Knowledge (XXG)

Substrate presentation

Source πŸ“

231:) (target Cell, viral entry), the receptor for SARS-CoV-2 ACE2 traffics SARS-CoV-2 to GM1 lipid rafts where it is endocytosed and exposed to cathepsin for cleavage and optimal cells fusion. In low cholesterol ACE2 traffics the virus to TMPRSS2 which also cleaves and allows viral entry but through a putative surface mechanism that is much less efficient. The sensitivity of ACE2 to cholesterol is thought to contribute to less severe 17: 162: 272:. For proteins that are both palmitoylated and bind PIP2, increasing the concentration of PIP2 favors trafficking of the enzyme out of lipid rafts to PIP2. PIP2 is primarily polyunsaturated which causes the lipid to localize away from lipid rafts and allows the PIP2 to oppose palmitate mediated localization. 314:
Mechanical force (shear or swell) can independently disrupt the packing and resultant affinity of palmitate to lipid rafts. This disruption also causes PLD2 to favor trafficking to PIP2 domains. The mechanosensitive ion channel TREK-1 is released from cholesterol dependent lipid rafts in response to
260:
Sequestration can both elevate and reduce the concentration of a protein in proximity to its substrate. When the substrate is present within a lipid raft, sequestration leads to an increased concentration of the protein near the substrate. Conversely, if the substrate is excluded from a lipid raft,
200:
are cell surface receptors that bind to various polypeptide growth factors, cytokines, and hormones. Activation of RTKs is driven by palmitoylation and dimerization, a process facilitated by cholesterol within lipid rafts. Once dimerized, the receptor undergoes autophosphorylation, which triggers a
300:
PUFAs may also increase the concentration of signaling lipids. The arachidonic acid, a very common PUFA in the brain, incorporates into PC and PIP2. Arachidonyl PC is a preferred substrate of PLD likely increasing the amount of PA in a cell. Regulation of raft function by cholesterol effectively
208:(PKC) is a class of enzymes that phosphorylates proteins. Its substrates are typically on the membrane surface where the enzyme is recruited by the lipid diacylglycerol. Thus a portion of PKC activation is through substrate presentation, i.e., by localization with its substrate on the membrane. 94:
enzymes are regulated by substrate presentation. The substrate APP is palmitoylated and moves in and out of GM1 lipid rafts in response to astrocyte cholesterol. Cholesterol delivered by apolipoprotein E (ApoE) drives APP to associate with GM1 lipid rafts. When cholesterol is low, the protein
172:. PLD also binds PIP2(red hexagon) domains (grey shading) located separate from GM1 clusters in the plasma membrane and near phosphatidylcholine (PC). When PIP2 increases in the cell PLD translocates to PIP2 where it is exposed to and hydrolyzes PC to phosphatidic acid (red spherical lipid). 301:
regulates substrate presentation and the many palmitoylated proteins that utilize substrate presentation as a mechanism of activation. While speculative, the profound effect of cholesterol and PUFAs on human health is likely through physiological regulation of lipid raft function in cells.
292:(PUFAs) regulate lipid raft formation, hence the biological function of rafts. When saturated lipids and cholesterol increase in the membrane, lipid rafts increase their affinity for palmitoylated proteins. PUFAs have the opposite effect, they fluidize the membrane. 248:
Sequestration is the process of moving a molecule to a lipid raft. Within the plasma membrane, sequestration is primarily driven by packing of saturated lipid with cholesterol or phase separation at very small distances (< 100 nm). At a macroscopic level,
1066:
Petersen, E. Nicholas; Gudheti, Manasa; Pavel, Mahmud Arif; Murphy, Keith R.; Ja, William W.; Jorgensen, Erik M.; Hansen, Scott B. (5 September 2019). "Phospholipase D Transduces Force to TREK-1 Channels in a Biological Membrane".
23:; A substrate (purple rectangle) is shown sequestered into a lipid domain (green lipids). The substrate's translocation to the disordered region (grey lipids) presents it to its enzyme (blue oval) where it is hydrolyzed. 350:
of PLD2 to lipid rafts. Activation of PLD then activates TREK-1 channels. The membrane mediated PLD2 activation could be transferred to an anesthetic insensitive homolog TRAAK, rending the channel anesthetic sensitive.
