 366: 360: 332: 304: 295: 289: 265: 259: 237: 231: 210: 204: 180: 171: 162: 149: 134: 111: 19:refers to a general strategy employed in 1372:Wee, Sun Hun; Gao, Yanfei; Zuev, Yuri; 1044: 902:, and pseudo-substrates. Furthermore, 2204: 2202: 2127: 2125: 2004: 2002: 1719: 1717: 1339:Superconductor Science and Technology 470:is the length of the Burgers vector, 189:{\displaystyle f=(a_{s}-a_{e})/a_{e}} 7: 1914:Zhu, Ting; Li, Ju (September 2010). 126:) is given by the equation below: 14: 1987:from the original on 19 July 2023 1094:Weiss, Peter (28 February 2004). 926:, undergo a polarity switch from 577:is then given by the expression: 1062:Wang, David (30 December 2005). 883:, the latter being used as the 35:(or hole mobility) and thereby 1266:Philosophical Magazine Letters 1064:"IEDM 2005: Selected Coverage" 740: 728: 724: 716: 704: 695: 681: 672: 669: 663: 635: 622: 614: 598: 593: 419: 407: 403: 395: 383: 374: 353: 344: 341: 310: 168: 142: 70:Capping layers are key to the 1: 1932:10.1016/j.pmatsci.2010.04.001 1920:Progress in Materials Science 1378:Advanced Functional Materials 1143:10.1016/j.actamat.2022.118432 2282:10.1016/j.carbon.2018.01.085 2169:10.1021/acs.nanolett.5b04670 1545:10.1021/acs.nanolett.7b05229 1296:10.1080/09500839.2014.968652 1755:Crystal Growth & Design 1351:10.1088/0953-2048/18/11/021 986:crystallographic directions 2318: 2100:10.1103/PhysRevB.87.081307 1952:Journal of Applied Physics 1916:"Ultra-strength materials" 1495:10.1103/PhysRevB.77.195112 1237:Journal of Applied Physics 1177:Journal of Applied Physics 953:nonradiative recombination 1725:"Optica Publishing Group" 990:Density Functional Theory 51:manufacturers, including 27:, as one example, in the 523:{\displaystyle \lambda } 94:with silicon-germanium. 31:channel, which enhances 1877:10.1126/science.abc4174 1814:10.1126/science.aar4165 1767:10.1021/acs.cgd.3c01459 1183:(11): 113525–113525–5. 1068:Real World Technologies 967:In nano-scale materials 938:, which results in its 936:crystal field splitting 503:{\displaystyle \alpha } 1438:10.1126/sciadv.1600245 1390:10.1002/adfm.201202101 873:Nobel Prize in Physics 837: 762: 571: 544: 524: 504: 490:is the Poisson ratio, 484: 464: 441: 275: 247: 220: 190: 120: 1699:10.3390/cryst12081144 1593:10.3390/cryst12030417 1106:on 12 September 2005. 1096:"Straining for Speed" 838: 763: 572: 570:{\displaystyle h_{c}} 545: 525: 505: 485: 465: 442: 276: 274:{\displaystyle h_{c}} 248: 246:{\displaystyle a_{s}} 221: 219:{\displaystyle a_{e}} 191: 121: 43:In CMOS manufacturing 780: 584: 554: 534: 514: 494: 483:{\displaystyle \nu } 474: 454: 288: 258: 230: 203: 133: 110: 2227:2015NanoL..15.1660Y 2161:2016NanoL..16.2931Q 2037:2013NanoL..13.3626C 1965:2019JAP...125h2520L 1869:2021Sci...371...76D 1806:2018Sci...360..300B 1633:2016NatSR...637132D 1537:2018NanoL..18.2351W 1430:2016SciA....2E0245C 1288:2014PMagL..94..702L 1189:2010JAP...108k3525B 1135:2023AcMat.24218432Z 1100:Science News Online 831: 818: 805: 1621:Scientific Reports 957:quantum efficiency 833: 819: 806: 784: 758: 567: 540: 520: 500: 480: 460: 437: 271: 243: 216: 186: 116: 17:Strain engineering 2235:10.1021/nl504276u 2088:Physical Review B 2045:10.1021/nl4014748 1973:10.1063/1.5052718 1800:(6386): 300–302. 