Knowledge (XXG)

Streaming instability

Source 📝

216:
and from mm- to dm-sized beyond 10 AU. These objects orbit through the gas like planetesimals but are slowed due to the headwind and undergo significant radial drift. The moderately coupled solids that participate in streaming instabilities are those dynamically affected by changes in the motions of gas on scales similar to those of the Coriolis effect, allowing them to be captured by regions of high pressure in a rotating disk. Moderately coupled solids also retain influence on the motion of the gas. If the local solid to gas ratio is near or above 1, this influence is strong enough to reinforce regions of high pressure and to increase the orbital velocity of the gas and slow radial drift. Reaching and maintaining this local solid to gas at the mid-plane requires an average solid to gas ratio in a vertical cross section of the disk that is a few times solar. When the average solid to gas ratio is 0.01, roughly that estimated from measurements of the current Solar System, turbulence at the mid-plane generates a wavelike pattern that puffs up the mid-plane layer of solids. This reduces the solid to gas ratio at the mid-plane to less than 1, suppressing the formation of dense clumps. At higher average solid to gas ratios the mass of solids dampens this turbulence allowing a thin mid-plane layer to form. Stars with higher metallicities are more likely to reach the minimum solid to gas ratio making them favorable locations for planetesimal and planet formation.
267:
Solar System particles this small have Stokes numbers of ~0.001. At these Stokes numbers a vertically integrated solid to gas ratio greater than 0.04, roughly four times that of the overall gas disk, is required to form streaming instabilities. The required concentration may be reduced by half if the particles are able to grow to roughly cm-size. This growth, possibly aided by dusty rims that absorb impacts, may occur over a period of 10^5 years if a fraction of collisions result in sticking due to a broad distribution of collision velocities. Or, if turbulence and the collision velocities are reduced inside initial weak clumps, a runaway process may occur in which clumping aids the growth of solids and their growth strengthens clumping. A radial pile-up of solids may also lead to conditions that support streaming instabilities in a narrow annulus at roughly 1 AU. This would requires a shallow initial disk profile and that the growth of solids be limited by fragmentation instead of bouncing allowing cm-sized solids to form, however. The growth of particles may be further limited at high temperatures, possibly leading to an inner boundary of planetesimal formation where temperatures reaches 1000K.
224:
giant planet region the resulting planetesimal formation may be too late to produce giant planets. If the magnetic field of the disc is aligned with its angular momentum the Hall effect increases viscosity which can result in a faster depletion of the inner gas disk. A pile up of solids in the inner disk can occur due to slower rates of radial drift as Stoke's numbers decline with increasing gas densities. This radial pile up is reinforced as the velocity of the gas increases with the surface density of solids and could result in the formation of bands of planetesimals extending from sublimation lines to a sharp outer edges where solid to gas ratios first reach critical values. For some ranges of particle size and gas viscosity outward flow of the gas may occur, reducing its density and further increasing the solid to gas ratio. The radial pile ups may be limited due to a reduction in the gas density as the disk evolves however, and shorter growth timescales of solids closer to the star could instead result in the loss of solids from the inside out. Radial pile-ups also occur at locations where rapidly drifting large solids fragment into smaller slower drifting solids, for example, inside the
25:
drifting isolated particles. Massive filaments form that reach densities sufficient for the gravitational collapse into planetesimals the size of large asteroids, bypassing a number of barriers to the traditional formation mechanisms. The formation of streaming instabilities requires solids that are moderately coupled to the gas and a local solid to gas ratio of one or greater. The growth of solids large enough to become moderately coupled to the gas is more likely outside the ice line and in regions with limited turbulence. An initial concentration of solids with respect to the gas is necessary to suppress turbulence sufficiently to allow the solid to gas ratio to reach greater than one at the mid-plane. A wide variety of mechanisms to selectively remove gas or to concentrate solids have been proposed. In the inner Solar System the formation of streaming instabilities requires a greater initial concentration of solids or the growth of solid beyond the size of chondrules.
291:, with their porosity increasing as larger porous bodies collide, their radial drift timescales become long, allowing them to grow until they are compressed by gas drag and self-gravity forming small planetesimimals. Alternatively, if the local solid density of the disk is sufficient, they may settle into a thin disk that fragments due to a gravitational instability, forming planetesimals the size of large asteroids, once they grow large enough to become decoupled from the gas. A similar fractal growth of porous silicates may also be possible if they are made up of nanometer-sized grains formed from the evaporation and recondensation of dust. However, the fractal growth of highly porous solids may be limited by the infilling of their cores with small particles generated in collisions due to turbulence; by erosion as the impact velocity due to the relative rates of radial drift of large and small bodies increases; and by 199:. The motions of the solids near the high pressure regions are also affected: solids at its outer edge face a greater headwind and undergo faster radial drift, solids at its inner edge face a lesser headwind and undergo a slower radial drift. This differential radial drift produces a buildup of solids in higher pressure regions. The drag felt by the solids moving toward the region also creates a back reaction on the gas that reinforces the elevated pressure leading to a runaway process. As more solids are carried toward the region by radial drift this eventually yields a concentration of solids sufficient to drive the increase of the velocity of the gas and reduce the local radial drift of solids seen in streaming instabilities. 232:. This pile up can also increase the local velocity of the gas, extending the pile up to outside the ice line where it is enhanced by the outward diffusion and recondensation of water vapor. The pile-up could be muted, however, if the icy bodies are highly porous, which slows their radial drift. Icy solids can be concentrated outside the ice line due to the outward diffusion and recondensation of water vapor. Solids are also concentrated in radial pressure bumps, where the pressure reaches a local maximum. At these locations radial drift converges from both closer and farther from the star. Radial pressure bumps are present at the inner edge of the dead zone, and can form due to the 303:
require a low level of turbulence in the gas and some mechanism for the formation of 100 meter planetesimals. Size dependent clearing of planetesimals due to secular resonance sweeping could also remove small bodies creating a break in the size distribution of asteroids. Secular resonances sweeping inward through the asteroid belt as the gas disk dissipated would excite the eccentricities of the planetesimals. As their eccentricities were damped due to gas drag and tidal interaction with the disk the largest and smallest objects would be lost as their semi-major axes shrank leaving behind the intermediate sized planetesimals.
249:
Beyond the ice line hydrogen bonding allows particles of water ice to stick at higher collision velocities, possibly enabling the growth of large highly porous icy bodies to Stokes numbers approaching 1 before their growth is slowed by erosion. The condensation of vapor diffusing outward from sublimating icy bodies may also drive the growth of compact dm-size icy bodies outside the ice line. A similar growth of bodies due to recondensation of water could occur over a broader region following an FU Orionis event. At greater distances the growth of solids could again be limited if they are coated with a layer of CO
276:
the disk to gravitationally fragment and collapse into planetesimals. The difference in orbital velocities of the dust and gas, however, produces turbulence which inhibits settling preventing sufficient densities from being reached. If the average dust to gas ratio is increased by an order of magnitude at a pressure bump or by the slower drift of small particles derived from fragmenting larger bodies, this turbulence may be suppressed allowing the formation of planetesimals.
54:. Later, gravitational scattering by the larger objects excites relative motions, causing a transition to slower oligarchic accretion that ends with the formation of planetary embryos. In the outer Solar System the planetary embryos grow large enough to accrete gas, forming the giant planets. In the inner Solar System the orbits of the planetary embryos become unstable, leading to giant impacts and the formation of the terrestrial planets. 66:, roughly 1 mm in diameter. Icy solids may not be affected by the bouncing barrier but their growth can be halted at larger sizes due to fragmentation as collision velocities increase. Radial drift is the result of the pressure support of the gas, enabling it to orbit at a slower velocity than the solids. Solids orbiting through this gas lose angular momentum and spiral toward the central 299:
particles may form if collision velocities have a wide distribution, with a small fraction occurring at velocities that allow objects beyond the bouncing barrier to stick. However, the growth via mass transfer is slow relative to radial drift timescales, although it may occur locally if radial drift is halted locally at a pressure bump allowing the formation of planetesimals in 10^5 yrs.
46:. The aggregates settle toward the mid-plane of the disk and collide due to gas turbulence forming pebbles and larger objects. Further collisions and mergers eventually yield planetesimals 1–10 km in diameter held together by self-gravity. The growth of the largest planetesimals then accelerates, as gravitational focusing increases their effective cross-section, resulting in runaway 284:
reach densities sufficient to be gravitationally bound and slowly collapse into planetesimals. Recent research, however, indicates that larger objects such as conglomerates of chondrules may be necessary and that the concentrations produced from chondrules may instead act as the seeds of streaming instabilities.
279:
The cold classical Kuiper belt objects may have formed in a low mass disk dominated by cm-sized or smaller objects. In this model the gas disk epoch ends with km-sized objects, possibly formed via gravitational instability, embedded in a disk of small objects. The disk remains dynamically cool due to
70:
at rates that increase as they grow. At 1 AU this produces a meter-sized barrier, with the rapid loss of large objects in as little as ~1000 orbits, ending with their vaporization as they approach too close to the star. At greater distances the growth of icy bodies can become drift limited at smaller
298:
Collisions at velocities that would result in the fragmentation of equal sized particles can instead result in growth via mass transfer from the small to the larger particle. This process requires an initial population of 'lucky' particles that have grown larger than the majority of particles. These
283:
Planetesimals may also be formed from the concentration of chondrules between eddies in a turbulent disk. In this model the particles are split unequally when large eddies fragment increasing the concentrations of some clumps. As this process cascades to smaller eddies a fraction of these clumps may
266:
In the inner Solar System the formation of streaming instabilities requires a larger enhancement of the solid to gas ratio than beyond the ice line. The growth of silicate particles is limited by the bouncing barrier to ~1 mm, roughly the size of the chondrules found in meteorites. In the inner
215:
of its orbit. Small particles like dust are strongly coupled and move with the gas, large bodies such as planetesimals are weakly coupled and orbit largely unaffected by the gas. Moderately coupled solids, sometimes referred to as pebbles, range from roughly cm- to m-sized at asteroid belt distances
148:
planetesimals with low densities. Gas drag slows the fall of the smallest particles and less frequent collisions slows the fall of the largest particles during this process, resulting in the size sorting of particles with mid-sized particles forming a porous core and a mix of particle sizes forming
79:
Some evidence exists that planetesimal formation may have bypassed these barriers to incremental growth. In the inner asteroid belt all of the low albedo asteroids that have not been identified as part of a collisional family are larger than 35 km. A change in the slope of the size distribution
275:
Instead of actively driving their own concentration, as in streaming instabilities, solids may be passively concentrated to sufficient densities for planetesimals to form via gravitational instabilities. In an early proposal dust settled at the mid-plane until sufficient densities were reached for
223:
late in the gas disk epoch, causing solids to be concentrated in a ring at the edge of a cavity that forms in the gas disk, though the mass of planetesimals that forms may be too small to produce planets. The solid to gas ratio can also increase in the outer disk due to photoevaporation, but in the
206:
of 0.01 - 3; the local solid to gas ratio is near or larger than 1; and the vertically integrated solid to gas ratio is a few times Solar. The Stokes number is a measure of the relative influences of inertia and gas drag on a particle's motion. In this context it is the product of the timescale for
161:
or in some cases trinary objects resembling those in the Kuiper belt. In simulations the initial mass distribution of the planetesimals formed via streaming instabilities fits a power law: dn/dM ~ M, that is slightly steeper than that of small asteroids, with an exponential cutoff at larger masses.
24:
in which the drag felt by solid particles orbiting in a gas disk leads to their spontaneous concentration into clumps which can gravitationally collapse. Small initial clumps increase the orbital velocity of the gas, slowing radial drift locally, leading to their growth as they are joined by faster
240:
transition. If the back-reaction from the concentration of solids flattens the pressure gradient, the planetesimals formed at a pressure bump may be smaller than predicted at other locations. If the pressure gradient is maintained streaming instabilities may form at the location of a pressure bump
190:
Streaming instabilities form only in the presence of rotation and the radial drift of solids. The initial linear phase of a streaming instability, begins with a transient region of high pressure within the protoplanetary disk. The elevated pressure alters the local pressure gradient supporting the
122:
on the gas, increasing its velocity. When solid particles cluster in the gas, the reaction reduces the headwind locally, allowing the cluster to orbit faster and undergo less inward drift. The slower drifting clusters are overtaken and joined by isolated particles, increasing the local density and
113:
at its distance. The solid particles, however, are not supported by the pressure gradient and would orbit at Keplerian velocities in the absence of the gas. The difference in velocities results in a headwind that causes the solid particles to spiral toward the central star as they lose momentum to
248:
Streaming instabilities are more likely to form in regions of the disk where: the growth of solids is favored, the pressure gradient is small, and turbulence is low. Inside the ice-line the bouncing barrier may prevent the growth of silicates large enough to take part in streaming instabilities.