157:
where it then gains access to its substrate PC and commences catalysis based on substrate presentation. Presumably, the enzyme is capable of catalyzing a reaction in a lipid raft but lacks a substrate for activity.
701:
Tellier, Edwige; Canault, Matthias; Rebsomen, Laure; Bonardo, Bernadette; Juhan-Vague, Irène; Nalbone, Gilles; Peiretti, Franck (10 December 2006). "The shedding activity of ADAM17 is sequestered in lipid rafts".
1139:
Petersen, E. Nicholas; Pavel, Mahmud Arif; Hansen, Samuel S.; Gudheti, Manasa; Wang, Hao; Yuan, Zixuan; Murphy, Keith R.; Ja, William; Ferris, Heather A.; Jorgensen, Erik; Hansen, Scott B. (26 February 2024).
46:
binds. The substrate is the material acted upon. In the case of an interaction with an enzyme, the protein or organic substrate typically changes chemical form. Substrate presentation differs from
95:
traffics to the disordered region and is cleaved by alpha secretase to produce a non-amylogenic product. The enzymes do not appear to respond to cholesterol, only the substrate moves.
1242:
Pavel, Mahmud Arif; Petersen, E. Nicholas; Wang, Hao; Lerner, Richard A.; Hansen, Scott B. (19 June 2019). "Studies on the mechanism of membrane mediated general anesthesia".
220:) (producing cell, replication). When cells are loaded with cholesterol furin traffics to GM1 lipid rafts where it is localized with the palmitoylated spike protein of 221: 141:(PC) which is unsaturated and is of low abundance in lipid rafts. PC localizes to the disordered region of the cell along with the polyunsaturated lipid 142: 50:
in that the enzyme need not change its conformation to begin catalysis. Substrate presentation is best described for domain partitioning at
189:(mTNF). Cholesterol causes mTNF to cluster with ADAM17 in lipid rafts and shed soluble TNF (sTNF) which is an inflammatory cytokine. 34:. The protein is sequestered away from its substrate and then activated by release and exposure of the protein to its substrate. A 347: 265: 254: 228: 1269: 201:
subsequent phosphorylation cascade. This is a specific case where the substrate and the enzyme are the same molecule.
323: 1193:"Disruption of palmitate-mediated localization; a shared pathway of force and anesthetic activation of TREK-1 channels" 1090:"Disruption of palmitate-mediated localization; a shared pathway of force and anesthetic activation of TREK-1 channels" 370:"Disruption of palmitate-mediated localization; a shared pathway of force and anesthetic activation of TREK-1 channels" 289: 101:
drives the partitioning of molecules. In the cell, this gives rise to compartmentalization within the cell and within
1142:"Mechanical activation of TWIK-related potassium channel by nanoscopic movement and rapid second messenger signaling" 519:
Wang, Hao; Kulas, Joshua A.; Wang, Chao; Holtzman, David M.; Ferris, Heather A.; Hansen, Scott B. (17 August 2021).
67: 232: 197: 87: 261:
sequestration results in decreased interaction between the protein and the substrate, as seen with PLD2.