1641:10.1038/srep37132 1483:Physical Review B 1384:(15): 1912–1918. 1197:10.1063/1.3514565 893:lattice constants 822: 813: 809: 800: 787: 756: 627: 543:{\displaystyle h} 463:{\displaystyle b} 435: 119:{\displaystyle f} 72:Dual Stress Liner 33:electron mobility 2309: 2286: 2285: 2261: 2255: 2254: 2221:(3): 1660–1666. 2206: 2197: 2196: 2154: 2145:(5): 2931–2937. 2129: 2120: 2119: 2079: 2073: 2072: 2030: 2021:(8): 3626–3630. 2006: 1997: 1996: 1994: 1992: 1942: 1936: 1935: 1911: 1905: 1904: 1848: 1842: 1841: 1785: 1779: 1778: 1761:(9): 3672–3680. 1746: 1740: 1739: 1737: 1735: 1721: 1712: 1711: 1701: 1677: 1671: 1670: 1660: 1612: 1606: 1605: 1595: 1571: 1565: 1564: 1531:(4): 2351–2357. 1522: 1513: 1507: 1506: 1474: 1468: 1467: 1457: 1418:Science Advances 1408: 1402: 1401: 1369: 1363: 1362: 1333: 1327: 1323: 1317: 1314: 1308: 1307: 1281: 1261: 1255: 1254: 1252: 1250:10.1063/1.125687 1228: 1222: 1221: 1219: 1207: 1201: 1200: 1171: 1165: 1164: 1154: 1114: 1108: 1107: 1102:. Archived from 1091: 1085: 1078: 1072: 1071: 1059: 1053: 1049: 1033:Strained silicon 994:strained silicon 858: 857: 856: 842: 840: 839: 834: 832: 830: 827: 820: 817: 814: 811: 807: 804: 801: 798: 797: 785: 767: 765: 764: 759: 757: 755: 727: 719: 707: 691: 662: 661: 630: 628: 626: 625: 617: 608: 603: 602: 601: 596: 576: 574: 573: 568: 566: 565: 549: 547: 546: 541: 529: 527: 526: 521: 509: 507: 506: 501: 489: 487: 486: 481: 469: 467: 466: 461: 446: 444: 443: 438: 436: 434: 406: 398: 386: 370: 365: 364: 337: 336: 305: 300: 299: 280: 278: 277: 272: 270: 269: 252: 250: 249: 244: 242: 241: 225: 223: 222: 217: 215: 214: 195: 193: 192: 187: 185: 184: 175: 167: 166: 154: 153: 125: 123: 122: 117: 87:lattice constant 2317: 2316: 2312: 2311: 2310: 2308: 2307: 2306: 2292: 2291: 2290: 2289: 2263: 2262: 2258: 2208: 2207: 2200: 2131: 2130: 2123: 2081: 2080: 2076: 2008: 2007: 2000: 1990: 1988: 1944: 1943: 1939: 1913: 1912: 1908: 1863:(6524): 76–78. 1850: 1849: 1845: 1787: 1786: 1782: 1748: 1747: 1743: 1733: 1731: 1723: 1722: 1715: 1679: 1678: 1674: 1614: 1613: 1609: 1573: 1572: 1568: 1520: 1515: 1514: 1510: 1476: 1475: 1471: 1424:(6): e1600245. 1410: 1409: 1405: 1371: 1370: 1366: 1335: 1334: 1330: 1324: 1320: 1315: 1311: 1272:(11): 702–707. 1263: 1262: 1258: 1230: 1229: 1225: 1209: 1208: 1204: 1173: 1172: 1168: 1123:Acta Materialia 1116: 1115: 1111: 1093: 1092: 1088: 1084:(2006) S29-S38) 1079: 1075: 1061: 1060: 1056: 1050: 1046: 1041: 1029: 1002: 1000:In 2D materials 969: 912: 865: 855: 852: 851: 850: 848: 778: 777: 708: 653: 631: 612: 587: 582: 581: 557: 552: 551: 550:) that exceeds 532: 531: 512: 511: 492: 491: 472: 471: 452: 451: 387: 356: 328: 306: 291: 286: 285: 261: 256: 255: 233: 228: 227: 206: 201: 200: 176: 158: 145: 131: 130: 108: 107: 100: 45: 12: 11: 5: 2315: 2313: 2305: 2304: 2302:Semiconductors 2294: 2293: 2288: 2287: 2256: 2198: 2121: 2074: 1998: 1937: 1926:(7): 710–757. 