Knowledge

Structural analysis

Source đź“ť

474:
of elasticity allows the solution of structural elements of general geometry under general loading conditions, in principle. Analytical solution, however, is limited to relatively simple cases. The solution of elasticity problems also requires the solution of a system of partial differential equations, which is considerably more mathematically demanding than the solution of mechanics of materials problems, which require at most the solution of an ordinary differential equation. The finite element method is perhaps the most restrictive and most useful at the same time. This method itself relies upon other structural theories (such as the other two discussed here) for equations to solve. It does, however, make it generally possible to solve these equations, even with highly complex geometry and loading conditions, with the restriction that there is always some numerical error. Effective and reliable use of this method requires a solid understanding of its limitations.
3096:. The stiffness method is the most popular by far thanks to its ease of implementation as well as of formulation for advanced applications. The finite-element technology is now sophisticated enough to handle just about any system as long as sufficient computing power is available. Its applicability includes, but is not limited to, linear and non-linear analysis, solid and fluid interactions, materials that are isotropic, orthotropic, or anisotropic, and external effects that are static, dynamic, and environmental factors. This, however, does not imply that the computed solution will automatically be reliable because much depends on the model and the reliability of the data input. 3061:
elements interconnected at finite number of nodes and the overall stiffness is the result of the addition of the stiffness of the various elements. The behaviour of individual elements is characterized by the element's stiffness (or flexibility) relation. The assemblage of the various stiffness's into a master stiffness matrix that represents the entire structure leads to the system's stiffness or flexibility relation. To establish the stiffness (or flexibility) of a particular element, we can use the
397:
girders, the floor slab, roofing, walls, windows, plumbing, electrical fixtures, and other miscellaneous attachments. The second type of loads are live loads which vary in their magnitude and location. There are many different types of live loads like building loads, highway bridge loads, railroad bridge loads, impact loads, wind loads, snow loads, earthquake loads, and other natural loads.
176: 545: 1383: 823: 2118:
only 3 members of the truss structure. This restriction is because this method uses the force balances in the x and y direction and the moment balance, which gives a maximum of 3 equations to find a maximum of 3 unknown truss element forces through which this cut is made. Find the forces FAB, FBD and FCD in the above example
1592: 3044:. The equations of elasticity are a system of 15 partial differential equations. Due to the nature of the mathematics involved, analytical solutions may only be produced for relatively simple geometries. For complex geometries, a numerical solution method such as the finite element method is necessary. 3026: 554:
Since there is a pin joint at A, it will have 2 reaction forces. One in the x direction and the other in the y direction. At point B, there is a roller joint and hence only 1 reaction force in the y direction. Assuming these forces to be in their respective positive directions (if they are not in the
538:
There are 2 commonly used methods to find the truss element forces, namely the method of joints and the method of sections. Below is an example that is solved using both of these methods. The first diagram below is the presented problem for which the truss element forces have to be found. The second
473:
Each method has noteworthy limitations. The method of mechanics of materials is limited to very simple structural elements under relatively simple loading conditions. The structural elements and loading conditions allowed, however, are sufficient to solve many useful engineering problems. The theory
3060:
The finite element method approximates a structure as an assembly of elements or components with various forms of connection between them and each element of which has an associated stiffness. Thus, a continuous system such as a plate or shell is modeled as a discrete system with a finite number of
2117:
This method can be used when the truss element forces of only a few members are to be found. This method is used by introducing a single straight line cutting through the member whose force has to be calculated. However this method has a limit in that the cutting line can pass through a maximum of
525:
The solutions are based on linear isotropic infinitesimal elasticity and Euler–Bernoulli beam theory. In other words, they contain the assumptions (among others) that the materials in question are elastic, that stress is related linearly to strain, that the material (but not the structure) behaves
347:
include buildings, bridges, and towers; and in other branches of engineering, ship and aircraft frames, tanks, pressure vessels, mechanical systems, and electrical supporting structures are important. To design a structure, an engineer must account for its safety, aesthetics, and serviceability,
449:
approach. The first two make use of analytical formulations which apply mostly simple linear elastic models, leading to closed-form solutions, and can often be solved by hand. The finite element approach is actually a numerical method for solving differential equations generated by theories of
396:
There are two types of loads that structure engineering must encounter in the design. The first type of loads are dead loads that consist of the weights of the various structural members and the weights of any objects that are permanently attached to the structure. For example, columns, beams,
2581: 1159: 1953: 388:
Once the dimensional requirement for a structure have been defined, it becomes necessary to determine the loads the structure must support. Structural design, therefore begins with specifying loads that act on the structure. The design loading for a structure is often specified in
521:
for large rigid frames. Except for moment distribution, which came into use in the 1930s, these methods were developed in their current forms in the second half of the nineteenth century. They are still used for small structures and for preliminary design of large structures.
2107: 2403: 373:
composing that structure. The structural elements guiding the systemic forces through the materials are not only such as a connecting rod, a truss, a beam, or a column, but also a cable, an arch, a cavity or channel, and even an angle, a surface structure, or a frame.
1170: 981: 2829: 3052:
It is common practice to use approximate solutions of differential equations as the basis for structural analysis. This is usually done using numerical approximation techniques. The most commonly used numerical approximation in structural analysis is the
1389: 2239: 3241:, H. C. Martin, and L. J. Topp's paper on the "Stiffness and Deflection of Complex Structures" introduces the name "finite-element method" and is widely recognized as the first comprehensive treatment of the method as it is known today 2835: 3251: 3088:, plates, shells, and three-dimensional solids. Commercial computer software for structural analysis typically uses matrix finite-element analysis, which can be further classified into two main approaches: the displacement or 450:
mechanics such as elasticity theory and strength of materials. However, the finite-element method depends heavily on the processing power of computers and is more applicable to structures of arbitrary size and complexity.
2409: 987: 569:
Since the system is in static equilibrium, the sum of forces in any direction is zero and the sum of moments about any point is zero. Therefore, the magnitude and direction of the reaction forces can be calculated.