269: 186: 110: 47: 35: 1243: 1068: 1020: 657: 599: 532: 153:. When PIP2 concentration in the membrane increases, PLD2 leaves the GM1 domains and associates with 109:
regulates raft affinity for the majority of integral raft proteins. Raft regulation is regulated by
138: 1224: 1173: 1121: 1048: 989: 940: 895: 846: 801: 760: 719: 683: 627: 568: 550: 501: 450: 401: 185:), also called TACE, is sequestered into lipid rafts away from its substrate, membrane bound 1214: 1204: 1163: 1153: 1111: 1101: 1038: 1028: 979: 971: 930: 922: 885: 877: 836: 828: 791: 750: 711: 673: 665: 617: 607: 558: 540: 491: 481: 470:"Cholesterol Regulation of Membrane Proteins Revealed by Two-Color Super-Resolution Imaging" 440: 432: 391: 381: 205: 168:; PLD (blue oval) is sequestered into cholesterol-dependent lipid domains (green lipids) by 125:) is a well-defined example of an enzyme activated by substrate presentation. The enzyme is 51: 134: 75: 1168: 1141: 1024: 890: 865: 661: 603: 536: 16: 1219: 1192: 1116: 1089: 1043: 1008: 984: 959: 935: 841: 678: 646: 622: 587: 563: 520: 496: 469: 445: 420: 396: 369: 169: 150: 126: 106: 98: 83: 71: 796: 779: 1263: 343: 264:
Either the substrate of the enzyme can move. Movement is typically the disruption of
102: 161: 1009:"Palmitoylation regulates raft affinity for the majority of integral raft proteins" 881: 588:"Palmitoylation regulates raft affinity for the majority of integral raft proteins" 521:"Regulation of beta-amyloid production in neurons by astrocyte-derived cholesterol" 1209: 1106: 975: 755: 738: 386: 715: 285: 154: 130: 1013:
Proceedings of the National Academy of Sciences of the United States of America
1007:
Levental, I; Lingwood, D; Grzybek, M; Coskun, U; Simons, K (21 December 2010).
778:
Paige, LA; Nadler, MJ; Harrison, ML; Cassady, JM; Geahlen, RL (25 April 1993).
592:
Proceedings of the National Academy of Sciences of the United States of America
586:
Levental, I; Lingwood, D; Grzybek, M; Coskun, U; Simons, K (21 December 2010).
436: 926: 832: 486: 339: 335: 250: 913:
Wang, Hao; Yuan, Zixuan; Pavel, Mahmud Arif; Hansen, Scott B. (29 May 2020).
819:
Wang, Hao; Yuan, Zixuan; Pavel, Mahmud Arif; Hansen, Scott B. (29 May 2020).
554: 1033: 914: 820: 612: 545: 91: 1228: 1177: 1125: 1052: 993: 944: 899: 850: 764: 723: 687: 647:"Kinetic disruption of lipid rafts is a mechanosensor for phospholipase D." 631: 572: 505: 454: 405: 964:
Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids
805: 327: 1158: 669: 645:
Petersen, EN; Chung, HW; Nayebosadri, A; Hansen, SB (15 December 2016).
79: 31: 739:"Growth factor receptors, lipid rafts and caveolae: an evolving story" 866:"Getting in on the action: New tools to see SARS-CoV-2 infect a cell" 182: 43: 39: 421:"Tools for Understanding Nanoscale Lipid Regulation of Ion Channels" 1248: 1073: 331: 217: 160: 15: 780:"Reversible palmitoylation of the protein-tyrosine kinase p56lck" 1088:
Petersen, EN; Pavel, MA; Wang, H; Hansen, SB (28 October 2019).
368:
Petersen, EN; Pavel, MA; Wang, H; Hansen, SB (28 October 2019).
146: 122: 1191:
Petersen, EN; Pavel, MA; Wang, H; Hansen, SB (1 January 2020).
960:"Lipid agonism: The PIP2 paradigm of ligand-gated ion channels" 915:"The role of high cholesterol in age-related COVID19 lethality" 821:"The role of high cholesterol in age-related COVID19 lethality" 743:
Biochimica et Biophysica Acta (BBA) - Molecular Cell Research
315:
mechanical force. This has the effect of dampening pain.
129:
causing the enzyme to traffic to GM1 lipid domains or "
419:
Robinson, CV; Rohacs, T; Hansen, SB (September 2019).