1906: 1843: 1780: 1741: 1729:opg.optica.org 1713: 1672: 1607: 1566: 1508: 1489:(19): 195112. 1469: 1403: 1364: 1328: 1318: 1309: 1256: 1243:(2): 155–157. 1223: 1202: 1166: 1109: 1086: 1073: 1054: 1043: 1042: 1040: 1037: 1036: 1035: 1028: 1025: 1001: 998: 968: 965: 911: 908: 904:electro-plated 864: 861: 853: 826: 796: 791: 769: 768: 754: 751: 748: 745: 742: 739: 736: 733: 730: 726: 722: 718: 714: 711: 706: 703: 700: 697: 694: 690: 686: 683: 680: 677: 674: 671: 668: 665: 660: 656: 652: 649: 646: 643: 640: 637: 634: 624: 620: 616: 611: 606: 600: 595: 590: 564: 560: 539: 519: 499: 479: 459: 448: 447: 433: 430: 427: 424: 421: 418: 415: 412: 409: 405: 401: 397: 393: 390: 385: 382: 379: 376: 373: 369: 363: 359: 355: 352: 349: 346: 343: 340: 335: 331: 327: 324: 321: 318: 315: 312: 309: 303: 298: 294: 268: 264: 240: 236: 213: 209: 197: 196: 183: 179: 174: 170: 165: 161: 157: 152: 148: 144: 141: 138: 115: 99: 96: 49:microprocessor 44: 41: 13: 10: 9: 6: 4: 3: 2: 2314: 2303: 2300: 2299: 2297: 2283: 2279: 2275: 2271: 2267: 2260: 2257: 2252: 2248: 2244: 2240: 2236: 2232: 2228: 2224: 2220: 2216: 2212: 2205: 2203: 2199: 2194: 2190: 2186: 2182: 2178: 2174: 2170: 2166: 2162: 2158: 2153: 2148: 2144: 2140: 2136: 2128: 2126: 2122: 2117: 2113: 2109: 2105: 2101: 2097: 2094:(8): 081307. 2093: 2089: 2085: 2078: 2075: 2070: 2066: 2062: 2058: 2054: 2050: 2046: 2042: 2038: 2034: 2029: 2024: 2020: 2016: 2012: 2005: 2003: 1999: 1986: 1982: 1978: 1974: 1970: 1966: 1962: 1958: 1954: 1953: 1948: 1941: 1938: 1933: 1929: 1925: 1921: 1917: 1910: 1907: 1902: 1898: 1894: 1890: 1886: 1882: 1878: 1874: 1870: 1866: 1862: 1858: 1854: 1847: 1844: 1839: 1835: 1831: 1827: 1823: 1819: 1815: 1811: 1807: 1803: 1799: 1795: 1791: 1784: 1781: 1776: 1772: 1768: 1764: 1760: 1756: 1752: 1745: 1742: 1730: 1726: 1720: 1718: 1714: 1709: 1705: 1700: 1695: 1691: 1687: 1683: 1676: 1673: 1668: 1664: 1659: 1654: 1650: 1646: 1642: 1638: 1634: 1630: 1626: 1622: 1618: 1611: 1608: 1603: 1599: 1594: 1589: 1585: 1581: 1577: 1570: 1567: 1562: 1558: 1554: 1550: 1546: 1542: 1538: 1534: 1530: 1526: 1519: 1512: 1509: 1504: 1500: 1496: 1492: 1488: 1484: 1480: 1473: 1470: 1465: 1461: 1456: 1451: 1447: 1443: 1439: 1435: 1431: 1427: 1423: 1419: 1415: 1407: 1404: 1399: 1395: 1391: 1387: 1383: 1379: 1375: 1368: 1365: 1360: 1356: 1352: 1348: 1344: 1340: 1332: 1329: 1322: 1319: 1313: 1310: 1305: 1301: 1297: 1293: 1289: 1285: 1280: 1275: 1271: 1267: 1260: 1257: 1251: 1246: 1242: 1238: 1234: 1227: 1224: 1218: 1213: 1206: 1203: 1198: 1194: 1190: 1186: 1182: 1178: 1170: 1167: 1162: 1158: 1153: 1148: 1144: 1140: 1136: 1132: 1128: 1124: 1120: 1113: 1110: 1105: 1101: 1097: 1090: 1087: 1083: 1077: 1074: 1069: 1065: 1058: 1055: 1048: 1045: 1038: 1034: 1031: 1030: 1026: 1024: 1021: 1016: 1010: 1007: 999: 997: 995: 991: 987: 981: 979: 975: 966: 964: 962: 961:point defects 958: 954: 950: 949:point defects 946: 941: 940:valence bands 937: 933: 929: 925: 921: 917: 909: 907: 905: 901: 900:superlattices 