302:
Planetesimal accretion could reproduce the size distribution of the asteroids if it began with 100 meter planetesimals. In this model collisional dampening and gas drag dynamically cool the disk and the bend in the size distribution is caused by a transition between growth regimes. This however
253:
or other ices that reduce the collision velocities where sticking occurs. A small pressure gradient reduces the rate of radial drift, limiting the turbulence generated by streaming instabilities. A smaller average solid to gas ratio is then necessary to suppress turbulence at the mid-plane. The
258:
models indicate that the smallest pressure gradients occur near the ice-line and in the inner parts of the disk. The pressure gradient also decreases late in the disk's evolution as the accretion rate and the temperature decline. A major source of turbulence in the protoplanetary disk is the
57:
A number of obstacles to this process have been identified: barriers to growth via collisions, the radial drift of larger solids, and the turbulent stirring of planetesimals. As a particle grows the time required for its motion to react to changes in the motion of the gas in turbulent eddies
75:
in the protoplanetary disk can create density fluctuations which exert torques on planetesimals exciting their relative velocities. Outside the dead zone the higher random velocities can result in the destruction of smaller planetesimals, and the delay of the onset of runaway growth until
88:
has also been cited as evidence the largest KBO's formed directly. Furthermore, if the cold classical KBO's formed in situ from a low mass disk, as suggested by the presence of loosely bound binaries, they are unlikely to have formed via the traditional mechanism. The dust activity of
245:. The break-up of vortices could also leave a ring of solids from which a streaming instability may form. Solids may also be concentrated locally if disk winds lower the surface density of the inner disc, slowing or reversing their inward drift, or due to thermal diffusion. 280:
inelastic collisions among the cm-sized objects. The slow encounter velocities result in efficient growth with a sizable fraction of the mass ending in the large objects. The dynamical friction from the small bodies would also aid in the formation of binaries.
80:
of asteroids at roughly 100 km can be reproduced in models if the minimal diameter of the planetesimals was 100 km and the smaller asteroids are debris from collisions. A similar change in slope has been observed in the size distribution of the
144:, leading to the formation of planetesimals the size of large asteroids. Impact speeds are limited during the collapse of the smaller clusters that form 1–10 km asteroids, reducing the fragmentation of particles, leading to the formation of porous 109:. The gas is hotter and denser closer to the star, creating a pressure gradient that partially offsets gravity from the star. The partial support of the pressure gradient allows the gas to orbit at roughly 50 m/s below the 33:
Planetesimals and larger bodies are traditionally thought to have formed via a hierarchical accretion, the formation of large objects via the collision and mergers of small objects. This process begins with the collision of
191:
gas, reducing the gradient on the region's inner edge and increasing the gradient on the region's outer edge. The gas therefore must orbit faster near the inner edge and is able to orbit slower near the outer edge. The
136:
at the distance of the asteroid belt. The densities of the filaments can exceed a thousand times the gas density, sufficient to trigger the gravitational collapse and fragmentation of the filaments into bound clusters.
236:. Pressure bumps may also be produced due to the back-reaction of dust on the gas creating self-induced dust traps. The ice line has also been proposed as the site of a pressure bump, however, this requires a steep 127:
of the initial clusters. In simulations the clusters form massive filaments that can grow or dissipate, and that can collide and merge or split into multiple filaments. The separation of filaments averages 0.2 gas
1101:
Blum, J.; Gundlach, B.; Mühle, S.; Trigo-Rodriguez, J. M. (2014). "Comets formed in solar-nebula instabilities! - An experimental and modeling attempt to relate the activity of comets to their formation process".
3258:
Bitsch, Bertram; Morbidelli, Alessandro; Lega, Elena; Kretke, Katherine; Crida, Aurélien (2014). "Stellar irradiated discs and implications on migration of embedded planets. III. Viscosity transitions".
625:
Johansen, A.; Blum, J.; Tanaka, H.; Ormel, C.; Bizzarro, M.; Rickman, H. (2014). "The Multifaceted Planetesimal Formation Process". In Beuther, H.; Klessen, R. S.; Dullemond, C. P.; Henning, T. (eds.).
259:
magnetorotational instability. The impacts of turbulence generated by this instability could limit streaming instabilities to the dead zone, estimated to form near the mid-plane at 1-20 AU, where the
4808:
Okuzumi, Satoshi; Tanaka, Hidekazu; Kobayashi, Hiroshi; Wada, Koji (2012). "Rapid Coagulation of Porous Dust Aggregates outside the Snow Line: A Pathway to Successful Icy Planetesimal Formation".
482:
Zsom, A.; Ormel, C. W.; Güttler, C.; Blum, J.; Dullemond, C. P. (2010). "The outcome of protoplanetary dust growth: pebbles, boulders, or planetesimals? II. Introducing the bouncing barrier".
3312:
Kato, M. T.; Fujimoto, M.; Ida, S. (2012). "Planetesimal Formation at the Boundary between Steady Super/Sub-Keplerian Flow Created by Inhomogeneous Growth of Magnetorotational Instability".
5094:
Windmark, F.; Birnstiel, T.; Güttler, C.; Blum, J.; Dullemond, C. P.; Henning, Th. (2012). "Planetesimal formation by sweep-up: how the bouncing barrier can be beneficial to growth".
3691:
Suzuki, Takeru K.; Ogihara, Masahiro; Morbidelli, Alessandro; Crida, Aurélien; Guillot, Tristan (2016). "Evolution of Protoplanetary Discs with Magnetically Driven Disc Winds".
1048:
Parker, Alex H.; Kavelaars, J. J.; Petit, Jean-Marc; Jones, Lynne; Gladman, Brett; Parker, Joel (2011). "Characterization of Seven Ultra-wide Trans-Neptunian Binaries".
872:
Fraser, Wesley C.; Brown, Michael E.; Morbidelli, Alessandro; Parker, Alex; Batygin, Konstantin (2014). "The Absolute Magnitude Distribution of Kuiper Belt Objects".
153:
and increasing the density of the larger objects such as 100 km asteroid that form from a mixture of pebbles and pebble fragments. Collapsing swarms with excess
4697: 986: 367:
Johansen, A.; Jacquet, E.; Cuzzi, J. N.; Morbidelli, A.; Gounelle, M. (2015). "New Paradigms For Asteroid Formation". In Michel, P.; DeMeo, F.; Bottke, W. (eds.).
287:
Icy particles are more likely to stick and to resist compression in collisions which may allow the growth of large porous bodies. If the growth of these bodies is
3205:
Kretke, Katherine A.; Lin, D. N. C. (2007). "Grain Retention and Formation of Planetesimals near the Snow Line in MRI-driven Turbulent Protoplanetary Disks".
241:
even in viscous disks with significant turbulence. Local pressure bumps also form in the spiral arms of a massive self-gravitating disk and in anti-cyclonic
105:
Streaming instabilities, first described by Andrew Youdin and Jeremy Goodman, are driven by differences in the motions of the gas and solid particles in the
4120:
Bitsch, Bertram; Johansen, Anders; Lambrechts, Michiel; Morbidelli, Alessandro (2015). "The structure of protoplanetary discs around evolving young stars".
1708:
Tsirvoulis, Georgios; Morbidelli, Alessandro; Delbo, Marco; Tsiganis, Kleomenis (2017). "Reconstructing the size distribution of the primordial Main Belt".
1963:
Johansen, A.; Oishi, J. S.; Mac Low, M.-M.; Klahr, H.; Henning, T.; Youdin, A. (2007). "Rapid planetesimal formation in turbulent circumstellar disks".
4176:
Yang, Chao-Chin; Johansen, Anders; Carrera, Daniel (2017). "Concentrating small particles in protoplanetary disks through the streaming instability".
62:
the increased collision velocities cause dust aggregates to compact into solid particles that bounce rather than stick, ending growth at the size of
2144:
Johansen, Anders; Youdin, Andrew; Mac Low, Mordecai-Mark (2009). "Particle Clumping and Planetesimal Formation Depend Strongly on Metallicity".
5317: 3019: 3795:
Bai, Xue-Ning; Stone, James M. (2010). "Dynamics of Solids in the Midplane of Protoplanetary Disks: Implications for Planetesimal Formation".
219:
A high average solid to gas ratio may be reached due to the loss of gas or by the concentration of solids. Gas may be selectively lost due to
661: 402: 4711:
Goldreich, Peter; Lithwick, Yoram; Sari, Re'em (2002). "Formation of Kuiper-belt binaries by dynamical friction and three-body encounters".
3520:
Raettig, Natalie; Klahr, Hubert; Lyra, Wladimir (2015). "Particle Trapping and Streaming Instability in Vortices in Protoplanetary Disks".
3365:
Taki, Tetsuo; Fujimoto, Masaki; Ida, Shigeru (2016). "Dust and gas density evolution at a radial pressure bump in protoplanetary disks".
3848:
Bai, Xue-Ning; Stone, James M. (2010). "The Effect of the Radial Pressure Gradient in Protoplanetary Disks on Planetesimal Formation".
4861:
Kataoka, Akimasa; Tanaka, Hidekazu; Okuzumi, Satoshi; Wada, Koji (2013). "Fluffy dust forms icy planetesimals by static compression".
3101:
Dittrich, K.; Klahr, H.; Johansen, A. (2013). "Gravoturbulent Planetesimal Formation: The Positive Effect of Long-lived Zonal Flows".
2091:
Krijt, S.; Ormel, C. W.; Dominik, C.; Tielens, A. G. G. M. (2016). "A panoptic model for planetesimal formation and pebble delivery".
1831:
Schäfer, Urs; Yang, Chao-Chin; Johansen, Anders (2017). "Initial mass function of planetesimals formed by the streaming instability".
5147:
Drążkowska, J.; Windmark, F.; Dullemond, C. P. (2013). "Planetesimal formation via sweep-up growth at the inner edge of dead zones".
5255:"Planetesimal clearing and size-dependent asteroid retention by secular resonance sweeping during the depletion of the solar nebula" 295:
as they approach ice lines, reducing their ability to absorb collisions, resulting in bouncing or fragmentation during collisions.
58:
increases. The relative motions of particles, and collision velocities, therefore increases as with the mass of the particles. For
821: 4285:
Carrera, D.; Johansen, A.; Davies, M. B. (2015). "How to form planetesimals from mm-sized chondrules and chondrule aggregates".
149:
denser outer layers. The impact speeds and the fragmentation of particles increase with the mass of the clusters, lowering the
229: 2223:
Gorti, U.; Hollenbach, D.; Dullemond, C. P. (2015). "The Impact of Dust Evolution and Photoevaporation on Disk Dispersal".
926: 1157:"Evidence for the formation of comet 67P/Churyumov-Gerasimenko through gravitational collapse of a bound clump of pebbles" 233: 5032:
Dominik, Carsten; Paszun, Dominik; Borel, Herman (2016). "The structure of dust aggregates in hierarchical coagulation".
4338:
Demirci, Tunahan; Teiser, Jens; Steinpilz, Tobias; Landers, Joachim; Salamon, Soma; Wende, Heiko; Wurm, Gerhard (2017).
1537:
Nesvorný, D.; Youdin, A. N.; Richardson, D. C. (2010). "Formation of Kuiper Belt Binaries by Gravitational Collapse".
166:
from the disk may shift the size distribution of the largest objects toward that of the current asteroid belt. In the
4792:"Planetesimal Initial Mass Functions and Creation Rates Under Turbulent Concentration Using Scale-Dependent Cascades" 4479:
Ida, S.; Guillot, T. (2016). "Formation of dust-rich planetesimals from sublimated pebbles inside of the snow line".
4229:
Ormel, C. W.; Cuzzi, J. N.; Tielens, A. G. G. M. (2008). "Co-Accretion of Chondrules and Dust in the Solar Nebula".
3904:
Krijt, S.; Ormel, C. W.; Dominik, C.; Tielens, A. G. G. M. (2015). "Erosion and the limits to planetesimal growth".
1023: 429:
Morbidelli, Alessandro; Bottke, William F.; Nesvorný, David; Levison, Harold F. (2009). "Asteroids were born big".
1592:"The Mass and Size Distribution of Planetesimals Formed by the Streaming Instability. I. The Role of Self-gravity" 2589:
Drążkowska, J.; Alibert, Y.; Moore, B. (2016). "Close-in planetesimal formation by pile-up of drifting pebbles".