326:
employs substrate presentation. General anesthetics
468:Yuan, Zixuan; Hansen, Scott B. (20 February 2023). 1197:Biochimica et Biophysica Acta (BBA) - Biomembranes 1094:Biochimica et Biophysica Acta (BBA) - Biomembranes 374:Biochimica et Biophysica Acta (BBA) - Biomembranes 42:acts but can also be a protein surface to which a 257:can limit access of an enzyme with to substrate. 525:Proceedings of the National Academy of Sciences 864:Hansen, Scott B.; Yuan, Zixuan (March 2023). 8: 1247: 1218: 1208: 1167: 1157: 1115: 1105: 1072: 1042: 1032: 983: 934: 889: 840: 795: 754: 677: 621: 611: 562: 544: 495: 485: 444: 395: 385: 30:is a biological process that activates a 360: 38:is typically the substance on which an 143:phosphatidylinositol 4,5-bisphosphate 7: 784:The Journal of Biological Chemistry 14: 346:disrupt lipid raft function and 348:palmitate mediated localization 266:palmitate mediated localization 224:and primes it for viral entry. 882:10.1016/j.chembiol.2023.02.010 425:Trends in Biochemical Sciences 1: 797:10.1016/S0021-9258(18)52927-6 737:Pike, LJ (30 December 2005). 54:distances (<100 nm). 1210:10.1016/j.bbamem.2019.183091 1107:10.1016/j.bbamem.2019.183091 976:10.1016/j.bbalip.2015.01.011 756:10.1016/j.bbamcr.2005.05.005 387:10.1016/j.bbamem.2019.183091 324:Membrane-mediated anesthesia 78:to yield a 40-42 amino acid 716:10.1016/j.yexcr.2006.08.027 290:polyunsaturated fatty acids 1286: 704:Experimental Cell Research 437:10.1016/j.tibs.2019.04.001 927:10.1101/2020.05.09.086249 833:10.1101/2020.05.09.086249 487:10.3390/membranes13020250 198:Receptor Tyrosine Kinases 68:Amyloid precursor protein 63:Amyloid precursor protein 330:and inhaled anesthetics 239:Mechanisms of activation 1034:10.1073/pnas.1016184107 958:Hansen, SB (May 2015). 613:10.1073/pnas.1016184107 546:10.1073/pnas.2102191118 235:symptoms in children. 173: 28:Substrate presentation 24: 21:Substrate presentation 921:: 2020.05.09.086249. 870:Cell Chemical Biology 827:: 2020.05.09.086249. 650:Nature Communications 270:organelle trafficking 187:tumor necrosis factor 164: 111:cholesterol signaling 48:allosteric regulation 19: 1270:Biological processes 166:Enzyme translocation 133:". The substrate of 105:. For lipid rafts, 70:(APP) is cleaved by 1159:10.7554/eLife.89465 1025:2010PNAS..10722050L 670:10.1038/ncomms13873 662:2016NatCo...713873P 604:2010PNAS..10722050L 537:2021PNAS..11802191W 531:(33): e2102191118. 149:). PLD2 has a PIP2 139:phosphatidylcholine 88:Alzheimer's disease 174: 25: 710:(20): 3969–3980. 1277: 1254: 1253: 1251: 1239: 1233: 1232: 1222: 1212: 1188: 1182: 1181: 1171: 1161: 1136: 1130: 1129: 1119: 1109: 1085: 1079: 1078: 1076: 1063: 1057: 1056: 1046: 1036: 1004: 998: 997: 987: 955: 949: 948: 938: 910: 904: 903: 893: 861: 855: 854: 844: 816: 810: 809: 799: 775: 769: 768: 758: 734: 728: 727: 698: 692: 691: 681: 642: 636: 635: 625: 615: 583: 577: 576: 566: 548: 516: 510: 509: 499: 489: 465: 459: 458: 448: 416: 410: 409: 399: 389: 365: 310:Mechanosensation 206:Protein Kinase C 193:Kinase Signaling 117:Phospholipase D2 86:associated with 82:responsible for 1285: 1284: 1280: 1279: 1278: 1276: 1275: 1274: 1260: 1259: 1258: 1257: 1241: 1240: 1236: 1190: 1189: 1185: 1138: 1137: 1133: 1087: 1086: 1082: 1065: 1064: 1060: 1019:(51): 22050–4. 