Knowledge (XXG)

Sulfur–iodine cycle

Source 📝

33: 842:
Atsuhiko TERADA; Jin IWATSUKI, Shuichi ISHIKURA, Hiroki NOGUCHI, Shinji KUBO, Hiroyuki OKUDA, Seiji KASAHARA, Nobuyuki TANAKA, Hiroyuki OTA, Kaoru ONUKI and Ryutaro HINO, "Development of Hydrogen Production Technology by Thermochemical Water Splitting IS Process Pilot Test Plan", Journal of Nuclear
591:
The S–I cycle involves operations with corrosive chemicals at temperatures up to about 1,000 °C (1,830 °F). The selection of materials with sufficient corrosion resistance under the process conditions is of key importance to the economic viability of this process. The materials suggested
571:) to produce industrial scale quantities of hydrogen. (The Japanese refer to the cycle as the IS cycle.) Plans have been made to test larger-scale automated systems for hydrogen production. Under an International Nuclear Energy Research Initiative (INERI) agreement, the French 774:
Wonga, B.; Buckingham, R. T.; Brown, L. C.; Russ, B. E.; Besenbruch, G. E.; Kaiparambil, A.; Santhanakrishnan, R.; Roy, Ajit (2007). "Construction materials development in sulfur–iodine thermochemical water-splitting process for hydrogen production".
834:
Paul M. Mathias and Lloyd C. Brown "Thermodynamics of the Sulfur-Iodine Cycle for Thermochemical Hydrogen Production", presented at the 68 th Annual Meeting of the Society of Chemical Engineers, Japan 23 March 2003.
620:), and others. Recent research on scaled prototyping suggests that new tantalum surface technologies may be a technically and economically feasible way to make larger scale installations. 526:
At the proposed temperature range advanced thermal power plants can achieve efficiencies (electric output per heat input) in excess of 50% somewhat negating the efficiency advantage
804: 520:
Corrosive reagents used as intermediaries (iodine, sulfur dioxide, hydriodic acid, sulfuric acid); therefore, advanced materials needed for construction of process apparatus
693:
Besenbruch, G. 1982. General Atomic sulfur iodine thermochemical water-splitting process. Proceedings of the American Chemical Society, Div. Pet. Chem., 27(1):48-53.
649: 596:, ceramics, polymers, and coatings. Some materials suggested include tantalum alloys, niobium alloys, noble metals, high-silicon steels, several nickel-based 820:
T. Drake, B. E. Russ, L. Brown, G. Besenbruch, "Tantalum Applications For Use In Scale Sulfur-Iodine Experiments", AIChE 2007 Fall Annual Meeting, 566a.
572: 542:
Unable to use non-thermal or low-grade thermal energy sources such as hydropower, wind power or most currently available geothermal power
801: 836: 555:
in the 1970s. The Japan Atomic Energy Agency (JAEA) has conducted successful experiments with the S–I cycle in the Helium cooled
819: 529:
In case of leakage corrosive and somewhat toxic substances are released to the environment – among them volatile iodine and
510:
Very high temperatures required (at least 850 °C (1,560 °F)) – unachievable or difficult to achieve with current
664: 556: 892: 731:
Nuclear heat for hydrogen production: Coupling a very high/high temperature reactor to a hydrogen production plant. 2009
576: 456: 887: 409:
compounds are recovered and reused, hence the consideration of the process as a cycle. This S–I process is a chemical
674: 654: 580: 511: 857: 515: 421:
reaction 1. The difference between the heat entering and leaving the cycle exits the cycle in the form of the
867: 560: 740: 724: 564: 479: 440: 45: 539:
the required high temperatures make the benefits compared to direct utilization of heat questionable
659: 483: 49: 446: 422: 762: 459:, and hybrid (e.g., solar-fossil) sources of heat – if high enough temperatures can be achieved 56: 579:
are jointly developing the sulfur-iodine process. Additional research is taking place at the
784: 669: 629: 493: 310: 808: 637: 609: 605: 552: 530: 264: 252: 67:. All other chemicals are recycled. The S–I process requires an efficient source of heat. 844: 303: 452:
Completely closed system without byproducts or effluents (besides hydrogen and oxygen)
32: 881: 282: 788: 640:
but requires heat from combustion, nuclear reactions, or solar heat concentrators.