225: 1251:
Yang, C.-C.; Johansen, A. (2014). "On the Feeding Zone of Planetesimal Formation by the Streaming Instability".
528: 4774:"Primary Accretion by Turbulent Concentration: The Rate of Planetesimal Formation and the Role of Vortex Tubes" 1309:"Adding particle collisions to the formation of asteroids and Kuiper belt objects via streaming instabilities" 331:
Simon, Jacob B.; Blum, Jürgen; Birnstiel, Til; Nesvorny, David (2023). "Comets and Planetesimal Formation".
4644:
Fraser, Wesley C.; and 21 others (2017). "All planetesimals born near the Kuiper belt formed as binaries".
93:
indicates a low tensile strength that would be the result of a gentle formation process with collisions at
3048:; Turner, N. J. (2009). "Assembling the Building Blocks of Giant Planets Around Intermediate-Mass Stars". 2949:"Fractal Growth and Radial Migration of Solids: The Role of Porosity and Compaction in an Evolving Nebula" 1001:"At Pluto, New Horizons Finds Geology of All Ages, Possible Ice Volcanoes, Insight into Planetary Origins" 2340:"X-ray photoevaporation's limited success in the formation of planetesimals by the streaming instability" 847: 4691: 2508: 980: 5200:
Weidenschilling, S. J., S. J. (2011). "Initial sizes of planetesimals and accretion of the asteroids".
2965:
Schoonenberg, Djoreke; Ormel, Chris W. (2017). "Planetesimal formation near the snowline: in or out?".
5276: 5209: 5166: 5113: 5066: 4996: 4937: 4880: 4827: 4730: 4663: 4608: 4551: 4498: 4451: 4410: 4361: 4304: 4248: 4195: 4139: 4084: 4033: 3976: 3923: 3867: 3814: 3767: 3710: 3604: 3539: 3484: 3384: 3331: 3278: 3224: 3177: 3120: 3067: 2984: 2913: 2858: 2809: 2750: 2691: 2608: 2552: 2471: 2412: 2361: 2299: 2242: 2163: 2110: 2052: 1982: 1903: 1850: 1787: 1727: 1672: 1613: 1556: 1501: 1450: 1393: 1333: 1270: 1217: 1121: 1067: 1000: 960: 891: 784: 737: 641: 586: 501: 448: 382: 4012:"FU Orionis outbursts, preferential recondensation of water ice, and the formation of giant planets" 686: 3583:"Dust Capture and Long-lived Density Enhancements Triggered by Vortices in 2D Protoplanetary Disks" 718:
Birnstiel, T.; Fang, M.; Johansen, A. (2016). "Dust Evolution and the Formation of Planetesimals".
141: 106: 43: 5294: 5266: 5182: 5156: 5129: 5103: 5033: 5014: 4986: 4955: 4927: 4896: 4870: 4843: 4817: 4754: 4720: 4679: 4653: 4626: 4598: 4567: 4541: 4514: 4488: 4379: 4351: 4320: 4294: 4264: 4238: 4211: 4185: 4155: 4129: 4102: 4074: 4023: 3992: 3966: 3939: 3913: 3883: 3857: 3830: 3804: 3757: 3726: 3700: 3673: 3653: 3622: 3594: 3563: 3529: 3502: 3474: 3431: 3400: 3374: 3347: 3321: 3294: 3268: 3240: 3214: 3167: 3136: 3110: 3083: 3057: 3000: 2974: 2929: 2903: 2876: 2827: 2799: 2768: 2740: 2709: 2681: 2624: 2598: 2568: 2542: 2489: 2461: 2430: 2402: 2351: 2317: 2289: 2258: 2232: 2198: 2179: 2153: 2126: 2100: 2070: 2042: 2006: 1972: 1938: 1919: 1893: 1866: 1840: 1777: 1743: 1717: 1690: 1662: 1631: 1603: 1572: 1546: 1519: 1491: 1440: 1409: 1383: 1349: 1323: 1286: 1260: 1233: 1207: 1168: 1137: 1111: 1083: 1057: 907: 881: 753: 727: 667: 631: 602: 576: 491: 464: 438: 408: 372: 332: 167: 124: 119: 47: 4532:
Youdin, Andrew N.; Shu, Frank H. (2002). "Planetesimal Formation by Gravitational Instability".
773:"Identification of a primordial asteroid family constrains the original planetesimal population" 4746: 1998: 1813: 1368: 1308: 802: 771:
Delbo', Marco; Walsh, Kevin; Bolin, Bryce; Avdellidou, Chrysa; Morbidelli, Alessandro (2017).
657: 561: 398: 254:
diminished turbulence also enables the growth of larger solids by lowering impact velocities.
212: 208: 202:
Streaming instabilities form when the solid particles are moderately coupled to the gas, with
133: 5284: 5217: 5174: 5170: 5121: 5117: 5074: 5004: 4945: 4888: 4884: 4835: 4738: 4671: 4616: 4559: 4506: 4502: 4459: 4418: 4369: 4312: 4308: 4256: 4203: 4199: 4147: 4143: 4092: 4041: 3984: 3980: 3931: 3927: 3875: 3822: 3775: 3718: 3714: 3663: 3612: 3555: 3547: 3492: 3441: 3392: 3388: 3339: 3286: 3282: 3232: 3185: 3128: 3075: 2992: 2988: 2921: 2917: 2894:
Drazkowska, Joanna; Alibert, Yann (2017). "Planetesimal formation starts at the snow line".
2866: 2817: 2758: 2699: 2616: 2612: 2560: 2533:
Youdin, Andrew N.; Chiang, Eugene I. (2004). "Particle Pileups and Planetesimal Formation".
2479: 2420: 2369: 2335: 2307: 2250: 2171: 2118: 2114: 2060: 1990: 1911: 1907: 1884:
Lambrechts, M.; Johansen, A. (2012). "Rapid growth of gas-giant cores by pebble accretion".
1858: 1854: 1803: 1795: 1735: 1680: 1621: 1564: 1509: 1458: 1401: 1397: 1341: 1337: 1278: 1225: 1178: 1129: 1075: 968: 899: 792: 745: 653: 649: 594: 590: 509: 505: 456: 394: 390: 220: 196: 171: 154: 115: 1198:
Youdin, Andrew; Goodman, Jeremy (2005). "Streaming Instabilities in Protoplanetary Disks".
312: 2643: 158: 39: 5236: 4791: 4773: 2948: 5280: 5213: 5070: 5000: 4941: 4831: 4734: 4667: 4612: 4555: 4455: 4414: 4365: 4252: 4088: 4037: 3871: 3818: 3771: 3608: 3543: 3488: 3335: 3228: 3181: 3124: 3071: 2862: 2813: 2754: 2695: 2556: 2475: 2416: 2365: 2303: 2246: 2167: 2056: 1986: 1791: 1766:"Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion" 1731: 1676: 1617: 1560: 1505: 1478:
Wahlberg Jansson, Karl; Johansen, Anders; Bukhari Syed, Mohtashim; Blum, Jürgen (2016).
1454: 1274: 1221: 1125: 1071: 964: 895: 788: 741: 645: 452: 386: 3879: 3826: 3045: 1808: 1765: 192: 175: 5289: 5254: 5079: 5054: 5009: 4974: 4950: 4915: 4839: 4621: 4586: 4464: 4439: 3132: 3079: 2484: 2449: 2175: 1568: 1514: 1480:"The role of pebble fragmentation in planetesimal formation II. Numerical simulations" 1479: 903: 5311: 5298: 5186: 5018: 4959: 4900: 4847: 4683: 4630: 4383: 4324: 4215: 4106: 4097: 4062: 3887: 3834: 3730: 3677: 3626: 3617: 3582: 3551: 3497: 3462: 3404: 3351: 3343: 3298: 3140: 2933: 2880: 2871: 2846: 2831: 2822: 2787: 2772: 2704: 2669: 2493: 2434: 2321: 2312: 2277: 2254: 2130: 2074: 2065: 2030: 1870: 1747: 1694: 1635: 1626: 1591: 1576: 1523: 1413: 1290: 1282: 1141: 1087: 757: 671: 606: 412: 255: 203: 179: 110: 5133: 4518: 4268: 4159: 3996: 3943: 3567: 3461:
Rice, W. K. M.; Lodato, G.; Pringle, J. E.; Armitage, P. J.; Bonnell, I. A. (2004).
3244: 3087: 3004: 2713: 2628: 2262: 1923: 1353: 1079: 468: 4758: 3506: 2572: 2183: 2010: 1764:
Johansen, Anders; Mac Low, Mordecai-Mark; Lacerda, Pedro; Bizzarro, Martin (2015).
1429:"Radially resolved simulations of collapsing pebble clouds in protoplanetary discs" 1237: 911: 129: 21: 5178: 5125: 4892: 4571: 4510: 4316: 4207: 4151: 3988: 3957:
Ros, K.; Johansen, A. (2013). "Ice condensation as a planet formation mechanism".
3935: 3722: 3396: 3290: 2996: 2925: 2620: 2450:"The Influence of Magnetic Field Geometry on the Formation of Close-in Exoplanets" 2122: 1915: 1862: 1405: 1345: 598: 513: 5221: 1739: 1133: 972: 460: 3746:"Turbulent thermal diffusion: a way to concentrate dust in protoplanetary discs" 2727:
Kanagawa, Kazuhiro D.; Ueda, Takahiro; Muto, Takayuki; Okuzumi, Satoshi (2017).
2391:"Planetesimal formation by the streaming instability in a photoevaporating disk" 951:
Robbins, Stuart J.; and 28 others (2017). "Craters of the Pluto-Charon system".
195:
resulting from these relative motions support the elevated pressure, creating a
81: 35: 4374: 4339: 3668: 3641: 2763: 2728: 2425: 2390: 1685: 1650: 71:
sizes when their drift timescales become shorter than their growth timescales.
749: 260: 72: 4675: 4046: 4011: 3780: 3745: 3446: 3419: 3020:"Watermelon Dust is the Best Dust: Forming Planetesimals Near the Snow Line" 2788:"Global variation of the dust-to-gas ratio in evolving protoplanetary discs" 2374: 2339: 1463: 1428: 1183: 1156: 797: 772: 292: 237: 163: 145: 94: 63: 4916:"Planetesimal Formation by Gravitational Instability of a Porous Dust Disk" 4750: 3190: 3155: 2002: 1817: 1799: 1649:
Simon, Jacob B.; Armitage, Philip J.; Youdin, Andrew N.; Li, Rixin (2017).
1590:
Simon, Jacob B.; Armitage, Philip J.; Li, Rixin; Youdin, Andrew N. (2016).
806: 3559: 3463:"Accelerated planetesimal growth in self-gravitating protoplanetary discs" 1937:
Armitage, Philip J. (2015). "Physical processes in protoplanetary disks".
4725: 4546: 3479: 2547: 2389:
Carrera, Daniel; Gorti, Uma; Johansen, Anders; Davies, Melvyn B. (2017).
2294: 1212: 242: 150: 59: 51: 5055:"The Sintering Region of Icy Dust Aggregates in a Protoplanetary Nebula" 4742: 4061:
Musiolik, Grzegorz; Teiser, Jens; Jankowski, Tim; Wurm, Gerhard (2016).
1994: 288: 1651:"Evidence for universality in the initial planetesimal mass function" 2031:"On linear dust-gas streaming instabilities in protoplanetary discs" 5271: 5253:
Zheng, Xiaochen; Lin, Douglas N. C.; Kouwenhoven, M. B. N. (2016).
5242:. 41st Lunar and Planetary Science Conference held March 1–5, 2010. 5038: 4991: 4932: 4658: 4603: 4563: 4493: 4423: 4398: 4356: 4299: 4260: 4190: 4079: 4028: 3762: 3705: 3658: 3599: 3534: 3436: 3379: 3236: 3172: 2979: 2908: 2745: 2686: 2603: 2564: 2466: 2407: 2356: 2237: 2105: 1943: 1845: 1782: 1722: 1667: 1608: 1496: 1445: 1229: 1173: 732: 377: 337: 5161: 5108: 4975:"Rocky Planetesimal Formation via Fluffy Aggregates of Nanograins" 4875: 4822: 4243: 4134: 3971: 3918: 3862: 3809: 3326: 3273: 3219: 3115: 3062: 2804: 2729:"Effect of dust radial drift on viscous evolution of gaseous disk" 2158: 2047: 1977: 1898: 1551: 1388: 1328: 1265: 1116: 1062: 886: 636: 581: 496: 443: 371:. Space Science Series. University of Arizona Press. p. 471. 90: 85: 822:"The solar system's earliest asteroids may have all been massive" 67: 3156:"Self-induced dust traps: overcoming planet formation barriers" 2668:
Armitage, Phillip J.; Eisner, Josh A.; Simon, Jacob B. (2016).