1006: 1005: 1001: 957: 956: 952: 912: 911: 907: 863: 862: 858: 818: 817: 813: 790:(12): 8669–74. 777: 776: 772: 736: 735: 731: 700: 699: 695: 644: 643: 639: 598:(51): 22050–4. 585: 584: 580: 518: 517: 513: 467: 466: 462: 418: 417: 413: 367: 366: 362: 357: 321: 312: 307: 305:Role in biology 298: 283: 278: 246: 241: 214: 204: 195: 179: 135:phospholipase D 119: 84:amyloid plaques 76:gamma secretase 65: 60: 12: 11: 5: 1283: 1281: 1273: 1272: 1262: 1261: 1256: 1255: 1249:10.1101/313973 1234: 1183: 1131: 1080: 1074:10.1101/758896 1058: 999: 950: 905: 876:(3): 233–234. 856: 811: 770: 729: 693: 637: 578: 511: 460: 431:(9): 795–806. 411: 359: 358: 356: 353: 320: 317: 311: 308: 306: 303: 297: 294: 282: 279: 277: 274: 245: 242: 240: 237: 213: 210: 194: 191: 178: 175: 170:palmitoylation 151:binding domain 118: 115: 107:palmitoylation 103:cell membranes 99:Hydrophobicity 64: 61: 59: 56: 13: 10: 9: 6: 4: 3: 2: 1282: 1271: 1268: 1267: 1265: 1250: 1245: 1238: 1235: 1230: 1226: 1221: 1216: 1211: 1206: 1203:(1): 183091. 1202: 1198: 1194: 1187: 1184: 1179: 1175: 1170: 1165: 1160: 1155: 1151: 1147: 1143: 1135: 1132: 1127: 1123: 1118: 1113: 1108: 1103: 1100:(1): 183091. 1099: 1095: 1091: 1084: 1081: 1075: 1070: 1062: 1059: 1054: 1050: 1045: 1040: 1035: 1030: 1026: 1022: 1018: 1014: 1010: 1003: 1000: 995: 991: 986: 981: 977: 973: 969: 965: 961: 954: 951: 946: 942: 937: 932: 928: 924: 920: 916: 909: 906: 901: 897: 892: 887: 883: 879: 875: 871: 867: 860: 857: 852: 848: 843: 838: 834: 830: 826: 822: 815: 812: 807: 803: 798: 793: 789: 785: 781: 774: 771: 766: 762: 757: 752: 749:(3): 260–73. 748: 744: 740: 733: 730: 725: 721: 717: 713: 709: 705: 697: 694: 689: 685: 680: 675: 671: 667: 663: 659: 655: 651: 648: 641: 638: 633: 629: 624: 619: 614: 609: 605: 601: 597: 593: 589: 582: 579: 574: 570: 565: 560: 556: 552: 547: 542: 538: 534: 530: 526: 522: 515: 512: 507: 503: 498: 493: 488: 483: 479: 475: 471: 464: 461: 456: 452: 447: 442: 438: 434: 430: 426: 422: 415: 412: 407: 403: 398: 393: 388: 383: 380:(1): 183091. 379: 375: 371: 364: 361: 354: 352: 349: 345: 344:diethyl ether 341: 337: 333: 329: 325: 318: 316: 309: 304: 302: 295: 293: 291: 287: 280: 275: 273: 271: 267: 262: 258: 256: 252: 244:Sequestration 243: 238: 236: 234: 230: 225: 223: 219: 211: 209: 207: 202: 199: 192: 190: 188: 184: 176: 171: 167: 163: 159: 156: 152: 148: 144: 140: 136: 132: 128: 127:palmitoylated 124: 116: 114: 112: 108: 104: 100: 96: 93: 89: 85: 81: 77: 73: 69: 62: 57: 55: 53: 49: 45: 41: 37: 33: 29: 22: 18: 1237: 1200: 1196: 1186: 1149: 1145: 1134: 1097: 1093: 1083: 1061: 1016: 1012: 1002: 970:(5): 620–8. 967: 963: 953: 918: 908: 873: 869: 859: 824: 814: 787: 783: 773: 746: 742: 732: 707: 703: 696: 653: 649: 640: 595: 591: 581: 528: 524: 514: 477: 473: 463: 428: 424: 414: 377: 373: 363: 322: 313: 299: 284: 263: 259: 247: 226: 215: 203: 196: 180: 177:Inflammation 165: 155:PIP2 domains 120: 97: 66: 27: 26: 20: 1152:: RP89465. 