3039:
Elasticity methods are available generally for an elastic solid of any shape. Individual members such as beams, columns, shafts, plates and shells may be modeled. The solutions are derived from the equations of
2680: 1783: 754: 660: 368:
is the combination of structural elements and their materials. It is important for a structural engineer to be able to classify a structure by either its form or its function, by recognizing the various
1959: 1772: 2245: 530:
are small, and that beams are long relative to their depth. As with any simplifying assumption in engineering, the more the model strays from reality, the less useful (and more dangerous) the result.
1675: 1378:{\displaystyle \sum F_{y}=0=-10-F_{AD}\sin(60)-F_{BD}\sin(60)=-10-\left(-{\frac {10}{\sqrt {3}}}\right){\frac {\sqrt {3}}{2}}-F_{BD}{\frac {\sqrt {3}}{2}}\Rightarrow F_{BD}=-{\frac {10}{\sqrt {3}}}} 482:
The simplest of the three methods here discussed, the mechanics of materials method is available for simple structural members subject to specific loadings such as axially loaded bars, prismatic
835: 2686: 807: 2594: 393:. There are two types of codes: general building codes and design codes, engineers must satisfy all of the code's requirements in order for the structure to remain reliable. 2129: 291:. In contrast to theory of elasticity, the models used in structure analysis are often differential equations in one spatial variable. Structures subject to this type of 157: 3080:
Early applications of matrix methods were applied to articulated frameworks with truss, beam and column elements; later and more advanced matrix methods, referred to as "
1587:{\displaystyle \sum F_{x}=0=-F_{AD}\cos(60)+F_{BD}\cos(60)+F_{CD}=-{\frac {10}{\sqrt {3}}}{\frac {1}{2}}+{\frac {10}{\sqrt {3}}}{\frac {1}{2}}+F_{CD}\Rightarrow F_{CD}=0} 2136: 544: 3021:{\displaystyle \sum F_{x}=0=-F_{AB}-F_{BD}\cos(60)-F_{CD}=-F_{AB}-\left(-{\frac {10}{\sqrt {3}}}\right){\frac {1}{2}}-0\Rightarrow F_{AB}={\frac {5}{\sqrt {3}}}} 3084:", model an entire structure with one-, two-, and three-dimensional elements and can be used for articulated systems together with continuous systems such as a 3081: 3216:' publication of the moment distribution method which was later recognized as a form of the relaxation method applicable to the problem of flow in pipe-network 3139: 561: 279:
which uses simplified models for solids like bars, beams and shells for engineering decision making. Its main objective is to determine the effect of
1680:
Although the forces in each of the truss elements are found, it is a good practice to verify the results by completing the remaining force balances.
3308: 2576:{\displaystyle \sum F_{x}=0=F_{AB}+F_{BD}\cos(60)+F_{CD}={\frac {5}{\sqrt {3}}}-{\frac {10}{\sqrt {3}}}{\frac {1}{2}}+F_{CD}\Rightarrow F_{CD}=0} 1154:{\displaystyle \sum F_{x}=0=R_{Ax}+F_{AD}\cos(60)+F_{AB}=0-{\frac {10}{\sqrt {3}}}{\frac {1}{2}}+F_{AB}\Rightarrow F_{AB}={\frac {5}{\sqrt {3}}}} 3031:
The truss elements forces in the remaining members can be found by using the above method with a section passing through the remaining members.
494:
to analyze a member undergoing combined loading. Solutions for special cases exist for common structures such as thin-walled pressure vessels.
150: 3224: 3207: 3069:
for more complex two- and three-dimensional elements. The analytical and computational development are best effected throughout by means of
1948:{\displaystyle \sum F_{y}=R_{B}+F_{BD}\sin(60)+F_{BC}=5+\left(-{\frac {10}{\sqrt {3}}}\right){\frac {\sqrt {3}}{2}}+0=0\Rightarrow verified} 193: 3195:
for computing displacement as partial derivative of the strain energy. This theorem includes the method of 'least work' as a special case
2601: 3281: 666: 3150: 2102:{\displaystyle \sum F_{x}=-F_{AB}-F_{BD}\cos(60)={\frac {5}{\sqrt {3}}}-{\frac {10}{\sqrt {3}}}{\frac {1}{2}}=0\Rightarrow verified} 259: 143: 576: 465:. The solutions are approximate when any of these relations are only approximately satisfied, or only an approximation of reality. 2398:{\displaystyle \sum F_{y}=0=R_{Ay}-F_{BD}\sin(60)-10=5-F_{BD}{\frac {\sqrt {3}}{2}}-10\Rightarrow F_{BD}=-{\frac {10}{\sqrt {3}}}} 421:. This information is then compared to criteria that indicate the conditions of failure. Advanced structural analysis may examine 240: 3266: 1686: 212: 2593: 1603: 197: 2128: 976:{\displaystyle \sum F_{y}=0=R_{Ay}+F_{AD}\sin(60)=5+F_{AD}{\frac {\sqrt {3}}{2}}\Rightarrow F_{AD}=-{\frac {10}{\sqrt {3}}}} 295:
include all that must withstand loads, such as buildings, bridges, aircraft and ships. Structural analysis uses ideas from
2824:{\displaystyle \sum F_{y}=0=F_{BD}\sin(60)+R_{B}=F_{BD}{\frac {\sqrt {3}}{2}}+5\Rightarrow F_{BD}=-{\frac {10}{\sqrt {3}}}} 219: 3261: 3074: 3330: 410: 106: 3271: 226: 817:
This type of method uses the force balance in the x and y directions at each of the joints in the truss structure.