2338:; Jennings, Jeff; Rosotti, Giovanni; Birnstiel, Tilman (2017). 3642:"Dust-vortex Instability in the Regime of Well-coupled Grains" 263:
rate is too low to sustain the magnetorotational instability.
4340:"Is There a Temperature Limit in Planet Formation at 1000 K?" 1759: 1757: 1003:. The Johns Hopkins University Applied Physics Laboratory LLC 620: 618: 616: 3581:
Surville, Clément; Mayer, Lucio; Lin, Douglas N. C. (2016).
140:
The clusters shrink as energy is dissipated by gas drag and
555: 553: 551: 549: 3420:"Linear growth of streaming instability in pressure bumps" 2029:
Jacquet, Emmanuel; Balbus, Steven; Latter, Henrik (2011).
4587:"Forming the Cold Classical Kuiper Belt in a Light Disk" 927:"Some Planet-like Kuiper Belt Objects Don't Play "Nice"" 2584: 2582: 362: 360: 358: 356: 354: 352: 350: 348: 4585:
Shannon, Andrew; Wu, Yanquin; Lithwick, Yoram (2016).
424: 422: 1958: 1956: 1954: 1302: 1300: 713: 711: 709: 707: 562:"Can dust coagulation trigger streaming instability?" 3154:
Gonzalez, J.-F.; Laibe, G.; Maddison, S. T. (2017).
2670:"Prompt Planetesimal Formation beyond the Snow Line" 2024: 2022: 2020: 2278:"Dust dynamics during protoplanetary disc clearing" 5237:"Were Asteroids Born Big? An Alternative Scenario" 4063:"Collisions of CO2 Ice Grains in Planet Formation" 3899: 3897: 2086: 2084: 1307:Johansen, A.; Youdin, A. N.; Lithwick, Y. (2012). 4171: 4169: 4016:Monthly Notices of the Royal Astronomical Society 3750:Monthly Notices of the Royal Astronomical Society 3467:Monthly Notices of the Royal Astronomical Society 3424:Monthly Notices of the Royal Astronomical Society 3160:Monthly Notices of the Royal Astronomical Society 2792:Monthly Notices of the Royal Astronomical Society 2344:Monthly Notices of the Royal Astronomical Society 2282:Monthly Notices of the Royal Astronomical Society 2035:Monthly Notices of the Royal Astronomical Society 1433:Monthly Notices of the Royal Astronomical Society 1427:Wahlberg Jansson, Karl; Johansen, Anders (2017). 1161:Monthly Notices of the Royal Astronomical Society 630:. University of Arizona Press. pp. 547–570. 228:where silicate grains are released as icy bodies 20:is a hypothetical mechanism for the formation of 2786:Hughes, Anna L. H.; Armitage, Philip J. (2012). 313:Numerical Simulation of 3D Streaming Instability 4280: 4278: 4797:. 47th Lunar and Planetary Science Conference. 4779:. 43rd Lunar and Planetary Science Conference. 2954:. 47th Lunar and Planetary Science Conference. 1024:"Neptune Acquitted on One Count of Harassment" 4440:"Planetesimal Formation Induced by Sintering" 211:of a particle's velocity due to drag and the 170:the largest objects can continue to grow via 84:objects. The low numbers of small craters on 42:producing larger aggregates held together by 8: 4914:Michikoshi, Shugo; Kokubo, Eiichiro (2016). 3418:Auffinger, Jérémy; Laibe, Guillaume (2017). 529:"The bouncing barrier of silicates and ices" 4696:: CS1 maint: numeric names: authors list ( 4397:Goldreich, Peter; Ward, William R. (1973). 1367:Wahlberg Jansson, K.; Johansen, A. (2014). 985:: CS1 maint: numeric names: authors list ( 4790:Cuzzi, J. N.; Hartlep, T.; Estrada, P. R. 2276:Alexander, R. D.; Armitage, P. J. (2007). 2199:"Dirty Stars Make Good Solar System Hosts" 123:further reducing radial drift, fueling an 76:planetesimals reach radii of 100 km. 5288: 5270: 5160: 5107: 5078: 5037: 5008: 4990: 4949: 4931: 4874: 4821: 4772:Cuzzi, J. N., J. N.; Hogan, R. C., R. C. 4724: 4657: 4620: 4602: 4545: 4492: 4463: 4422: 4373: 4355: 4298: 4242: 4189: 4133: 4096: 4078: 4045: 4027: 3970: 3917: 3861: 3808: 3779: 3761: 3704: 3667: 3657: 3616: 3598: 3533: 3496: 3478: 3445: 3435: 3378: 3325: 3272: 3218: 3189: 3171: 3114: 3061: 2978: 2907: 2870: 2821: 2803: 2762: 2744: 2703: 2685: 2602: 2546: 2483: 2465: 2424: 2406: 2373: 2355: 2311: 2293: 2236: 2157: 2104: 2064: 2046: 1976: 1942: 1897: 1844: 1807: 1781: 1721: 1684: 1666: 1625: 1607: 1550: 1513: 1495: 1462: 1444: 1387: 1327: 1264: 1211: 1182: 1172: 1115: 1061: 885: 796: 731: 635: 580: 560:Drążkowska, J.; Dullemond, C. P. (2014). 495: 442: 376: 336: 4973:Arakawa, Sota; Nakamoto, Taishi (2016). 3640:Surville, Clément; Mayer, Lucio (2018). 1369:"Formation of pebble-pile planetesimals" 2847:"Planetesimal Formation by Sublimation" 2845:Saito, Etsuko; Sirono, Sin-iti (2011). 654:10.2458/azu_uapress_9780816531240-ch024 395:10.2458/azu_uapress_9780816532131-ch025 323: 4689: 978: 2509:"Why is Mercury so far from the Sun?" 7: 2197:American Museum of Natural History. 1155:Blum, Jürgen; et al. (2017). 14: 4979:The Astrophysical Journal Letters 4920:The Astrophysical Journal Letters 4444:The Astrophysical Journal Letters 3850:The Astrophysical Journal Letters 2674:The Astrophysical Journal Letters 2454:The Astrophysical Journal Letters 2146:The Astrophysical Journal Letters 1655:The Astrophysical Journal Letters 687:"What is the meter size barrier?" 685:Küffmeier, Michael (2015-04-03). 527:Küffmeier, Michael (2016-01-27). 4399:"The Formation of Planetesimals" 3498:10.1111/j.1365-2966.2004.08339.x 2823:10.1111/j.1365-2966.2012.20892.x 2313:10.1111/j.1365-2966.2006.11341.x 2066:10.1111/j.1365-2966.2011.18971.x 820:Temming, Maria (3 August 2017). 118:. The drag also produces a back 925:Francis, Matthew (2014-01-16). 5235:Weidenschilling, S. J., S. J. 3044:Kretke, K. A.; Lin, D. N. C.; 3018:Hammer, Michael (2017-06-16). 2642:Hammer, Michael (2016-09-19). 2507:Hammer, Michael (2016-08-12). 1022:Atkinson, Nancy (2010-10-05). 1: 5318:Solar System dynamic theories 2947:Estrada, P. R.; Cuzzi, J. N. 234:magnetorotational instability 5222:10.1016/j.icarus.2011.05.024 5149:Astronomy & Astrophysics 5096:Astronomy & Astrophysics 4863:Astronomy & Astrophysics 4481:Astronomy & Astrophysics 4178:Astronomy & Astrophysics 4122:Astronomy & Astrophysics 3959:Astronomy & Astrophysics 3906:Astronomy & Astrophysics 3880:10.1088/2041-8205/722/2/L220 3827:10.1088/0004-637X/722/2/1437 3693:Astronomy & Astrophysics 3367:Astronomy & Astrophysics 3261:Astronomy & Astrophysics 2967:Astronomy & Astrophysics 2896:Astronomy & Astrophysics 2591:Astronomy & Astrophysics 1886:Astronomy & Astrophysics 1833:Astronomy & Astrophysics 1740:10.1016/j.icarus.2017.05.026 1134:10.1016/j.icarus.2014.03.016 973:10.1016/j.icarus.2016.09.027 846:Beatty, Kelly (2009-08-25). 461:10.1016/j.icarus.2009.07.011 5290:10.3847/1538-4357/836/2/207 5179:10.1051/0004-6361/201321566 5126:10.1051/0004-6361/201118475 5080:10.1088/0004-637X/735/2/131 5010:10.3847/2041-8205/832/2/L19 4951:10.3847/2041-8205/825/2/L28 4893:10.1051/0004-6361/201322151 4840:10.1088/0004-637X/752/2/106 4622:10.3847/0004-637X/818/2/175 4511:10.1051/0004-6361/201629680 4465:10.1088/2041-8205/733/2/L41 4317:10.1051/0004-6361/201425120 4208:10.1051/0004-6361/201630106 4152:10.1051/0004-6361/201424964 4010:Hubbard, Alexander (2017). 3989:10.1051/0004-6361/201220536 3936:10.1051/0004-6361/201425222 3744:Hubbard, Alexander (2015). 3723:10.1051/0004-6361/201628955 3397:10.1051/0004-6361/201527732 3291:10.1051/0004-6361/201424015 3133:10.1088/0004-637X/763/2/117 3080:10.1088/0004-637X/690/1/407 2997:10.1051/0004-6361/201630013 2926:10.1051/0004-6361/201731491 2621:10.1051/0004-6361/201628983 2485:10.3847/2041-8205/827/2/L37 2176:10.1088/0004-637X/704/2/L75 2123:10.1051/0004-6361/201527533 1916:10.1051/0004-6361/201219127 1863:10.1051/0004-6361/201629561 1569:10.1088/0004-6256/140/3/785 1515:10.3847/1538-4357/835/1/109 1406:10.1051/0004-6361/201424369 1346:10.1051/0004-6361/201117701 904:10.1088/0004-637X/782/2/100 599:10.1051/0004-6361/201424809 514:10.1051/0004-6361/200912976 5334: 4287:Astronomy and Astrophysics 4098:10.3847/0004-637X/818/1/16 3618:10.3847/0004-637X/831/1/82 3552:10.1088/0004-637X/804/1/35 3344:10.1088/0004-637X/747/1/11 2872:10.1088/0004-637X/728/1/20 2705:10.3847/2041-8205/828/1/L2 2255:10.1088/0004-637X/804/1/29 2093:Astronomy and Astrophysics 1627:10.3847/0004-637X/822/1/55 1376:Astronomy and Astrophysics 1316:Astronomy and Astrophysics 1283:10.1088/0004-637X/792/2/86 848:"Were Asteroids Born Big?" 569:Astronomy and Astrophysics 484:Astronomy and Astrophysics 5259:The Astrophysical Journal 5059:The Astrophysical Journal 4810:The Astrophysical Journal 4591:The Astrophysical Journal 4534:The Astrophysical Journal 4344:The Astrophysical Journal 4231:The Astrophysical Journal 4067:The Astrophysical Journal 3797:The Astrophysical Journal 3646:The Astrophysical Journal 3587:The Astrophysical Journal 3522:The Astrophysical Journal 3314:The Astrophysical Journal 3207:The Astrophysical Journal 3103:The Astrophysical Journal 3050:The Astrophysical Journal 2851:The Astrophysical Journal 2733:The Astrophysical Journal 2535:The Astrophysical Journal 2395:The Astrophysical Journal 2225:The Astrophysical Journal 1596:The Astrophysical Journal 1484:The Astrophysical Journal 1253:The Astrophysical Journal 1200:The Astrophysical Journal 1080:10.1088/0004-637X/743/1/1 1050:The Astrophysical Journal 874:The Astrophysical Journal 750:10.1007/s11214-016-0256-1 628:Protostars and Planets VI 5053:Sirono, Sin-iti (2011). 