319:Anaesthesia 286:Cholesterol 281:Cholesterol 131:lipid rafts 480:(2): 250. 355:References 340:isoflurane 336:chloroform 276:Regulation 251:organelles 222:SARS-CoV-2 212:SARS-CoV-2 52:nanoscopic 656:: 13873. 555:0027-8424 474:Membranes 92:secretase 36:substrate 1264:Category 1229:31672538 1178:38407149 1169:10942622 1126:31672538 1053:21131568 994:25633344 945:32511366 900:36931249 891:10018748 851:32511366 765:15951036 724:17010968 688:27976674 632:21131568 573:34385305 506:36837753 455:31060927 406:31672538 328:propofol 58:Examples 1244:bioRxiv 1220:6907892 1117:6907892 1069:bioRxiv 1044:3009825 1021:Bibcode 985:4540326 936:7263494 919:bioRxiv 842:7263494 825:bioRxiv 806:8473310 679:5171650 658:Bibcode 623:3009825 600:Bibcode 564:8379952 533:Bibcode 497:9966874 446:6729126 397:6907892 255:vesicle 233:COVID19 80:peptide 32:protein 1246:  1227:  1217:  1176:  1166:  1124:  1114:  1071:  1051:  1041:  992:  982:  943:  933:  898:  888:  849:  839:  804:  763:  722:  686:  676:  630:  620:  571:  561:  553:  504:  494:  453:  443:  404:  394:  183:ADAM17 90:. The 44:ligand 40:enzyme 1146:eLife 332:xenon 296:PUFAs 218:Furin 1225:PMID 1201:1862 1174:PMID 1122:PMID 1098:1862 1049:PMID 990:PMID 968:1851 941:PMID 896:PMID 847:PMID 802:PMID 761:PMID 747:1746 720:PMID 684:PMID 628:PMID 569:PMID 551:ISSN 502:PMID 451:PMID 402:PMID 378:1862 288:and 253:and 229:ACE2 147:PIP2 123:PLD2 74:and 72:beta 1215:PMC 1205:doi 1164:PMC 1154:doi 1112:PMC 1102:doi 1039:PMC 1029:doi 1017:107 980:PMC 972:doi 931:PMC 923:doi 886:PMC 878:doi 837:PMC 829:doi 792:doi 788:268 751:doi 712:doi 708:312 674:PMC 666:doi 618:PMC 608:doi 596:107 559:PMC 541:doi 529:118 492:PMC 482:doi 441:PMC 433:doi 392:PMC 382:doi 268:or 137:is 1266:: 1223:. 1213:. 1199:. 1195:. 1172:. 1162:. 1150:12 1148:. 1144:. 1120:. 1110:. 1096:. 1092:. 1047:. 1037:. 1027:. 1015:. 1011:. 988:. 978:. 966:. 962:. 939:. 929:. 917:. 894:. 884:. 874:30 872:. 868:. 845:. 835:. 823:. 800:. 786:. 782:. 759:. 745:. 741:. 718:. 706:. 682:. 672:. 664:. 652:. 626:. 616:. 606:. 594:. 590:. 567:. 557:. 549:. 539:. 527:. 523:. 500:. 490:. 478:13 476:. 472:. 449:. 439:. 429:44 427:. 423:. 400:. 390:. 376:. 372:. 342:, 338:, 334:, 113:. 1252:. 1231:. 1207:: 1180:. 1156:: 1128:. 1104:: 1077:. 1055:. 1031:: 1023:: 996:. 974:: 947:. 925:: 902:. 880:: 853:. 831:: 808:. 794:: 767:. 753:: 726:. 714:: 690:. 668:: 660:: 654:7 634:. 610:: 602:: 575:. 543:: 535:: 508:. 484:: 457:. 435:: 408:. 384:: 227:( 216:( 181:( 145:( 121:(

Index


protein
substrate
enzyme
ligand
allosteric regulation
nanoscopic
Amyloid precursor protein
beta
gamma secretase
peptide
amyloid plaques
Alzheimer's disease
secretase
Hydrophobicity
cell membranes
palmitoylation
cholesterol signaling
PLD2
palmitoylated
lipid rafts
phospholipase D
phosphatidylcholine
phosphatidylinositol 4,5-bisphosphate
PIP2
binding domain
PIP2 domains

palmitoylation
ADAM17

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