413:, support conditions, and material properties. The results of such an analysis typically include support reactions, 3144: 822: 510: 96: 35: 3276: 3184: 527: 462: 308: 111: 208: 490:, and circular shafts subject to torsion. The solutions can under certain conditions be superimposed using the 497:
For the analysis of entire systems, this approach can be used in conjunction with statics, giving rise to the
3192: 491: 186: 116: 454: 370: 353: 328: 288: 86: 760: 3054: 458: 434: 418: 3305: 3220: 3070: 320: 343:
refers to a body or system of connected parts used to support a load. Important examples related to
3177: 442: 304: 131: 101: 66: 560: 3286: 3256: 3199: 3093: 323:. The results of the analysis are used to verify a structure's fitness for use, often precluding 233: 91: 71: 3203: 3106: 3041: 344: 300: 296: 61: 2234:{\displaystyle \sum M_{D}=0=-5*1+{\sqrt {3}}*F_{AB}\Rightarrow F_{AB}={\frac {5}{\sqrt {3}}}} 3156: 3117: 3089: 483: 422: 414: 3312: 3231: 3113: 3085: 453:
Regardless of approach, the formulation is based on the same three fundamental relations:
406: 383: 316: 280: 276: 405:
To perform an accurate analysis a structural engineer must determine information such as
3166: 3124: 446: 438: 30:
This article is about structural studies in engineering. For social-science usage, see
3324: 3238: 390: 324: 121: 31: 3160: 3134: 3128: 487: 17: 539:
diagram is the loading diagram and contains the reaction forces from the joints.
3213: 349: 175: 430: 3227:
on the discretization of plane elasticity problems using a lattice framework
348:
while considering economic and environmental constraints. Other branches of
340: 284: 56: 3252:
Geometrically and materially nonlinear analysis with imperfections included
3170: 426: 292: 81: 51: 441:
approach (which is actually a special case of the more general field of
76: 2675:{\displaystyle \sum M_{B}=0={\sqrt {3}}*F_{CD}\Rightarrow F_{CD}=0} 526:
identically regardless of direction of the applied load, that all
506: 312: 749:{\displaystyle \sum F_{y}=0=R_{Ay}+R_{B}-10\Rightarrow R_{Ay}=5} 126: 169: 655:{\displaystyle \sum M_{A}=0=-10*1+2*R_{B}\Rightarrow R_{B}=5} 559: 543: 3180:
published a treatise on the elastic behaviors of structures
1767:{\displaystyle \sum F_{x}=-F_{CD}=-0=0\Rightarrow verified} 3065:
approach for simple one-dimensional bar elements, and the
433:
behavior. There are three approaches to the analysis: the
1670:{\displaystyle \sum F_{y}=0=-F_{BC}\Rightarrow F_{BC}=0} 3120:" in which he examined the failure of simple structures 2838: 2689: 2604: 2412: 2248: 2139: 1962: 1786: 1689: 1606: 1392: 1173: 990: 838: 763: 669: 579: 437:
approach (also known as strength of materials), the
200:. Unsourced material may be challenged and removed. 3020: 2823: 2674: 2575: 2397: 2233: 2101: 1947: 1766: 1669: 1586: 1377: 1153: 975: 801: 748: 654: 555:positive directions, the value will be negative). 319:, support reactions, velocity, accelerations, and 478:Strength of materials methods (classical methods) 327:. Structural analysis is thus a key part of the 548:A simple triangular truss with loads imposed . 151: 8: 3140:Philosophiae Naturalis Principia Mathematica 158: 144: 40: 3006: 2994: 2971: 2954: 2934: 2915: 2884: 2868: 2846: 2837: 2809: 2794: 2769: 2760: 2747: 2716: 2697: 2688: 2657: 2641: 2627: 2612: 2603: 2558: 2542: 2525: 2513: 2498: 2486: 2455: 2439: 2420: 2411: 2383: 2368: 2343: 2334: 2291: 2275: 2256: 2247: 2219: 2207: 2191: 2177: 2147: 2138: 2056: 2044: 2029: 2002: 1986: 1970: 1961: 1894: 1877: 1851: 1820: 1807: 1794: 1785: 1713: 1697: 1688: 1652: 1636: 1614: 1605: 1569: 1553: 1536: 1524: 1511: 1499: 1484: 1453: 1422: 1400: 1391: 1363: 1348: 1329: 1320: 1301: 1284: 1240: 1209: 1181: 1172: 1139: 1127: 1111: 1094: 1082: 1064: 1033: 1017: 998: 989: 961: 946: 927: 918: 881: 865: 846: 837: 790: 771: 762: 731: 712: 696: 677: 668: 640: 627: 587: 578: 339:In the context to structural analysis, a 260:Learn how and when to remove this message 3298: 3234:divided a domain into finite subregions 43: 3282:Probabilistic Assessment of Structures 3306:"Science Direct: Structural Analysis" 3048:Methods using numerical