4438:Sirono, Sin-iti (2011). 4375:10.3847/1538-4357/aa816c 3669:10.3847/1538-4357/ab3e47 2764:10.3847/1538-4357/aa7ca1 2448:Simon, Jacob B. (2016). 2426:10.3847/1538-4357/aa6932 1686:10.3847/2041-8213/aa8c79 1539:The Astronomical Journal 5171:2013A&A...556A..37D 5118:2012A&A...540A..73W 4885:2013A&A...557L...4K 4676:10.1038/s41550-017-0088 4503:2016A&A...596L...3I 4309:2015A&A...579A..43C 4200:2017A&A...606A..80Y 4144:2015A&A...575A..28B 3981:2013A&A...552A.137R 3928:2015A&A...574A..83K 3715:2016A&A...596A..74S 3389:2016A&A...591A..86T 3283:2014A&A...570A..75B 2989:2017A&A...602A..21S 2918:2017A&A...608A..92D 2644:"Why is Mars so small?" 2613:2016A&A...594A.105D 2115:2016A&A...586A..20K 1908:2012A&A...544A..32L 1855:2017A&A...597A..69S 1398:2014A&A...570A..47W 1338:2012A&A...537A.125J 798:10.1126/science.aam6036 591:2014A&A...572A..78D 506:2010A&A...513A..57Z 174:, possibly forming the 162:Continued accretion of 16:In planetary science a 1800:10.1126/sciadv.1500109 157:can fragment, forming 4403:Astrophysical Journal 4047:10.1093/mnras/stw2882 3781:10.1093/mnras/stv2895 3447:10.1093/mnras/stx2395 2375:10.1093/mnras/stx2294 1464:10.1093/mnras/stx1470 1184:10.1093/mnras/stx2741 720:Space Science Reviews 18:streaming instability 3191:10.1093/mnras/stx016 142:inelastic collisions 44:van der Waals forces 5281:2017ApJ...836..207Z 5214:2011Icar..214..671W 5071:2011ApJ...735..131S 5001:2016ApJ...832L..19A 4942:2016ApJ...825L..28M 4832:2012ApJ...752..106O 4743:10.1038/nature01227 4735:2002Natur.420..643G 4668:2017NatAs...1E..88F 4613:2016ApJ...818..175S 4556:2002ApJ...580..494Y 4456:2011ApJ...733L..41S 4415:1973ApJ...183.1051G 4366:2017ApJ...846...48D 4253:2008ApJ...679.1588O 4089:2016ApJ...818...16M 4038:2017MNRAS.465.1910H 3872:2010ApJ...722L.220B 3819:2010ApJ...722.1437B 3772:2016MNRAS.456.3079H 3609:2016ApJ...831...82S 3544:2015ApJ...804...35R 3489:2004MNRAS.355..543R 3336:2012ApJ...747...11K 3229:2007ApJ...664L..55K 3182:2017MNRAS.467.1984G 3125:2013ApJ...763..117D 3072:2009ApJ...690..407K 2863:2011ApJ...728...20S 2814:2012MNRAS.423..389H 2755:2017ApJ...844..142K 2696:2016ApJ...828L...2A 2557:2004ApJ...601.1109Y 2476:2016ApJ...827L..37S 2417:2017ApJ...839...16C 2366:2017MNRAS.472.4117E 2304:2007MNRAS.375..500A 2247:2015ApJ...804...29G 2168:2009ApJ...704L..75J 2057:2011MNRAS.415.3591J 1995:10.1038/nature06086 1987:2007Natur.448.1022J 1971:(7157): 1022–1025. 1792:2015SciA....1E0109J 1732:2018Icar..304...14T 1677:2017ApJ...847L..12S 1618:2016ApJ...822...55S 1561:2010AJ....140..785N 1506:2017ApJ...835..109W 1455:2017MNRAS.469S.149W 1275:2014ApJ...792...86Y 1222:2005ApJ...620..459Y 1126:2014Icar..235..156B 1072:2011ApJ...743....1P 965:2017Icar..287..187R 896:2014ApJ...782..100F 852:Sky & Telescope 789:2017Sci...357.1026D 783:(6355): 1026–1029. 742:2016SSRv..205...41B 646:2014prpl.conf..547J 453:2009Icar..204..558M 387:2015aste.book..471J 107:protoplanetary disk 50:forming the larger 4719:(6916): 643–+646. 197:geostropic balance 168:outer Solar System 125:exponential growth 111:Keplerian velocity 2336:Ercolano, Barbara 663:978-0-8165-3124-0 404:978-0-8165-3213-1 213:angular frequency 209:exponential decay 5325: 5303: 5302: 5292: 5274: 5250: 5244: 5243: 5241: 5232: 5226: 5225: 5197: 5191: 5190: 5164: 5144: 5138: 5137: 5111: 5091: 5085: 5084: 5082: 5050: 5044: 5043: 5041: 5029: 5023: 5022: 5012: 4994: 4970: 4964: 4963: 4953: 4935: 4911: 4905: 4904: 4878: 4858: 4852: 4851: 4825: 4805: 4799: 4798: 4796: 4787: 4781: 4780: 4778: 4769: 4763: 4762: 4728: 4726:astro-ph/0208490 4708: 4702: 4701: 4695: 4687: 4661: 4646:Nature Astronomy 4641: 4635: 4634: 4624: 4606: 4582: 4576: 4575: 4549: 4547:astro-ph/0207536 4529: 4523: 4522: 4496: 4476: 4470: 4469: 4467: 4435: 4429: 4428: 4426: 4394: 4388: 4387: 4377: 4359: 4335: 4329: 4328: 4302: 4282: 4273: 4272: 4246: 4237:(2): 1588–1610. 4226: 4220: 4219: 4193: 4173: 4164: 4163: 4137: 4117: 4111: 4110: 4100: 4082: 4058: 4052: 4051: 4049: 4031: 4022:(2): 1910–1914. 4007: 4001: 4000: 3974: 3954: 3948: 3947: 3921: 3901: 3892: 3891: 3865: 3856:(2): L220–L223. 3845: 3839: 3838: 3812: 3803:(2): 1437–1459. 3792: 3786: 3785: 3783: 3765: 3756:(3): 3079–3089. 3741: 3735: 3734: 3708: 3688: 3682: 3681: 3671: 3661: 3637: 3631: 3630: 3620: 3602: 3578: 3572: 3571: 3537: 3517: 3511: 3510: 3500: 3482: 3480:astro-ph/0408390 3458: 3452: 3451: 3449: 3439: 3415: 3409: 3408: 3382: 3362: 3356: 3355: 3329: 3309: 3303: 3302: 3276: 3255: 3249: 3248: 3222: 3202: 3196: 3195: 3193: 3175: 3166:(2): 1984–1996. 3151: 3145: 3144: 3118: 3098: 3092: 3091: 3065: 3041: 3035: 3034: 3032: 3030: 3015: 3009: 3008: 2982: 2962: 2956: 2955: 2953: 2944: 2938: 2937: 2911: 2891: 2885: 2884: 2874: 2842: 2836: 2835: 2825: 2807: 2783: 2777: 2776: 2766: 2748: 2724: 2718: 2717: 2707: 2689: 2665: 2659: 2658: 2656: 2654: 2639: 2633: 2632: 2606: 2586: 2577: 2576: 2550: 2548:astro-ph/0309247 2541:(2): 1109–1119. 2530: 2524: 2523: 2521: 2519: 2504: 2498: 2497: 2487: 2469: 2445: 2439: 2438: 2428: 2410: 2386: 2380: 2379: 2377: 2359: 2350:(4): 4117–4125. 2332: 2326: 2325: 2315: 2297: 2295:astro-ph/0611821 2273: 2267: 2266: 2240: 2220: 2214: 2213: 2211: 2209: 2194: 2188: 2187: 2161: 2141: 2135: 2134: 2108: 2088: 2079: 2078: 2068: 2050: 2041:(4): 3591–3598. 2026: 2015: 2014: 1980: 1960: 1949: 1948: 1946: 1934: 1928: 1927: 1901: 1881: 1875: 1874: 1848: 1828: 1822: 1821: 1811: 1785: 1770:Science Advances 1761: 1752: 1751: 1725: 1705: 1699: 1698: 1688: 1670: 1646: 1640: 1639: 1629: 1611: 1587: 1581: 1580: 1554: 1534: 1528: 1527: 1517: 1499: 1475: 1469: 1468: 1466: 1448: 1424: 1418: 1417: 1391: 1373: 1364: 1358: 1357: 1331: 1313: 1304: 1295: 1294: 1268: 1248: 1242: 1241: 1215: 1213:astro-ph/0409263 1195: 1189: 1188: 1186: 1176: 1152: 1146: 1145: 1119: 1098: 1092: 1091: 1065: 1045: 1039: 1038: 1036: 1034: 1019: 1013: 1012: 1010: 1008: 997: 991: 990: 984: 976: 948: 942: 941: 939: 937: 922: 916: 915: 889: 869: 863: 862: 860: 858: 843: 837: 836: 834: 832: 817: 811: 810: 800: 768: 762: 761: 735: 715: 702: 701: 699: 697: 682: 676: 675: 639: 622: 611: 610: 584: 566: 557: 544: 543: 541: 539: 524: 518: 517: 499: 479: 473: 472: 446: 426: 417: 416: 380: 364: 343: 342: 340: 328: 221:photoevaporation 172:pebble accretion 155:angular momentum 116:aerodynamic drag 5333: 5332: 5328: 5327: 5326: 5324: 5323: 5322: 5308: 5307: 5306: 5252: 5251: 5247: 5239: 5234: 5233: 5229: 5199: 5198: 5194: 5146: 5145: 5141: 5093: 5092: 5088: 5052: 5051: 5047: 5031: 5030: 5026: 4972: 4971: 4967: 4913: 4912: 4908: 4860: 4859: 4855: 4807: 4806: 4802: 4794: 4789: 4788: 4784: 4776: 4771: 4770: 4766: 4710: 4709: 4705: 4688: 4643: 4642: 4638: 4584: 4583: 4579: 4531: 4530: 4526: 4478: 4477: 4473: 4437: 4436: 4432: 4396: 4395: 4391: 4337: 4336: 4332: 4284: 4283: 4276: 4228: 4227: 4223: 4175: 4174: 4167: 4119: 4118: 4114: 4060: 4059: 4055: 4009: 4008: 4004: 3956: 3955: 3951: 3903: 3902: 3895: 3847: 3846: 3842: 3794: 3793: 3789: 3743: 3742: 3738: 3690: 3689: 3685: 3639: 3638: 3634: 3580: 3579: 3575: 3519: 3518: 3514: 3460: 3459: 3455: 3417: 3416: 3412: 3364: 3363: 3359: 3311: 3310: 3306: 3257: 3256: 3252: 3204: 3203: 3199: 3153: 3152: 3148: 3100: 3099: 3095: 3043: 3042: 3038: 3028: 3026: 3017: 3016: 3012: 2964: 2963: 2959: 2951: 2946: 2945: 2941: 2893: 2892: 2888: 2844: 2843: 2839: 2785: 2784: 2780: 2726: 2725: 2721: 2667: 2666: 2662: 2652: 2650: 2641: 2640: 2636: 2588: 2587: 2580: 2532: 2531: 2527: 2517: 2515: 2506: 2505: 2501: 2447: 2446: 2442: 2388: 2387: 2383: 2334: 2333: 2329: 2275: 2274: 2270: 2222: 2221: 2217: 2207: 2205: 2196: 2195: 2191: 2143: 2142: 2138: 2090: 2089: 2082: 2028: 2027: 2018: 1962: 1961: 1952: 1936: 1935: 1931: 1883: 1882: 1878: 1830: 1829: 1825: 1763: 1762: 1755: 1707: 1706: 1702: 1648: 1647: 1643: 1589: 1588: 1584: 1536: 1535: 1531: 1477: 1476: 1472: 1426: 1425: 1421: 1371: 1366: 1365: 1361: 1311: 1306: 1305: 1298: 1250: 1249: 1245: 1197: 1196: 1192: 1154: 1153: 1149: 1100: 1099: 1095: 1047: 1046: 1042: 1032: 1030: 1021: 1020: 1016: 1006: 1004: 999: 998: 994: 977: 950: 949: 945: 935: 933: 924: 923: 919: 871: 870: 866: 856: 854: 845: 844: 840: 830: 828: 819: 818: 814: 770: 769: 765: 717: 716: 705: 695: 693: 684: 683: 679: 664: 624: 623: 614: 564: 559: 558: 547: 537: 535: 526: 525: 521: 481: 480: 476: 428: 427: 420: 405: 366: 365: 346: 330: 329: 325: 321: 309: 273: 252: 193:Coriolis forces 188: 132:, roughly 0.02 103: 40:Brownian motion 31: 12: 11: 5: 5331: 5329: 5321: 5320: 5310: 5309: 5305: 5304: 5245: 5227: 5208:(2): 671–684. 