536: 497: 378: 273: 17: 763:
Paul Pickard, Sulfur-Iodine Thermochemical Cycle 2005 DOE Hydrogen Program Review
563:
in 1998, JAEA have the aspiration of using further nuclear very high-temperature
751: 633: 597: 593: 465: 414: 410: 489: 418: 628:
The sulfur-iodine cycle has been proposed as a way to supply hydrogen for a
417:
chemical reactions 2 and 3, and heat exits the cycle in the low-temperature
472: 362: 60: 703: 601: 752:
JAEA’S VHTR FOR HYDROGEN AND ELECTRICITY COGENERATION : GTHTR300C
523:
Significant further development required to be feasible on large scale
725:
https://smr.inl.gov/Document.ashx?path=DOCS%2FGCR-Int%2FNHDDELDER.pdf
406: 402: 318: 226: 64: 741:
Status report 101 – Gas Turbine High Temperature Reactor (GTHTR300C)
222:
The three reactions combined to produce hydrogen are the following:
592:
include the following classes: refractory metals, reactive metals,
31: 568: 843:
Science and Technology, Vol.44, No.3, p. 477–482 (2007).
439:
All fluid (liquids, gases) process, therefore well suited for
341:
must be separated from the oxygen byproduct by condensation.
868:
Use of the modular helium reactor for hydrogen production
59:
whose net reactant is water and whose net products are
482:(~70-80% efficiency) using electricity derived from a 462:
More developed than competing thermochemical processes
486:(~30-60% efficiency) combining to ~21-48% efficiency 704:"HTTR High Temperature engineering Test Reactor" 468:from relatively small scale to huge applications 27:Thermochemical process used to produce hydrogen 8: 413:. Heat enters the cycle in high-temperature 381:, and the hydrogen product remains as a gas. 36:Schematic diagram of the sulfur–iodine cycle 777:International Journal of Hydrogen Energy 650:Cerium(IV) oxide–cerium(III) oxide cycle 686: 373:Iodine and any accompanying water or SO 858:Hydrogen: Our Future made with Nuclear 455:Suitable for application with solar, 276:or liquid/liquid gravitic separation. 7: 872:World Nuclear Association Symposium 25: 559:, a reactor which reached first 55:The S–I cycle consists of three 471:No need for expensive or toxic 789:10.1016/j.ijhydene.2006.06.058 583:, in Canada, Korea and Italy. 551:The S–I cycle was invented at 535:If hydrogen is to be used for 74: 1: 665:High-temperature electrolysis 557:High Temperature Test Reactor 324:(830 °C (1,530 °F)) 263:(120 °C (250 °F)) ( 577:Sandia National Laboratories 272:The HI is then separated by 44:(S–I cycle) is a three-step 368:(450 °C (840 °F)) 909: 729:Progress in Nuclear Energy 512:pressurized water reactors 425:of the hydrogen produced. 