approximation 7: 198:adding citations to reliable sources 802:{\displaystyle \sum F_{x}=0=R_{Ax}} 25: 3267:Structural integrity and failure 3208:Timoshenko–Ehrenfest beam theory 2592: 2127: 821: 329:engineering design of structures 174: 2122:Method 1: Ignore the right side 185:needs additional citations for 27:Calculation of structural loads 3223:submitted his D.Sc. thesis in 3075:partial differential equations 2987: 2905: 2899: 2787: 2737: 2731: 2650: 2587:Method 2: Ignore the left side 2551: 2476: 2470: 2361: 2312: 2306: 2200: 2072: 2023: 2017: 1918: 1841: 1835: 1737: 1645: 1562: 1474: 1468: 1443: 1437: 1341: 1261: 1255: 1230: 1224: 1120: 1054: 1048: 939: 902: 896: 724: 633: 1: 3262:Structural engineering theory 3151:Euler–Bernoulli beam equation 3187:presented his dissertation " 3159:introduced the principle of 513:for small rigid frames, and 360:Classification of structures 3189:Intorno ai sistemi elastici 107:Metal-induced embrittlement 3347: 511:moment distribution method 381: 352:work on a wide variety of 97:Liquid metal embrittlement 36:Structure (disambiguation) 29: 3277:von Mises yield criterion 3185:Carlo Alberto Castigliano 307:to compute a structure's 112:Stress corrosion cracking 3169:developed the theory of 44:Mechanical failure modes 3145:Newton's laws of motion 3109:made many contributions 3082:finite element analysis 492:superposition principle 354:non-building structures 117:Sulfide stress cracking 3272:Stress–strain analysis 3063:mechanics of materials 3022: 2825: 2676: 2577: 2399: 2235: 2103: 1949: 1768: 1671: 1588: 1379: 1155: 977: 803: 750: 656: 564: 549: 435:mechanics of materials 87:Hydrogen embrittlement 34:. For other uses, see 3143:" which contains the 3055:Finite Element Method 3023: 2826: 2677: 2578: 2400: 2236: 2104: 1950: 1769: 1672: 1589: 1380: 1156: 978: 804: 751: 657: 563: 547: 209:"Structural analysis" 3221:Alexander Hrennikoff 3116:published the book " 2836: 2687: 2602: 2410: 2246: 2137: 1960: 1784: 1687: 1604: 1390: 1171: 988: 836: 761: 667: 577: 335:Structures and loads 194:improve this article 3331:Structural analysis 3178:Claude-Louis Navier 3067:elasticity approach 443:continuum mechanics 305:applied mathematics 273:Structural analysis 102:Mechanical overload 18:Structural research 3311:2021-05-16 at the 3287:Structural testing 3257:Limit state design 3200:Stephen Timoshenko 3191:", which contains 3094:flexibility method 3035:Elasticity methods 3018: 2821: 2672: 2573: 2395: 2231: 2113:Method of sections 2099: 1945: 1764: 1667: 1584: 1375: 1151: 973: 799: 746: 652: 565: 550: 499:method of sections 401:Analytical methods 3237:1956: J. Turner, 3204:Applied mechanics 3202:father of modern 3107:Leonardo da Vinci 3092:and the force or 3042:linear elasticity 3016: 3015: 2979: 2964: 2963: 2819: 2818: 2779: 2775: 2632: 2533: 2523: 2522: 2508: 2507: 2393: 2392: 2353: 2349: 2229: 2228: 2182: 2064: 2054: 2053: 2039: 2038: 1904: 1900: 1887: 1886: 1544: 1534: 1533: 1519: 1509: 1508: 1373: 1372: 1339: 1335: 1311: 1307: 1294: 1293: 1149: 1148: 1102: 1092: 1091: 971: 970: 937: 933: 519:cantilever method 439:elasticity theory 366:structural system 345:Civil Engineering 301:materials science 297:applied mechanics 270: 269: 262: 244: 168: 167: 62:Corrosion fatigue 16:(Redirected from 3338: 3315: 3303: 3157:Daniel Bernoulli 3118:Two New Sciences 3090:stiffness method 3027: 3025: 3024: 3019: 3017: 3011: 3007: 3002: 3001: 2980: 2972: 2970: 2966: 2965: 2959: 2955: 2942: 2941: 2923: 2922: 2892: 2891: 2876: 2875: 2851: 2850: 2830: 2828: 2827: 2822: 2820: 2814: 2810: 2802: 2801: 2780: 2771: 2770: 2768: 2767: 2752: 2751: 2724: 2723: 2702: 2701: 2681: 2679: 2678: 2673: 2665: 2664: 2649: 2648: 2633: 2628: 2617: 2616: 2596: 2582: 2580: 2579: 2574: 2566: 2565: 2550: 2549: 2534: 2526: 2524: 2518: 2514: 2509: 2503: 2499: 2494: 2493: 2463: 2462: 2447: 2446: 2425: 2424: 2404: 2402: 2401: 2396: 2394: 2388: 2384: 2376: 2375: 2354: 2345: 2344: 2342: 2341: 2299: 2298: 2283: 2282: 2261: 2260: 2240: 2238: 2237: 2232: 2230: 2224: 2220: 2215: 2214: 2199: 2198: 2183: 2178: 2152: 2151: 2131: 2108: 2106: 2105: 2100: 2065: 2057: 2055: 2049: 2045: 2040: 2034: 