5192: 5139: 5086: 5045: 5024: 4965: 4906: 4853: 4800: 4782: 4764: 4703: 4636: 4577: 4564:10.1086/343109 4540:(1): 494–505. 4524: 4471: 4430: 4424:10.1086/152291 4389: 4330: 4274: 4261:10.1086/587836 4221: 4165: 4112: 4053: 4002: 3949: 3893: 3840: 3787: 3736: 3683: 3632: 3573: 3560:10211.3/173113 3512: 3473:(2): 543–552. 3453: 3410: 3357: 3304: 3250: 3237:10.1086/520718 3213:(1): L55–L58. 3197: 3146: 3093: 3056:(1): 407–415. 3036: 3010: 2957: 2939: 2886: 2837: 2798:(1): 389–405. 2778: 2719: 2660: 2634: 2578: 2565:10.1086/379368 2525: 2499: 2440: 2381: 2327: 2288:(2): 500–512. 2268: 2215: 2189: 2152:(2): L75–L79. 2136: 2080: 2016: 1950: 1929: 1876: 1823: 1776:(3): 1500109. 1753: 1700: 1641: 1582: 1545:(3): 785–793. 1529: 1470: 1419: 1359: 1296: 1243: 1230:10.1086/426895 1206:(1): 459–469. 1190: 1147: 1093: 1040: 1028:Universe Today 1014: 992: 943: 917: 864: 838: 812: 763: 726:(1–4): 41–75. 703: 677: 662: 612: 545: 519: 474: 437:(2): 558–573. 418: 403: 344: 322: 320: 317: 316: 315: 308: 307:External links 305: 272: 269: 250: 204:Stokes numbers 187: 184: 102: 99: 30: 27: 13: 10: 9: 6: 4: 3: 2: 5330: 5319: 5316: 5315: 5313: 5300: 5296: 5291: 5286: 5282: 5278: 5273: 5268: 5264: 5260: 5256: 5249: 5246: 5238: 5231: 5228: 5223: 5219: 5215: 5211: 5207: 5203: 5196: 5193: 5188: 5184: 5180: 5176: 5172: 5168: 5163: 5158: 5154: 5150: 5143: 5140: 5135: 5131: 5127: 5123: 5119: 5115: 5110: 5105: 5101: 5097: 5090: 5087: 5081: 5076: 5072: 5068: 5064: 5060: 5056: 5049: 5046: 5040: 5035: 5028: 5025: 5020: 5016: 5011: 5006: 5002: 4998: 4993: 4988: 4984: 4980: 4976: 4969: 4966: 4961: 4957: 4952: 4947: 4943: 4939: 4934: 4929: 4925: 4921: 4917: 4910: 4907: 4902: 4898: 4894: 4890: 4886: 4882: 4877: 4872: 4868: 4864: 4857: 4854: 4849: 4845: 4841: 4837: 4833: 4829: 4824: 4819: 4815: 4811: 4804: 4801: 4793: 4786: 4783: 4775: 4768: 4765: 4760: 4756: 4752: 4748: 4744: 4740: 4736: 4732: 4727: 4722: 4718: 4714: 4707: 4704: 4699: 4693: 4685: 4681: 4677: 4673: 4669: 4665: 4660: 4655: 4651: 4647: 4640: 4637: 4632: 4628: 4623: 4618: 4614: 4610: 4605: 4600: 4596: 4592: 4588: 4581: 4578: 4573: 4569: 4565: 4561: 4557: 4553: 4548: 4543: 4539: 4535: 4528: 4525: 4520: 4516: 4512: 4508: 4504: 4500: 4495: 4490: 4486: 4482: 4475: 4472: 4466: 4461: 4457: 4453: 4449: 4445: 4441: 4434: 4431: 4425: 4420: 4416: 4412: 4409:: 1051–1062. 4408: 4404: 4400: 4393: 4390: 4385: 4381: 4376: 4371: 4367: 4363: 4358: 4353: 4349: 4345: 4341: 4334: 4331: 4326: 4322: 4318: 4314: 4310: 4306: 4301: 4296: 4292: 4288: 4281: 4279: 4275: 4270: 4266: 4262: 4258: 4254: 4250: 4245: 4240: 4236: 4232: 4225: 4222: 4217: 4213: 4209: 4205: 4201: 4197: 4192: 4187: 4183: 4179: 4172: 4170: 4166: 4161: 4157: 4153: 4149: 4145: 4141: 4136: 4131: 4127: 4123: 4116: 4113: 4108: 4104: 4099: 4094: 4090: 4086: 4081: 4076: 4072: 4068: 4064: 4057: 4054: 4048: 4043: 4039: 4035: 4030: 4025: 4021: 4017: 4013: 4006: 4003: 3998: 3994: 3990: 3986: 3982: 3978: 3973: 3968: 3964: 3960: 3953: 3950: 3945: 3941: 3937: 3933: 3929: 3925: 3920: 3915: 3911: 3907: 3900: 3898: 3894: 3889: 3885: 3881: 3877: 3873: 3869: 3864: 3859: 3855: 3851: 3844: 3841: 3836: 3832: 3828: 3824: 3820: 3816: 3811: 3806: 3802: 3798: 3791: 3788: 3782: 3777: 3773: 3769: 3764: 3759: 3755: 3751: 3747: 3740: 3737: 3732: 3728: 3724: 3720: 3716: 3712: 3707: 3702: 3698: 3694: 3687: 3684: 3679: 3675: 3670: 3665: 3660: 3655: 3651: 3647: 3643: 3636: 3633: 3628: 3624: 3619: 3614: 3610: 3606: 3601: 3596: 3592: 3588: 3584: 3577: 3574: 3569: 3565: 3561: 3557: 3553: 3549: 3545: 3541: 3536: 3531: 3527: 3523: 3516: 3513: 3508: 3504: 3499: 3494: 3490: 3486: 3481: 3476: 3472: 3468: 3464: 3457: 3454: 3448: 3443: 3438: 3433: 3429: 3425: 3421: 3414: 3411: 3406: 3402: 3398: 3394: 3390: 3386: 3381: 3376: 3372: 3368: 3361: 3358: 3353: 3349: 3345: 3341: 3337: 3333: 3328: 3323: 3319: 3315: 3308: 3305: 3300: 3296: 3292: 3288: 3284: 3280: 3275: 3270: 3266: 3262: 3254: 3251: 3246: 3242: 3238: 3234: 3230: 3226: 3221: 3216: 3212: 3208: 3201: 3198: 3192: 3187: 3183: 3179: 3174: 3169: 3165: 3161: 3157: 3150: 3147: 3142: 3138: 3134: 3130: 3126: 3122: 3117: 3112: 3108: 3104: 3097: 3094: 3089: 3085: 3081: 3077: 3073: 3069: 3064: 3059: 3055: 3051: 3047: 3040: 3037: 3025: 3021: 3014: 3011: 3006: 3002: 2998: 2994: 2990: 2986: 2981: 2976: 2972: 2968: 2961: 2958: 2950: 2943: 2940: 2935: 2931: 2927: 2923: 2919: 2915: 2910: 2905: 2901: 2897: 2890: 2887: 2882: 2878: 2873: 2868: 2864: 2860: 2856: 2852: 2848: 2841: 2838: 2833: 2829: 2824: 2819: 2815: 2811: 2806: 2801: 2797: 2793: 2789: 2782: 2779: 2774: 2770: 2765: 2760: 2756: 2752: 2747: 2742: 2738: 2734: 2730: 2723: 2720: 2715: 2711: 2706: 2701: 2697: 2693: 2688: 2683: 2679: 2675: 2671: 2664: 2661: 2649: 2645: 2638: 2635: 2630: 2626: 2622: 2618: 2614: 2610: 2605: 2600: 2596: 2592: 2585: 2583: 2579: 2574: 2570: 2566: 2562: 2558: 2554: 2549: 2544: 2540: 2536: 2529: 2526: 2514: 2510: 2503: 2500: 2495: 2491: 2486: 2481: 2477: 2473: 2468: 2463: 2459: 2455: 2451: 2444: 2441: 2436: 2432: 2427: 2422: 2418: 2414: 2409: 2404: 2400: 2396: 2392: 2385: 2382: 2376: 2371: 2367: 2363: 2358: 2353: 2349: 2345: 2341: 2337: 2331: 2328: 2323: 2319: 2314: 2309: 2305: 2301: 2296: 2291: 2287: 2283: 2279: 2272: 2269: 2264: 2260: 2256: 2252: 2248: 2244: 2239: 2234: 2230: 2226: 2219: 2216: 2204: 2200: 2193: 2190: 2185: 2181: 2177: 2173: 2169: 2165: 2160: 2155: 2151: 2147: 2140: 2137: 2132: 2128: 2124: 2120: 2116: 2112: 2107: 2102: 2098: 2094: 2087: 2085: 2081: 2076: 2072: 2067: 2062: 2058: 2054: 2049: 2044: 2040: 2036: 2032: 2025: 2023: 2021: 2017: 2012: 2008: 2004: 2000: 1996: 1992: 1988: 1984: 1979: 1974: 1970: 1966: 1959: 1957: 1955: 1951: 1945: 1940: 1933: 1930: 1925: 1921: 1917: 1913: 1909: 1905: 1900: 1895: 1891: 1887: 1880: 1877: 1872: 1868: 1864: 1860: 1856: 1852: 1847: 1842: 1838: 1834: 1827: 1824: 1819: 1815: 1810: 1805: 1801: 1797: 1793: 1789: 1784: 1779: 1775: 1771: 1767: 1760: 1758: 1754: 1749: 1745: 1741: 1737: 1733: 1729: 1724: 1719: 1715: 1711: 1704: 1701: 1696: 1692: 1687: 1682: 1678: 1674: 1669: 1664: 1660: 1656: 1652: 1645: 1642: 1637: 1633: 1628: 1623: 1619: 1615: 1610: 1605: 1601: 1597: 1593: 1586: 1583: 1578: 1574: 1570: 1566: 1562: 1558: 1553: 1548: 1544: 1540: 1533: 1530: 1525: 1521: 1516: 1511: 1507: 1503: 1498: 1493: 1489: 1485: 1481: 1474: 1471: 1465: 1460: 1456: 1452: 1447: 1442: 1439:: S149–S157. 1438: 1434: 1430: 1423: 1420: 1415: 1411: 1407: 1403: 1399: 1395: 1390: 1385: 1381: 1377: 1370: 1363: 1360: 1355: 1351: 1347: 1343: 1339: 1335: 1330: 1325: 1321: 1317: 1310: 1303: 1301: 1297: 1292: 1288: 1284: 1280: 1276: 1272: 1267: 1262: 1258: 1254: 1247: 1244: 1239: 1235: 1231: 1227: 1223: 1219: 1214: 1209: 1205: 1201: 1194: 1191: 1185: 1180: 1175: 1170: 1167:: S755–S773. 