896: 894: 890: 886: 882: 878: 874: 870: 863:In III-N LEDs 862: 860: 844: 824: 794: 789: 773: 752: 749: 746: 743: 737: 734: 731: 720: 712: 709: 701: 698: 692: 688: 684: 678: 675: 666: 658: 654: 650: 647: 644: 641: 638: 632: 618: 609: 604: 588: 580: 579: 578: 562: 558: 537: 517: 497: 477: 457: 431: 428: 425: 422: 416: 413: 410: 399: 391: 388: 380: 377: 371: 367: 361: 357: 350: 347: 338: 333: 329: 325: 322: 319: 316: 313: 307: 301: 296: 292: 284: 283: 282: 266: 262: 238: 234: 211: 207: 181: 177: 172: 163: 159: 155: 150: 146: 139: 136: 129: 128: 127: 113: 103: 98:In thin films 97: 95: 93: 88: 84: 79: 77: 73: 68: 64: 62: 58: 54: 50: 42: 40: 38: 34: 30: 26: 22: 21:semiconductor 18: 2273: 2269: 2259: 2218: 2215:Nano Letters 2214: 2142: 2139:Nano Letters 2138: 2091: 2087: 2077: 2018: 2015:Nano Letters 2014: 1989:. Retrieved 1956: 1950: 1940: 1923: 1919: 1909: 1860: 1856: 1846: 1797: 1793: 1783: 1758: 1754: 1744: 1732:. Retrieved 1728: 1689: 1685: 1675: 1627:(1): 37132. 1624: 1620: 1610: 1583: 1579: 1569: 1528: 1525:Nano Letters 1524: 1511: 1486: 1482: 1472: 1421: 1417: 1406: 1381: 1377: 1374:More, Karren 1367: 1345:(11): 1533. 1342: 1338: 1331: 1326:Corporation. 1321: 1312: 1269: 1265: 1259: 1240: 1236: 1226: 1205: 1180: 1176: 1169: 1126: 1122: 1112: 1104:the original 1099: 1089: 1081: 1076: 1067: 1057: 1052:Corporation. 1047: 1011: 1003: 982: 970: 945:dislocations 913: 897: 885:quantum well 866: 845: 774: 770: 449: 198: 104: 101: 80: 71: 69: 65: 46: 37:conductivity 16: 15: 1692:(8): 1144. 1152:2262/101841 1006:dislocation 978:Moore's law 910:In DUV LEDs 76:lithography 2152:1509.01182 1586:(3): 417. 1129:: 118432. 1039:References 29:transistor 2276:: 26–30. 2243:1530-6984 2193:206731478 2177:1530-6984 2108:1098-0121 2053:1530-6984 2028:1305.3880 1981:125681415 1901:229935085 1885:0036-8075 1822:0036-8075 1775:1528-7483 1708:2073-4352 1649:2045-2322 1602:2073-4352 1561:206746478 1503:1098-0121 1446:2375-2548 1359:119857651 1304:118565360 1279:1310.5899 1217:1102.5000 1161:1359-6454 1020:I-V curve 889:epilayers 795:− 753:λ 738:ν 713:π 667:α 645:ν 642:− 589:ϵ 518:λ 498:α 478:ν 432:λ 417:ν 392:π 339:α 320:ν 317:− 156:− 83:germanium 2296:Category 2251:25642738 2185:27042865 2116:58934891 2061:23819588 1985:Archived 1893:33384375 1830:29674589 1686:Crystals 1667:27841368 1580:Crystals 1553:29558623 1464:27386578 1398:98171464 1027:See also 928:TE to TM 2223:Bibcode 2157:Bibcode 2069:8191142 2033:Bibcode 1991:19 July 1961:Bibcode 1865:Bibcode 1857:Science 1838:5047604 1802:Bibcode 1794:Science 1658:5107897 1629:Bibcode 1533:Bibcode 1455:4928986 1426:Bibcode 1284:Bibcode 1185:Bibcode 1131:Bibcode 974:diamond 2270:Carbon 2249:  2241:  2191:  2183:  2175:  2114:  2106:  2067:  2059:  2051:  1979:  1899:  1891:  1883:  1836:  1828:  1820:  1773:  1734:10 May 1706:  1665:  1655:  1647:  1600:  1559:  1551:  1501:  1462:  1452:  1444:  1396:  1357:  1302:  1159:  922:, and 450:where 199:where 92:MOSFET 59:, and 25:strain 2189:S2CID 2147:arXiv 2112:S2CID 2065:S2CID 2023:arXiv 1977:S2CID 1959:(8). 