2030: 2010: 2009: 1994: 1993: 1975: 1974: 1954: 1952: 1951: 1946: 1905: 1896: 1895: 1893: 1889: 1888: 1882: 1878: 1859: 1858: 1828: 1827: 1812: 1811: 1799: 1798: 1773: 1771: 1770: 1765: 1721: 1720: 1702: 1701: 1676: 1674: 1673: 1668: 1660: 1659: 1644: 1643: 1619: 1618: 1593: 1591: 1590: 1585: 1577: 1576: 1561: 1560: 1545: 1537: 1535: 1529: 1525: 1520: 1512: 1510: 1504: 1500: 1492: 1491: 1461: 1460: 1430: 1429: 1405: 1404: 1384: 1382: 1381: 1376: 1374: 1368: 1364: 1356: 1355: 1340: 1331: 1330: 1328: 1327: 1312: 1303: 1302: 1300: 1296: 1295: 1289: 1285: 1248: 1247: 1217: 1216: 1186: 1185: 1160: 1158: 1157: 1152: 1150: 1144: 1140: 1135: 1134: 1119: 1118: 1103: 1095: 1093: 1087: 1083: 1072: 1071: 1041: 1040: 1025: 1024: 1003: 1002: 982: 980: 979: 974: 972: 966: 962: 954: 953: 938: 929: 928: 926: 925: 889: 888: 873: 872: 851: 850: 825: 813:Method of joints 808: 806: 805: 800: 798: 797: 776: 775: 755: 753: 752: 747: 739: 738: 717: 716: 704: 703: 682: 681: 661: 659: 658: 653: 645: 644: 632: 631: 592: 591: 503:method of joints 423:dynamic response 407:structural loads 283:on the physical 265: 258: 254: 251: 245: 243: 202: 178: 170: 160: 153: 146: 41: 21: 3346: 3345: 3341: 3340: 3339: 3337: 3336: 3335: 3321: 3320: 3319: 3318: 3313:Wayback Machine 3304: 3300: 3295: 3248: 3114:Galileo Galilei 3102: 3086:pressure vessel 3050: 3037: 2990: 2950: 2946: 2930: 2911: 2880: 2864: 2842: 2834: 2833: 2790: 2756: 2743: 2712: 2693: 2685: 2684: 2653: 2637: 2608: 2600: 2599: 2589: 2554: 2538: 2482: 2451: 2435: 2416: 2408: 2407: 2364: 2330: 2287: 2271: 2252: 2244: 2243: 2203: 2187: 2143: 2135: 2134: 2124: 2115: 1998: 1982: 1966: 1958: 1957: 1873: 1869: 1847: 1816: 1803: 1790: 1782: 1781: 1709: 1693: 1685: 1684: 1648: 1632: 1610: 1602: 1601: 1565: 1549: 1480: 1449: 1418: 1396: 1388: 1387: 1344: 1316: 1280: 1276: 1236: 1205: 1177: 1169: 1168: 1123: 1107: 1060: 1029: 1013: 994: 986: 985: 942: 914: 877: 861: 842: 834: 833: 815: 786: 767: 759: 758: 727: 708: 692: 673: 665: 664: 636: 623: 583: 575: 574: 536: 480: 471: 403: 386: 384:Structural load 380: 362: 337: 277:solid mechanics 275:is a branch of 266: 255: 249: 246: 203: 201: 191: 179: 164: 39: 28: 23: 22: 15: 12: 11: 5: 3344: 3342: 3334: 3333: 3323: 3322: 3317: 3316: 3297: 3296: 3294: 3291: 3290: 3289: 3284: 3279: 3274: 3269: 3264: 3259: 3254: 3247: 3244: 3243: 3242: 3235: 3228: 3217: 3210: 3206:including the 3196: 3181: 3174: 3167:Leonhard Euler 3163: 3153: 3147: 3131: 3121: 3110: 3101: 3098: 3071:matrix algebra 3049: 3046: 3036: 3033: 3029: 3028: 3014: 3010: 3005: 3000: 2997: 2993: 2989: 2986: 2983: 2978: 2975: 2969: 2962: 2958: 2953: 2949: 2945: 2940: 2937: 2933: 2929: 2926: 2921: 2918: 2914: 2910: 2907: 2904: 2901: 2898: 2895: 2890: 2887: 2883: 2879: 2874: 2871: 2867: 2863: 2860: 2857: 2854: 2849: 2845: 2841: 2831: 2817: 2813: 2808: 2805: 2800: 2797: 2793: 2789: 2786: 2783: 2778: 2774: 2766: 2763: 2759: 2755: 2750: 2746: 2742: 2739: 2736: 2733: 2730: 2727: 2722: 2719: 2715: 2711: 2708: 2705: 2700: 2696: 2692: 2682: 2671: 2668: 2663: 2660: 2656: 2652: 2647: 2644: 2640: 2636: 2631: 2626: 2623: 2620: 2615: 2611: 2607: 2597: 2588: 2585: 2584: 2583: 2572: 2569: 2564: 2561: 2557: 2553: 2548: 2545: 2541: 2537: 2532: 2529: 2521: 2517: 2512: 2506: 2502: 2497: 2492: 2489: 2485: 2481: 2478: 2475: 2472: 2469: 2466: 2461: 2458: 2454: 2450: 2445: 2442: 2438: 2434: 2431: 2428: 2423: 2419: 2415: 2405: 2391: 2387: 2382: 2379: 2374: 2371: 2367: 2363: 2360: 2357: 2352: 2348: 2340: 2337: 2333: 2329: 2326: 2323: 2320: 2317: 2314: 2311: 2308: 2305: 2302: 2297: 2294: 2290: 2286: 2281: 2278: 2274: 2270: 2267: 2264: 2259: 2255: 2251: 2241: 2227: 2223: 2218: 2213: 2210: 2206: 2202: 2197: 2194: 2190: 2186: 2181: 2176: 2173: 2170: 2167: 2164: 2161: 2158: 2155: 2150: 2146: 2142: 2132: 2123: 2120: 2114: 2111: 2110: 2109: 2098: 2095: 2092: 2089: 2086: 2083: 2080: 2077: 2074: 2071: 2068: 2063: 2060: 2052: 2048: 2043: 2037: 2033: 2028: 2025: 2022: 2019: 2016: 2013: 2008: 2005: 2001: 1997: 1992: 1989: 1985: 1981: 1978: 1973: 1969: 1965: 1955: 1944: 1941: 1938: 1935: 1932: 1929: 1926: 1923: 1920: 1917: 1914: 1911: 1908: 1903: 1899: 1892: 1885: 1881: 1876: 1872: 