1166: 1162: 1158: 1151: 1148: 1143: 1139: 1135: 1131: 1127: 1123: 1118: 1113: 1109: 1105: 1097: 1094: 1089: 1085: 1081: 1077: 1073: 1069: 1064: 1059: 1055: 1051: 1044: 1041: 1029: 1025: 1018: 1015: 1002: 996: 993: 988: 982: 974: 970: 966: 962: 958: 954: 947: 944: 932: 931:UniverseToday 928: 921: 918: 913: 909: 905: 901: 897: 893: 888: 883: 879: 875: 868: 865: 853: 849: 842: 839: 827: 823: 816: 813: 808: 804: 799: 794: 790: 786: 782: 778: 774: 767: 764: 759: 755: 751: 747: 743: 739: 734: 729: 725: 721: 714: 712: 710: 708: 704: 692: 688: 681: 678: 673: 669: 665: 659: 655: 651: 647: 643: 638: 633: 629: 621: 619: 617: 613: 608: 604: 600: 596: 592: 588: 583: 578: 574: 570: 563: 556: 554: 552: 550: 546: 534: 530: 523: 520: 515: 511: 507: 503: 498: 493: 489: 485: 478: 475: 470: 466: 462: 458: 454: 450: 445: 440: 436: 432: 425: 423: 419: 414: 410: 406: 400: 396: 392: 388: 384: 379: 374: 370: 363: 361: 359: 357: 355: 353: 351: 349: 345: 339: 334: 327: 324: 318: 314: 311: 310: 306: 304: 300: 296: 294: 290: 285: 281: 277: 270: 268: 264: 262: 257: 246: 244: 239: 235: 231: 227: 222: 217: 214: 210: 205: 200: 198: 194: 185: 183: 181: 180:giant planets 177: 173: 169: 165: 160: 156: 152: 147: 143: 138: 135: 131: 130:scale heights 126: 121: 117: 112: 108: 100: 98: 96: 92: 87: 83: 77: 74: 69: 65: 61: 55: 53: 49: 45: 41: 37: 28: 26: 23: 22:planetesimals 19: 5262: 5258: 5248: 5230: 5205: 5201: 5195: 5152: 5148: 5142: 5099: 5095: 5089: 5062: 5058: 5048: 5027: 4982: 4978: 4968: 4923: 4919: 4909: 4866: 4862: 4856: 4813: 4809: 4803: 4785: 4767: 4716: 4712: 4706: 4692:cite journal 4649: 4645: 4639: 4594: 4590: 4580: 4537: 4533: 4527: 4484: 4480: 4474: 4447: 4443: 4433: 4406: 4402: 4392: 4347: 4343: 4333: 4290: 4286: 4234: 4230: 4224: 4181: 4177: 4125: 4121: 4115: 4070: 4066: 4056: 4019: 4015: 4005: 3962: 3958: 3952: 3909: 3905: 3853: 3849: 3843: 3800: 3796: 3790: 3753: 3749: 3739: 3696: 3692: 3686: 3649: 3645: 3635: 3590: 3586: 3576: 3525: 3521: 3515: 3470: 3466: 3456: 3427: 3423: 3413: 3370: 3366: 3360: 3317: 3313: 3307: 3264: 3260: 3253: 3210: 3206: 3200: 3163: 3159: 3149: 3106: 3102: 3096: 3053: 3049: 3039: 3027:. Retrieved 3023: 3013: 2970: 2966: 2960: 2942: 2899: 2895: 2889: 2854: 2850: 2840: 2795: 2791: 2781: 2736: 2732: 2722: 2677: 2673: 2663: 2651:. Retrieved 2647: 2637: 2594: 2590: 2538: 2534: 2528: 2516:. Retrieved 2512: 2502: 2457: 2453: 2443: 2398: 2394: 2384: 2347: 2343: 2330: 2285: 2281: 2271: 2228: 2224: 2218: 2206:. Retrieved 2203:ScienceDaily 2202: 2192: 2149: 2145: 2139: 2096: 2092: 2038: 2034: 1968: 1964: 1932: 1889: 1885: 1879: 1836: 1832: 1826: 1773: 1769: 1713: 1709: 1703: 1658: 1654: 1644: 1599: 1595: 1585: 1542: 1538: 1532: 1487: 1483: 1473: 1436: 1432: 1422: 1379: 1375: 1362: 1319: 1315: 1256: 1252: 1246: 1203: 1199: 1193: 1164: 1160: 1150: 1107: 1103: 1096: 1053: 1049: 1043: 1031:. Retrieved 1027: 1017: 1005:. Retrieved 995: 981:cite journal 956: 952: 946: 934:. Retrieved 930: 920: 877: 873: 867: 855:. Retrieved 851: 841: 829:. Retrieved 825: 815: 780: 776: 766: 723: 719: 694:. Retrieved 690: 680: 627: 572: 568: 536:. Retrieved 532: 522: 487: 483: 477: 434: 430: 369:Asteroids IV 368: 326: 301: 297: 286: 282: 278: 274: 271:Alternatives 265: 256:Hydrodynamic 247: 218: 201: 189: 186:Requirements 139: 104: 97:velocities. 78: 56: 32: 17: 15: 4652:(4): 0088. 3430:: 796–805. 2518:17 November 1110:: 156–169. 959:: 187–206. 826:ScienceNews 146:pebble pile 101:Description 82:Kuiper belt 5272:1610.09670 5265:(2): 207. 5065:(2): 131. 5039:1611.00167 4992:1611.03859 4985:(2): L19. 4933:1606.06824 4926:(2): L28. 4816:(2): 106. 4659:1705.00683 4604:1510.01323 4597:(2): 175. 4494:1610.09643 4450:(2): L41. 4357:1710.00606 4300:1501.05314 4191:1611.07014 4080:1601.04854 4029:1611.01538 3763:1512.02538 3706:1609.00437 3659:1801.07509 3652:(2): 176. 3600:1601.05945 3535:1501.05364 3437:1709.08660 3380:1605.02744 3173:1701.01115 3109:(2): 117. 3046:Garaud, P. 3024:astrobites 2980:1702.02151 2909:1710.00009 2746:1706.08975 2739:(2): 142. 2687:1608.03592 2648:astrobites 2604:1607.05734 2513:astrobites 2467:1608.00573 2460:(2): L37. 2408:1703.07895 2357:1709.00361 2238:1502.07369 2208:6 December 2106:1511.07762 1944:1509.06382 1846:1611.02285 1783:1503.07347 1723:1706.02091 1668:1705.03889 1661:(2): L12. 1609:1512.00009 1497:1609.07052 1490:(1): 109. 1446:1706.03655 1174:1710.07846 1033:3 December 936:4 December 880:(2): 100. 857:3 December 733:1604.02952 696:3 December 691:astrobites 538:4 December 533:Astrobites 378:1505.02941 338:2212.04509 319:References 261:ionization 164:chondrules 73:Turbulence 64:chondrules 29:Background 5299:250882893 5187:119284033 5162:1306.3412 5109:1201.4282 5019:119061230 4960:118396736 4901:118516580 4876:1307.7984 4848:119244313 4823:1204.5035 4684:256713769 4631:118603263 4384:119412274 4350:(1): 48. 4325:118527321 4244:0802.4048 4216:119446303 4135:1411.3255 4107:119088797 4073:(1): 16. 3972:1302.3755 3919:1412.3593 3888:119286714 3863:1005.4981 3835:119231567 3810:1005.4982 3731:118549097 3678:119474231 3627:119236890 3593:(1): 82. 3528:(1): 35. 3405:119202965 3352:119249887 3327:1112.5264 3320:(1): 11. 3299:119026521 3274:1408.1016 3220:0706.1272 3141:119293669 3116:1211.2095 3063:0806.1521 2934:119396838 2881:119446694 2857:(1): 20. 2832:118496591 2805:1203.2940 2773:119240000 2680:(1): L2. 2494:118420788 2435:119472343 2401:(1): 16. 2322:119457321 2231:(1): 29. 2159:0909.0259 2131:119097386 2075:119200938 2048:1104.5396 1978:0708.3890 1899:1205.3030 1871:118425732 1748:118957910 1716:: 14–23. 1695:118969826 1636:118512664 1602:(1): 55. 1577:118451279 1552:1007.1465 1524:118563238 1414:119105944 1389:1408.2535 1329:1111.0221 1291:119269321 1266:1407.5995 1259:(2): 86. 1142:118337148 1117:1403.2610 1088:119287342 1063:1108.2505 1007:3 January 887:1401.2157 758:255075691 672:119300087 637:1402.1344 607:118510809 582:1410.3832 497:1001.0488 444:0907.2512 413:118709894 293:sintering 238:viscosity 230:sublimate 95:free-fall 60:silicates 52:asteroids 48:accretion 5312:Category 5134:54211635 4751:12478286 4519:58889066 4269:16630361 4160:73588069 3997:21727166 3965:: A137. 3944:29547121 3568:20205024 3245:16822412 3088:17298782 3005:73590617 2714:55886038 2629:55846864 2597:: A105. 2263:36371330 2003:17728751 1924:53961588 1818:26601169 1354:54176646 1322:: A125. 1056:(1): 1. 831:5 August 807:28775212 469:12632943 243:vortices 226:ice line 151:porosity 120:reaction 5277:Bibcode 5210:Bibcode 5167:Bibcode 5155:: A37. 5114:Bibcode 5102:: A73. 5067:Bibcode 4997:Bibcode 4938:Bibcode 4881:Bibcode 4828:Bibcode 4759:4386134 4731:Bibcode 4664:Bibcode 4609:Bibcode 4552:Bibcode 4499:Bibcode 4452:Bibcode 4411:Bibcode 4362:Bibcode 4305:Bibcode 4293:: A43. 4249:Bibcode 4196:Bibcode 4184:: A80. 4140:Bibcode 4128:: A28. 4085:Bibcode 4034:Bibcode 3977:Bibcode 3924:Bibcode 3912:: A83. 3868:Bibcode 3815:Bibcode 3768:Bibcode 3711:Bibcode 3699:: A74. 3605:Bibcode 3540:Bibcode 3507:2605554 3485:Bibcode 3385:Bibcode 3373:: A86. 3332:Bibcode 3279:Bibcode 3267:: A75. 3225:Bibcode 3178:Bibcode 3121:Bibcode 3068:Bibcode 3029:20 June 2985:Bibcode 2973:: A21. 2914:Bibcode 2902:: A92. 2859:Bibcode 2810:Bibcode 2751:Bibcode 2692:Bibcode 2653:20 June 2609:Bibcode 2573:7320458 2553:Bibcode 2472:Bibcode 2413:Bibcode 2362:Bibcode 2300:Bibcode 2243:Bibcode 2184:2097171 2164:Bibcode 2111:Bibcode 2099:: A20. 2053:Bibcode 2011:4417583 1983:Bibcode 1904:Bibcode 1892:: A32. 1851:Bibcode 1839:: A69. 1809:4640629 1788:Bibcode 1728:Bibcode 1673:Bibcode 1614:Bibcode 1557:Bibcode 1502:Bibcode 1451:Bibcode 1394:Bibcode 1382:: A47. 1334:Bibcode 1271:Bibcode 1238:9586787 1218:Bibcode 1122:Bibcode 1068:Bibcode 961:Bibcode 912:2410254 892:Bibcode 785:Bibcode 777:Science 738:Bibcode 642:Bibcode 587:Bibcode 575:: A78. 502:Bibcode 490:: A57. 449:Bibcode 383:Bibcode 289:fractal 38:due to 5297:  5202:Icarus 5185:  5132:  5017:  4958:  4899:  4869:: L4. 4846:  4757:  4749:  4713:Nature 4682:  4629:  4572:299829 4570:  4517:  4487:: L3. 