1897:S2CID 1834:S2CID 1557:S2CID 1521:(PDF) 1394:S2CID 1355:S2CID 1300:S2CID 1274:arXiv 1212:arXiv 920:AlGaN 881:InGaN 61:Intel 2247:PMID 2239:ISSN 2181:PMID 2173:ISSN 2104:ISSN 2057:PMID 2049:ISSN 1993:2023 1889:PMID 1881:ISSN 1826:PMID 1818:ISSN 1771:ISSN 1736:2024 1704:ISSN 1663:PMID 1645:ISSN 1598:ISSN 1549:PMID 1499:ISSN 1460:PMID 1442:ISSN 1157:ISSN 1015:MoS2 947:and 879:and 869:LEDs 2278:doi 2274:131 2231:doi 2165:doi 2096:doi 2041:doi 1969:doi 1957:125 1928:doi 1873:doi 1861:371 1810:doi 1798:360 1763:doi 1694:doi 1653:PMC 1637:doi 1588:doi 1541:doi 1491:doi 1450:PMC 1434:doi 1386:doi 1347:doi 1292:doi 1245:doi 1193:doi 1181:108 1147:hdl 1139:doi 1127:242 934:’s 932:AlN 924:GaN 916:AlN 877:GaN 849:WSe 821:MnO 57:IBM 53:AMD 2298:: 2272:. 2268:. 2245:. 2237:. 2229:. 2219:15 2217:. 2213:. 2201:^ 2187:. 2179:. 2171:. 2163:. 2155:. 2143:16 2141:. 2137:. 2124:^ 2110:. 2102:. 2092:87 2090:. 2086:. 2063:. 2055:. 2047:. 2039:. 2031:. 2019:13 2017:. 2013:. 2001:^ 1983:. 1975:. 1967:. 1955:. 1949:. 1924:55 1922:. 1918:. 1895:. 1887:. 1879:. 1871:. 1859:. 1855:. 1832:. 1824:. 1816:. 1808:. 1796:. 1792:. 1769:. 1759:24 1757:. 1753:. 1727:. 1716:^ 1702:. 1690:12 1688:. 1684:. 1661:. 1651:. 1643:. 1635:. 1623:. 1619:. 1596:. 1584:12 1582:. 1578:. 1555:. 1547:. 1539:. 1529:18 1527:. 1523:. 1497:. 1487:77 1485:. 1481:. 1458:. 1448:. 1440:. 1432:. 1420:. 1416:. 1392:. 1382:23 1380:. 1353:. 1343:18 1341:. 1298:. 1290:. 1282:. 1270:94 1268:. 1241:76 1239:. 1235:. 1191:. 1179:. 1155:. 1145:. 1137:. 1125:. 1121:. 1098:. 1082:15 1066:. 918:, 808:Sr 786:La 55:, 2284:. 2280:: 2253:. 2233:: 2225:: 2195:. 2167:: 2159:: 2149:: 2118:. 2098:: 2071:. 2043:: 2035:: 2025:: 1995:. 1971:: 1963:: 1934:. 1930:: 1903:. 1875:: 1867:: 1840:. 1812:: 1804:: 1777:. 1765:: 1738:. 1710:. 1696:: 1669:. 1639:: 1631:: 1625:6 1604:. 1590:: 1563:. 1543:: 1535:: 1505:. 1493:: 1466:. 1436:: 1428:: 1422:2 1400:. 1388:: 1361:. 1349:: 1306:. 1294:: 1286:: 1276:: 1253:. 1247:: 1220:. 1214:: 1199:. 1195:: 1187:: 1163:. 1149:: 1141:: 1133:: 1070:. 854:2 825:3 812:x 799:x 790:1 750:s 747:o 744:c 741:) 735:+ 732:1 729:( 725:| 721:f 717:| 710:8 705:] 702:1 699:+ 696:) 693:b 689:/ 685:h 682:( 679:n 676:l 673:[ 670:) 664:( 659:2 655:s 651:o 648:c 639:1 636:( 633:b 623:| 619:f 615:| 610:f 605:= 599:| 594:| 563:c 559:h 538:h 458:b 429:s 426:o 423:c 420:) 414:+ 411:1 408:( 404:| 400:f 396:| 389:8 384:] 381:1 378:+ 375:) 372:b 368:/ 362:c 358:h 354:( 351:n 348:l 345:[ 342:) 334:2 330:s 326:o 323:c 314:2 311:( 308:b 302:= 297:c 293:h 267:c 263:h 239:s 235:a 212:e 208:a 182:e 178:a 173:/ 169:) 164:e 160:a 151:s 147:a 143:( 140:= 137:f 114:f

Index

semiconductor
strain
transistor
electron mobility
conductivity
microprocessor
AMD
IBM
Intel
lithography
germanium
lattice constant
MOSFET
LEDs
Nobel Prize in Physics
GaN
InGaN
quantum well
epilayers
lattice constants
superlattices
electro-plated
AlN
AlGaN
GaN
TE to TM
AlN
crystal field splitting
valence bands
dislocations

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.