1868: 1865: 1862: 1857: 1854: 1850: 1846: 1843: 1840: 1837: 1834: 1831: 1826: 1823: 1819: 1815: 1810: 1806: 1802: 1797: 1793: 1789: 1775: 1774: 1763: 1760: 1757: 1754: 1751: 1748: 1745: 1742: 1739: 1736: 1733: 1730: 1727: 1724: 1719: 1716: 1712: 1708: 1705: 1700: 1696: 1692: 1678: 1677: 1666: 1663: 1658: 1655: 1651: 1647: 1642: 1639: 1635: 1631: 1628: 1625: 1622: 1617: 1613: 1609: 1595: 1594: 1583: 1580: 1575: 1572: 1568: 1564: 1559: 1556: 1552: 1548: 1543: 1540: 1532: 1528: 1523: 1518: 1515: 1507: 1503: 1498: 1495: 1490: 1487: 1483: 1479: 1476: 1473: 1470: 1467: 1464: 1459: 1456: 1452: 1448: 1445: 1442: 1439: 1436: 1433: 1428: 1425: 1421: 1417: 1414: 1411: 1408: 1403: 1399: 1395: 1385: 1371: 1367: 1362: 1359: 1354: 1351: 1347: 1343: 1338: 1334: 1326: 1323: 1319: 1315: 1310: 1306: 1299: 1292: 1288: 1283: 1279: 1275: 1272: 1269: 1266: 1263: 1260: 1257: 1254: 1251: 1246: 1243: 1239: 1235: 1232: 1229: 1226: 1223: 1220: 1215: 1212: 1208: 1204: 1201: 1198: 1195: 1192: 1189: 1184: 1180: 1176: 1162: 1161: 1147: 1143: 1138: 1133: 1130: 1126: 1122: 1117: 1114: 1110: 1106: 1101: 1098: 1090: 1086: 1081: 1078: 1075: 1070: 1067: 1063: 1059: 1056: 1053: 1050: 1047: 1044: 1039: 1036: 1032: 1028: 1023: 1020: 1016: 1012: 1009: 1006: 1001: 997: 993: 983: 969: 965: 960: 957: 952: 949: 945: 941: 936: 932: 924: 921: 917: 913: 910: 907: 904: 901: 898: 895: 892: 887: 884: 880: 876: 871: 868: 864: 860: 857: 854: 849: 845: 841: 827: 826: 814: 811: 810: 809: 796: 793: 789: 785: 782: 779: 774: 770: 766: 756: 745: 742: 737: 734: 730: 726: 723: 720: 715: 711: 707: 702: 699: 695: 691: 688: 685: 680: 676: 672: 662: 651: 648: 643: 639: 635: 630: 626: 622: 619: 616: 613: 610: 607: 604: 601: 598: 595: 590: 586: 582: 567: 566: 552: 551: 535: 532: 486:in a state of 479: 476: 470: 467: 447:finite element 402: 399: 391:building codes 382:Main article: 379: 376: 361: 358: 336: 333: 325:physical tests 268: 267: 182: 180: 173: 166: 165: 163: 162: 155: 148: 140: 137: 136: 135: 134: 129: 124: 119: 114: 109: 104: 99: 94: 89: 84: 79: 74: 69: 64: 59: 54: 46: 45: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 3343: 3332: 3329: 3328: 3326: 3314: 3310: 3307: 3302: 3299: 3292: 3288: 3285: 3283: 3280: 3278: 3275: 3273: 3270: 3268: 3265: 3263: 3260: 3258: 3255: 3253: 3250: 3249: 3245: 3240: 3236: 3233: 3229: 3226: 3222: 3218: 3215: 3211: 3209: 3205: 3201: 3197: 3194: 3190: 3186: 3182: 3179: 3175: 3172: 3168: 3164: 3162: 3158: 3154: 3152: 3148: 3146: 3142: 3141: 3136: 3132: 3130: 3126: 3122: 3119: 3115: 3111: 3108: 3104: 3103: 3099: 3097: 3095: 3091: 3087: 3083: 3078: 3076: 3072: 3068: 3064: 3058: 3056: 3047: 3045: 3043: 3034: 3032: 3012: 3008: 3003: 2998: 2995: 2991: 2984: 2981: 2976: 2973: 2967: 2960: 2956: 2951: 2947: 2943: 2938: 2935: 2931: 2927: 2924: 2919: 2916: 2912: 2908: 2902: 2896: 2893: 2888: 2885: 2881: 2877: 2872: 2869: 2865: 2861: 2858: 2855: 2852: 2847: 2843: 2839: 2832: 2815: 2811: 2806: 2803: 2798: 2795: 2791: 2784: 2781: 2776: 2772: 2764: 2761: 2757: 2753: 2748: 2744: 2740: 2734: 2728: 2725: 2720: 2717: 2713: 2709: 2706: 2703: 2698: 2694: 2690: 2683: 2669: 2666: 2661: 2658: 2654: 2645: 2642: 2638: 2634: 2629: 2624: 2621: 2618: 2613: 2609: 2605: 2598: 2595: 2591: 2590: 2586: 2570: 2567: 2562: 2559: 2555: 2546: 2543: 2539: 2535: 2530: 2527: 2519: 2515: 2510: 2504: 2500: 2495: 2490: 2487: 2483: 2479: 2473: 2467: 2464: 2459: 2456: 2452: 2448: 2443: 2440: 2436: 2432: 2429: 2426: 2421: 2417: 2413: 2406: 2389: 2385: 2380: 2377: 2372: 2369: 2365: 2358: 2355: 2350: 2346: 2338: 2335: 2331: 2327: 2324: 2321: 2318: 2315: 2309: 2303: 2300: 2295: 2292: 2288: 2284: 2279: 2276: 2272: 2268: 2265: 2262: 2257: 2253: 2249: 2242: 2225: 2221: 2216: 2211: 2208: 2204: 2195: 2192: 2188: 2184: 2179: 2174: 2171: 2168: 2165: 2162: 2159: 2156: 2153: 2148: 2144: 2140: 2133: 2130: 2126: 2125: 2121: 2119: 2112: 2096: 2093: 2090: 2087: 2084: 2081: 2078: 2075: 2069: 2066: 2061: 2058: 2050: 2046: 2041: 2035: 2031: 2026: 2020: 2014: 2011: 2006: 2003: 1999: 1995: 1990: 1987: 1983: 1979: 1976: 1971: 1967: 1963: 1956: 1942: 1939: 1936: 1933: 1930: 1927: 1924: 1921: 1915: 1912: 1909: 1906: 1901: 1897: 1890: 1883: 1879: 