4382:  4323:  4267:  4214:  4158:  4105:  3995:  3942:  3886:  3833:  3729:  3676:  3625:  3566:  3505:  3403:  3350:  3297:  3243:  3139:  3086:  3003:  2932:  2879:  2830:  2771:  2712:  2627:  2571:  2492:  2433:  2320:  2261:  2182:  2129:  2073:  2009:  2001:  1965:Nature 1922:  1869:  1816:  1806:  1746:  1710:Icarus 1693:  1634:  1575:  1522:  1412:  1352:  1289:  1236:  1140:  1104:Icarus 1086:  953:Icarus 910:  805:  756:  670:  660:  605:  467:  431:Icarus 411:  401:  159:binary 91:comets 5295:S2CID 5267:arXiv 5240:(PDF) 5183:S2CID 5157:arXiv 5130:S2CID 5104:arXiv 5034:arXiv 5015:S2CID 4987:arXiv 4956:S2CID 4928:arXiv 4897:S2CID 4871:arXiv 4844:S2CID 4818:arXiv 4795:(PDF) 4777:(PDF) 4755:S2CID 4721:arXiv 4680:S2CID 4654:arXiv 4627:S2CID 4599:arXiv 4568:S2CID 4542:arXiv 4515:S2CID 4489:arXiv 4380:S2CID 4352:arXiv 4321:S2CID 4295:arXiv 4265:S2CID 4239:arXiv 4212:S2CID 4186:arXiv 4156:S2CID 4130:arXiv 4103:S2CID 4075:arXiv 4024:arXiv 3993:S2CID 3967:arXiv 3940:S2CID 3914:arXiv 3884:S2CID 3858:arXiv 3831:S2CID 3805:arXiv 3758:arXiv 3727:S2CID 3701:arXiv 3674:S2CID 3654:arXiv 3623:S2CID 3595:arXiv 3564:S2CID 3530:arXiv 3503:S2CID 3475:arXiv 3432:arXiv 3401:S2CID 3375:arXiv 3348:S2CID 3322:arXiv 3295:S2CID 3269:arXiv 3241:S2CID 3215:arXiv 3168:arXiv 3137:S2CID 3111:arXiv 3084:S2CID 3058:arXiv 3001:S2CID 2975:arXiv 2952:(PDF) 2930:S2CID 2904:arXiv 2877:S2CID 2828:S2CID 2800:arXiv 2769:S2CID 2741:arXiv 2710:S2CID 2682:arXiv 2625:S2CID 2599:arXiv 2569:S2CID 2543:arXiv 2490:S2CID 2462:arXiv 2431:S2CID 2403:arXiv 2352:arXiv 2318:S2CID 2290:arXiv 2259:S2CID 2233:arXiv 2180:S2CID 2154:arXiv 2127:S2CID 2101:arXiv 2071:S2CID 2043:arXiv 2007:S2CID 1973:arXiv 1939:arXiv 1920:S2CID 1894:arXiv 1867:S2CID 1841:arXiv 1778:arXiv 1744:S2CID 1718:arXiv 1691:S2CID 1663:arXiv 1632:S2CID 1604:arXiv 1573:S2CID 1547:arXiv 1520:S2CID 1492:arXiv 1441:arXiv 1410:S2CID 1384:arXiv 1372:(PDF) 1350:S2CID 1324:arXiv 1312:(PDF) 1287:S2CID 1261:arXiv 1234:S2CID 1208:arXiv 1169:arXiv 1138:S2CID 1112:arXiv 1084:S2CID 1058:arXiv 908:S2CID 882:arXiv 754:S2CID 728:arXiv 668:S2CID 632:arXiv 603:S2CID 577:arXiv 565:(PDF) 492:arXiv 465:S2CID 439:arXiv 409:S2CID 373:arXiv 333:arXiv 176:cores 86:Pluto 4747:PMID 4698:link 3031:2017 2655:2017 2520:2016 2210:2016 1999:PMID 1814:PMID 1035:2016 1009:2016 987:link 938:2016 859:2016 833:2017 803:PMID 698:2016 658:ISBN 540:2016 399:ISBN 207:the 68:star 36:dust 5285:doi 5263:836 5218:doi 5206:214 5175:doi 5153:556 5122:doi 5100:540 5075:doi 5063:735 5005:doi 4983:832 4946:doi 4924:825 4889:doi 4867:557 4836:doi 4814:752 4739:doi 4717:420 4672:doi 4617:doi 4595:818 4560:doi 4538:580 4507:doi 4485:596 4460:doi 4448:733 4419:doi 4407:183 4370:doi 4348:846 4313:doi 4291:579 4257:doi 4235:679 4204:doi 4182:606 4148:doi 4126:575 4093:doi 4071:818 4042:doi 4020:465 3985:doi 3963:552 3932:doi 3910:574 3876:doi 3854:722 3823:doi 3801:722 3776:doi 3754:456 3719:doi 3697:596 3664:doi 3650:883 3613:doi 3591:831 3556:hdl 3548:doi 3526:804 3493:doi 3471:355 3442:doi 3428:473 3393:doi 3371:591 3340:doi 3318:747 3287:doi 3265:570 3233:doi 3211:664 3186:doi 3164:467 3129:doi 3107:763 3076:doi 3054:690 2993:doi 2971:602 2922:doi 2900:608 2867:doi 2855:728 2818:doi 2796:423 2759:doi 2737:844 2700:doi 2678:828 2617:doi 2595:594 2561:doi 2539:601 2480:doi 2458:827 2421:doi 2399:839 2370:doi 2348:472 2308:doi 2286:375 2251:doi 2229:804 2172:doi 2150:704 2119:doi 2097:586 2061:doi 2039:415 1991:doi 1969:448 1912:doi 1890:544 1859:doi 1837:597 1804:PMC 1796:doi 1736:doi 1681:doi 1659:847 1622:doi 1600:822 1565:doi 1543:140 1510:doi 1488:835 1459:doi 1437:469 1402:doi 1380:570 1342:doi 1320:537 1279:doi 1257:792 1226:doi 1204:620 1179:doi 1165:469 1130:doi 1108:235 1076:doi 1054:743 969:doi 957:287 900:doi 878:782 793:doi 781:357 746:doi 724:205 650:doi 595:doi 573:572 510:doi 488:513 457:doi 435:204 391:doi 178:of 5314:: 5293:. 5283:. 5275:. 5261:. 5257:. 5216:. 5204:. 5181:. 5173:. 5165:. 5151:. 5128:. 5120:. 5112:. 5098:. 5073:. 5061:. 5057:. 5013:. 5003:. 4995:. 4981:. 4977:. 4954:. 4944:. 4936:. 4922:. 4918:. 4895:. 4887:. 4879:. 4865:. 4842:. 4834:. 4826:. 4812:. 4753:. 4745:. 4737:. 4729:. 4715:. 4694:}} 4690:{{ 4678:. 4670:. 4662:. 4648:. 4625:. 4615:. 4607:. 4593:. 4589:. 4566:. 4558:. 4550:. 4536:. 4513:. 4505:. 4497:. 4483:. 4458:. 4446:. 4442:. 4417:. 4405:. 4401:. 4378:. 4368:. 4360:. 4346:. 4342:. 4319:. 4311:. 4303:. 4289:. 4277:^ 4263:. 4255:. 4247:. 4233:. 4210:. 4202:. 4194:. 4180:. 4168:^ 4154:. 4146:. 4138:. 4124:. 4101:. 4091:. 4083:. 4069:. 4065:. 4040:. 4032:. 4018:. 4014:. 3991:. 3983:. 3975:. 3961:. 3938:. 3930:. 3922:. 3908:. 3896:^ 3882:. 3874:. 3866:. 3852:. 3829:. 3821:. 3813:. 3799:. 3774:. 3766:. 3752:. 3748:. 3725:. 3717:. 3709:. 3695:. 3672:. 3662:. 3648:. 3644:. 3621:. 3611:. 3603:. 3589:. 3585:. 3562:. 3554:. 3546:. 3538:. 3524:. 3501:. 3491:. 3483:. 3469:. 3465:. 3440:. 3426:. 3422:. 3399:. 3391:. 3383:. 3369:. 3346:. 3338:. 3330:. 3316:. 3293:. 3285:. 3277:. 3263:. 3239:. 3231:. 3223:. 3209:. 3184:. 3176:. 3162:. 3158:. 3135:. 3127:. 3119:. 3105:. 3082:. 3074:. 3066:. 3052:. 3022:. 2999:. 2991:. 2983:. 2969:. 2928:. 2920:. 2912:. 2898:. 2875:. 2865:. 2853:. 2849:. 2826:. 2816:. 2808:. 2794:. 2790:. 2767:. 2757:. 2749:. 2735:. 2731:. 2708:. 2698:. 2690:. 2676:. 2672:. 2646:. 2623:. 2615:. 2607:. 2593:. 2581:^ 2567:. 2559:. 2551:. 2537:. 2511:. 2488:. 2478:. 2470:. 2456:. 2452:. 2429:. 2419:. 2411:. 2397:. 2393:. 2368:. 2360:. 2346:. 2342:. 2316:. 2306:. 2298:. 2284:. 2280:. 2257:. 2249:. 2241:. 2227:. 2201:. 2178:. 2170:. 2162:. 2148:. 2125:. 2117:. 2109:. 2095:. 2083:^ 2069:. 2059:. 2051:. 2037:. 2033:. 2019:^ 2005:. 1997:. 1989:. 1981:. 1967:. 1953:^ 1918:. 1910:. 1902:. 1888:. 1865:. 1857:. 1849:. 1835:. 1812:. 1802:. 1794:. 1786:. 1772:. 1768:. 1756:^ 1742:. 1734:. 1726:. 1714:34 1712:. 1689:. 1679:. 1671:. 1657:. 1653:. 1630:. 1620:. 1612:. 1598:. 1594:. 1571:. 1563:. 1555:. 1541:. 1518:. 1508:. 1500:. 1486:. 1482:. 1457:. 1449:. 1435:. 1431:. 1408:. 1400:. 1392:. 1378:. 1374:. 1348:. 1340:. 1332:. 1318:. 1314:. 1299:^ 1285:. 1277:. 1269:. 1255:. 1232:. 1224:. 1216:. 1202:. 1177:. 1163:. 1159:. 1136:. 1128:. 1120:. 1106:. 1082:. 1074:. 1066:. 1052:. 1026:. 983:}} 979:{{ 967:. 955:. 929:. 906:. 898:. 890:. 876:. 850:. 824:. 801:. 791:. 779:. 775:. 752:. 744:. 736:. 722:. 706:^ 689:. 666:. 656:. 648:. 640:. 615:^ 601:. 593:. 585:. 571:. 567:. 548:^ 531:. 508:. 500:. 486:. 463:. 455:. 447:. 433:. 421:^ 407:. 397:. 389:. 381:. 347:^ 182:. 134:AU 5301:. 5287:: 5279:: 5269:: 5224:. 5220:: 5212:: 5189:. 5177:: 5169:: 5159:: 5136:. 5124:: 5116:: 5106:: 5083:. 5077:: 5069:: 5042:. 5036:: 5021:. 5007:: 4999:: 4989:: 4962:. 4948:: 4940:: 4930:: 4903:. 4891:: 4883:: 4873:: 4850:. 4838:: 4830:: 4820:: 4761:. 4741:: 4733:: 4723:: 4700:) 4686:. 4674:: 4666:: 4656:: 4650:1 4633:. 4619:: 4611:: 4601:: 4574:. 4562:: 4554:: 4544:: 4521:. 4509:: 4501:: 4491:: 4468:. 4462:: 4454:: 4427:. 4421:: 4413:: 4386:. 4372:: 4364:: 4354:: 4327:. 4315:: 4307:: 4297:: 4271:. 4259:: 4251:: 4241:: 4218:. 4206:: 4198:: 4188:: 4162:. 4150:: 4142:: 4132:: 4109:. 4095:: 4087:: 4077:: 4050:. 4044:: 4036:: 4026:: 3999:. 3987:: 3979:: 3969:: 3946:. 3934:: 3926:: 3916:: 3890:. 3878:: 3870:: 3860:: 3837:. 3825:: 3817:: 3807:: 3784:. 3778:: 3770:: 3760:: 3733:. 3721:: 3713:: 3703:: 3680:. 3666:: 3656:: 3629:. 3615:: 3607:: 3597:: 3570:. 3558:: 3550:: 3542:: 3532:: 3509:. 3495:: 3487:: 3477:: 3450:. 3444:: 3434:: 3407:. 3395:: 3387:: 3377:: 3354:. 3342:: 3334:: 3324:: 3301:. 3289:: 3281:: 3271:: 3247:. 3235:: 3227:: 3217:: 3194:. 3188:: 3180:: 3170:: 3143:. 3131:: 3123:: 3113:: 3090:. 3078:: 3070:: 3060:: 3033:. 3007:. 2995:: 2987:: 2977:: 2936:. 2924:: 2916:: 2906:: 2883:. 2869:: 2861:: 2834:. 2820:: 2812:: 2802:: 2775:. 2761:: 2753:: 2743:: 2716:. 2702:: 2694:: 2684:: 2657:. 2631:. 2619:: 2611:: 2601:: 2575:. 2563:: 2555:: 2545:: 2522:. 2496:. 2482:: 2474:: 2464:: 2437:. 2423:: 2415:: 2405:: 2378:. 2372:: 2364:: 2354:: 2324:. 2310:: 2302:: 2292:: 2265:. 2253:: 2245:: 2235:: 2212:. 2186:. 2174:: 2166:: 2156:: 2133:. 2121:: 2113:: 2103:: 2077:. 2063:: 2055:: 2045:: 2013:. 1993:: 1985:: 1975:: 1947:. 1941:: 1926:. 1914:: 1906:: 1896:: 1873:. 1861:: 1853:: 1843:: 1820:. 1798:: 1790:: 1780:: 1774:1 1750:. 1738:: 1730:: 1720:: 1697:. 1683:: 1675:: 1665:: 1638:. 1624:: 1616:: 1606:: 1579:. 1567:: 1559:: 1549:: 1526:. 1512:: 1504:: 1494:: 1467:. 1461:: 1453:: 1443:: 1416:. 1404:: 1396:: 1386:: 1356:. 1344:: 1336:: 1326:: 1293:. 1281:: 1273:: 1263:: 1240:. 1228:: 1220:: 1210:: 1187:. 1181:: 1171:: 1144:. 1132:: 1124:: 1114:: 1090:. 1078:: 1070:: 1060:: 1037:. 1011:. 989:) 975:. 971:: 963:: 940:. 914:. 902:: 894:: 884:: 861:. 835:. 809:. 795:: 787:: 760:. 748:: 740:: 730:: 700:. 674:. 652:: 644:: 634:: 609:. 597:: 589:: 579:: 542:. 516:. 512:: 504:: 494:: 471:. 459:: 451:: 441:: 415:. 393:: 385:: 375:: 341:. 335:: 251:2

Index

planetesimals
dust
Brownian motion
van der Waals forces
accretion
asteroids
silicates
chondrules
star
Turbulence
Kuiper belt
Pluto
comets
free-fall
protoplanetary disk
Keplerian velocity
aerodynamic drag
reaction
exponential growth
scale heights
AU
inelastic collisions
pebble pile
porosity
angular momentum
binary
chondrules
outer Solar System
pebble accretion
cores

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.