1874: 1870: 1866: 1863: 1860: 1855: 1852: 1848: 1844: 1838: 1832: 1829: 1824: 1821: 1817: 1813: 1808: 1804: 1800: 1795: 1791: 1787: 1780: 1779: 1778: 1761: 1758: 1755: 1752: 1749: 1746: 1743: 1740: 1734: 1731: 1728: 1725: 1722: 1717: 1714: 1710: 1706: 1703: 1698: 1694: 1690: 1683: 1682: 1681: 1664: 1661: 1656: 1653: 1649: 1640: 1637: 1633: 1629: 1626: 1623: 1620: 1615: 1611: 1607: 1600: 1599: 1598: 1581: 1578: 1573: 1570: 1566: 1557: 1554: 1550: 1546: 1541: 1538: 1530: 1526: 1521: 1516: 1513: 1505: 1501: 1496: 1493: 1488: 1485: 1481: 1477: 1471: 1465: 1462: 1457: 1454: 1450: 1446: 1440: 1434: 1431: 1426: 1423: 1419: 1415: 1412: 1409: 1406: 1401: 1397: 1393: 1386: 1369: 1365: 1360: 1357: 1352: 1349: 1345: 1336: 1332: 1324: 1321: 1317: 1313: 1308: 1304: 1297: 1290: 1286: 1281: 1277: 1273: 1270: 1267: 1264: 1258: 1252: 1249: 1244: 1241: 1237: 1233: 1227: 1221: 1218: 1213: 1210: 1206: 1202: 1199: 1196: 1193: 1190: 1187: 1182: 1178: 1174: 1167: 1166: 1165: 1145: 1141: 1136: 1131: 1128: 1124: 1115: 1112: 1108: 1104: 1099: 1096: 1088: 1084: 1079: 1076: 1073: 1068: 1065: 1061: 1057: 1051: 1045: 1042: 1037: 1034: 1030: 1026: 1021: 1018: 1014: 1010: 1007: 1004: 999: 995: 991: 984: 967: 963: 958: 955: 950: 947: 943: 934: 930: 922: 919: 915: 911: 908: 905: 899: 893: 890: 885: 882: 878: 874: 869: 866: 862: 858: 855: 852: 847: 843: 839: 832: 831: 830: 824: 820: 819: 818: 812: 794: 791: 787: 783: 780: 777: 772: 768: 764: 757: 743: 740: 735: 732: 728: 721: 718: 713: 709: 705: 700: 697: 693: 689: 686: 683: 678: 674: 670: 663: 649: 646: 641: 637: 628: 624: 620: 617: 614: 611: 608: 605: 602: 599: 596: 593: 588: 584: 580: 573: 572: 571: 562: 558: 557: 556: 546: 542: 541: 540: 533: 531: 529: 523: 520: 516: 512: 508: 504: 500: 495: 493: 489: 485: 477: 475: 468: 466: 464: 463:compatibility 460: 456: 451: 448: 444: 440: 436: 432: 428: 424: 420: 419:displacements 416: 412: 408: 400: 398: 394: 392: 385: 377: 375: 372: 367: 359: 357: 355: 351: 346: 342: 334: 332: 330: 326: 322: 318: 314: 310: 306: 302: 298: 294: 290: 286: 282: 278: 274: 264: 261: 253: 250:December 2018 242: 239: 235: 232: 228: 225: 221: 218: 214: 211: â€“  210: 206: 205:Find sources: 199: 195: 189: 188: 183:This article 181: 177: 172: 171: 161: 156: 154: 149: 147: 142: 141: 139: 138: 133: 130: 128: 125: 123: 122:Thermal shock 120: 118: 115: 113: 110: 108: 105: 103: 100: 98: 95: 93: 90: 88: 85: 83: 80: 78: 75: 73: 70: 68: 65: 63: 60: 58: 55: 53: 50: 49: 48: 47: 42: 37: 33: 32:Structuralism 19: 3301: 3239:R. W. Clough 3188: 3161:virtual work 3138: 3135:Isaac Newton 3129:Robert Hooke 3079: 3066: 3062: 3059: 3051: 3038: 3030: 2116: 1776: 1679: 1596: 1163: 828: 816: 568: 553: 537: 528:deformations 524: 518: 515:portal frame 514: 502: 498: 496: 488:pure bending 481: 472: 459:constitutive 452: 404: 395: 387: 365: 363: 338: 309:deformations 272: 271: 256: 247: 237: 230: 223: 216: 204: 192:Please help 187:verification 184: 3214:Hardy Cross 3193:his theorem 3165:1707–1783: 3155:1700–1782: 3137:published " 3125:Hooke's law 469:Limitations 455:equilibrium 445:), and the 350:engineering 311:, internal 3293:References 3232:R. Courant 3198:1878-1972 3173:of columns 3105:1452–1519 3073:, solving 509:analysis, 431:non-linear 289:components 287:and their 285:structures 220:newspapers 2988:⇒ 2982:− 2952:− 2944:− 2928:− 2909:− 2897:⁡ 2878:− 2862:− 2840:∑ 2807:− 2788:⇒ 2729:⁡ 2691:∑ 2651:⇒ 2635:∗ 2606:∑ 2552:⇒ 2511:− 2468:⁡ 2414:∑ 2381:− 2362:⇒ 2356:− 2328:− 2316:− 2304:⁡ 2285:− 2250:∑ 2201:⇒ 2185:∗ 2169:∗ 2163:− 2141:∑ 2073:⇒ 2042:− 2015:⁡ 1996:− 1980:− 1964:∑ 1919:⇒ 1875:− 1833:⁡ 1788:∑ 1738:⇒ 1726:− 1707:− 1691:∑ 1646:⇒ 1630:− 1608:∑ 1563:⇒ 1497:− 1466:⁡ 1435:⁡ 1416:− 1394:∑ 1361:− 1342:⇒ 1314:− 1282:− 1274:− 1268:− 1253:⁡ 1234:− 1222:⁡ 1203:− 1197:− 1175:∑ 1121:⇒ 1080:− 1046:⁡ 992:∑ 959:− 940:⇒ 894:⁡ 840:∑ 765:∑ 725:⇒ 719:− 671:∑ 634:⇒ 621:∗ 609:∗ 603:− 581:∑ 427:stability 341:structure 321:stability 57:Corrosion 3325:Category 3309:Archived 3246:See also 3171:buckling 3100:Timeline 415:stresses 411:geometry 371:elements 317:stresses 293:analysis 132:Yielding 82:Fracture 52:Buckling 534:Example 234:scholar 77:Fouling 72:Fatigue 3230:1942: 3219:1941: 3212:1936: 3183:1873: 3176:1826: 3149:1750: 3133:1687: 3123:1660: 3112:1638: 1777:At B, 1597:At C, 1164:At D, 829:At A, 461:, and 313:forces 236:  229:  222:  215:  207:  92:Impact 507:truss 484:beams 378:Loads 281:loads 241:JSTOR 227:books 67:Creep 517:and 505:for 501:and 429:and 417:and 303:and 213:news 127:Wear 3225:MIT 3127:by 2894:cos 2726:sin 2465:cos 2301:sin 2012:cos 1830:sin 1463:cos 1432:cos 1250:sin 1219:sin 1043:cos 891:sin 196:by 3327:: 3077:. 3057:. 2957:10 2903:60 2812:10 2735:60 2516:10 2474:60 2386:10 2359:10 2319:10 2310:60 2047:10 2021:60 1880:10 1839:60 1527:10 1502:10 1472:60 1441:60 1366:10 1287:10 1271:10 1259:60 1228:60 1200:10 1085:10 1052:60 964:10 900:60 722:10 606:10 457:, 425:, 409:, 364:A 356:. 331:. 315:, 299:, 3013:3 3009:5 3004:= 2999:B 2996:A 2992:F 2985:0 2977:2 2974:1 2968:) 2961:3 2948:( 2939:B 2936:A 2932:F 2925:= 2920:D 2917:C 2913:F 2906:) 2900:( 2889:D 2886:B 2882:F 2873:B 2870:A 2866:F 2859:= 2856:0 2853:= 2848:x 2844:F 2816:3 2804:= 2799:D 2796:B 2792:F 2785:5 2782:+ 2777:2 2773:3 2765:D 2762:B 2758:F 2754:= 2749:B 2745:R 2741:+ 2738:) 2732:( 2721:D 2718:B 2714:F 2710:= 2707:0 2704:= 2699:y 2695:F 2670:0 2667:= 2662:D 2659:C 2655:F 2646:D 2643:C 2639:F 2630:3 2625:= 2622:0 2619:= 2614:B 2610:M 2571:0 2568:= 2563:D 2560:C 2556:F 2547:D 2544:C 2540:F 2536:+ 2531:2 2528:1 2520:3 2505:3 2501:5 2496:= 2491:D 2488:C 2484:F 2480:+ 2477:) 2471:( 2460:D 2457:B 2453:F 2449:+ 2444:B 2441:A 2437:F 2433:= 2430:0 2427:= 2422:x 2418:F 2390:3 2378:= 2373:D 2370:B 2366:F 2351:2 2347:3 2339:D 2336:B 2332:F 2325:5 2322:= 2313:) 2307:( 2296:D 2293:B 2289:F 2280:y 2277:A 2273:R 2269:= 2266:0 2263:= 2258:y 2254:F 2226:3 2222:5 2217:= 2212:B 2209:A 2205:F 2196:B 2193:A 2189:F 2180:3 2175:+ 2172:1 2166:5 2160:= 2157:0 2154:= 2149:D 2145:M 2097:d 2094:e 2091:i 2088:f 2085:i 2082:r 2079:e 2076:v 2070:0 2067:= 2062:2 2059:1 2051:3 2036:3 2032:5 2027:= 2024:) 2018:( 2007:D 2004:B 2000:F 1991:B 1988:A 1984:F 1977:= 1972:x 1968:F 1943:d 1940:e 1937:i 1934:f 1931:i 1928:r 1925:e 1922:v 1916:0 1913:= 1910:0 1907:+ 1902:2 1898:3 1891:) 1884:3 1871:( 1867:+ 1864:5 1861:= 1856:C 1853:B 1849:F 1845:+ 1842:) 1836:( 1825:D 1822:B 1818:F 1814:+ 1809:B 1805:R 1801:= 1796:y 1792:F 1762:d 1759:e 1756:i 1753:f 1750:i 1747:r 1744:e 1741:v 1735:0 1732:= 1729:0 1723:= 1718:D 1715:C 1711:F 1704:= 1699:x 1695:F 1665:0 1662:= 1657:C 1654:B 1650:F 1641:C 1638:B 1634:F 1627:= 1624:0 1621:= 1616:y 1612:F 1582:0 1579:= 1574:D 1571:C 1567:F 1558:D 1555:C 1551:F 1547:+ 1542:2 1539:1 1531:3 1522:+ 1517:2 1514:1 1506:3 1494:= 1489:D 1486:C 1482:F 1478:+ 1475:) 1469:( 1458:D 1455:B 1451:F 1447:+ 1444:) 1438:( 1427:D 1424:A 1420:F 1413:= 1410:0 1407:= 1402:x 1398:F 1370:3 1358:= 1353:D 1350:B 1346:F 1337:2 1333:3 1325:D 1322:B 1318:F 1309:2 1305:3 1298:) 1291:3 1278:( 1265:= 1262:) 1256:( 1245:D 1242:B 1238:F 1231:) 1225:( 1214:D 1211:A 1207:F 1194:= 1191:0 1188:= 1183:y 1179:F 1146:3 1142:5 1137:= 1132:B 1129:A 1125:F 1116:B 1113:A 1109:F 1105:+ 1100:2 1097:1 1089:3 1077:0 1074:= 1069:B 1066:A 1062:F 1058:+ 1055:) 1049:( 1038:D 1035:A 1031:F 1027:+ 1022:x 1019:A 1015:R 1011:= 1008:0 1005:= 1000:x 996:F 968:3 956:= 951:D 948:A 944:F 935:2 931:3 923:D 920:A 916:F 912:+ 909:5 906:= 903:) 897:( 886:D 883:A 879:F 875:+ 870:y 867:A 863:R 859:= 856:0 853:= 848:y 844:F 795:x 792:A 788:R 784:= 781:0 778:= 773:x 769:F 744:5 741:= 736:y 733:A 729:R 714:B 710:R 706:+ 701:y 698:A 694:R 690:= 687:0 684:= 679:y 675:F 650:5 647:= 642:B 638:R 629:B 625:R 618:2 615:+ 612:1 600:= 597:0 594:= 589:A 585:M 263:) 257:( 252:) 248:( 238:· 231:· 224:· 217:· 190:. 159:e 152:t 145:v 38:. 20:)

Index

Structural research
Structuralism
Structure (disambiguation)
Buckling
Corrosion
Corrosion fatigue
Creep
Fatigue
Fouling
Fracture
Hydrogen embrittlement
Impact
Liquid metal embrittlement
Mechanical overload
Metal-induced embrittlement
Stress corrosion cracking
Sulfide stress cracking
Thermal shock
Wear
Yielding
v
t
e

verification
improve this article
adding citations to reliable sources
"Structural analysis"
news
newspapers

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