581:Idaho National Laboratory 807:14 February 2006 at the 636:like current methods of 516:concentrated solar power 632:. It does not require 630:hydrogen-based economy 575:, General Atomics and 565:generation IV reactors 37: 675:Zinc–zinc oxide cycle 655:Copper–chlorine cycle 480:electrolysis of water 449:predicted (about 50%) 441:continuous production 35: 478:More efficient than 46:thermochemical cycle 893:Hydrogen production 660:Hybrid sulfur cycle 484:thermal power plant 71:Process description 42:sulfur–iodine cycle 18:Sulfur-iodine cycle 888:Chemical reactions 802:Saramet info sheet 587:Material challenge 447:thermal efficiency 423:heat of combustion 57:chemical reactions 38: 706:. Httr.jaea.go.jp 386:Net reaction: 2 H 377:are separated by 220: 219: 16:(Redirected from 900: 822: 817: 811: 799: 793: 792: 771: 765: 760: 754: 749: 743: 738: 732: 722: 716: 715: 713: 711: 700: 694: 691: 670:Iron oxide cycle 624:Hydrogen economy 494:district heating 356: 355: 354: 351: 301: 300: 299: 296: 250: 249: 248: 245: 75: 50:produce hydrogen 21: 908: 907: 903: 902: 901: 899: 898: 897: 878: 877: 854: 831: 826: 825: 818: 814: 809:Wayback Machine 800: 796: 773: 772: 768: 761: 757: 750: 746: 739: 735: 723: 719: 709: 707: 702: 701: 697: 692: 688: 683: 646: 638:steam reforming 626: 619: 615: 610:silicon nitride 606:silicon carbide 589: 553:General Atomics 549: 531:hydroiodic acid 507: 436: 431: 429:Characteristics 397: 393: 389: 376: 366: 360: 352: 349: 348: 347: 340: 336: 332: 322: 314: 307: 297: 294: 293: 292: 290: 286: 265:Bunsen reaction 262: 258: 246: 243: 242: 241: 239: 235: 230: 214: 193: 189: 143: 139: 124: 98: 85: 73: 28: 23: 22: 15: 12: 11: 5: 906: 904: 896: 895: 890: 880: 879: 876: 875: 865: 853: 852:External links 850: 849: 848: 840: 830: 827: 824: 823: 812: 794: 783:(4): 497–504. 766: 755: 744: 733: 717: 695: 685: 684: 682: 679: 678: 677: 672: 667: 662: 657: 652: 645: 642: 625: 622: 617: 613: 608:(SiC), glass, 588: 585: 548: 545: 544: 543: 540: 533: 527: 524: 521: 518: 506: 503: 502: 501: 487: 476: 469: 463: 460: 453: 450: 443: 435: 432: 430: 427: 399: 398: 395: 391: 387: 383: 382: 374: 370: 369: 364: 358: 343: 342: 338: 334: 333:and residual H 330: 326: 325: 320: 312: 305: 288: 284: 278: 277: 269: 268: 260: 256: 237: 233: 228: 218: 217: 215: 212: 208: 207: 205: 201: 200: 197: 194: 191: 187: 184: 181: 178: 175: 171: 170: 167: 165: 163: 161: 158: 156: 152: 151: 148: 145: 141: 137: 134: 131: 128: 125: 122: 118: 117: 114: 112: 110: 108: 105: 103: 100: 99: 96: 93: 91: 89: 87: 83: 80: 78: 72: 69: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 905: 894: 891: 889: 886: 885: 883: 873: 869: 866: 863: 859: 856: 855: 851: 846: 841: 838: 833: 832: 828: 821: 816: 813: 810: 806: 803: 798: 795: 790: 786: 782: 778: 770: 767: 764: 759: 756: 753: 748: 745: 742: 737: 734: 730: 726: 721: 718: 705: 699: 696: 690: 687: 680: 676: 673: 671: 668: 666: 663: 661: 658: 656: 653: 651: 648: 647: 643: 641: 639: 635: 631: 623: 621: 611: 607: 603: 599: 595: 586: 584: 582: 578: 574: 570: 566: 562: 558: 554: 546: 541: 538: 534: 532: 528: 525: 522: 519: 517: 513: 509: 508: 505:Disadvantages 504: 499: 495: 492:suitable for 491: 488: 485: 481: 477: 474: 470: 467: 464: 461: 458: 454: 451: 448: 444: 442: 438: 437: 433: 428: 426: 424: 420: 416: 412: 408: 404: 385: 384: 380: 372: 371: 367: 345: 344: 329:The water, SO 328: 327: 323: 316: 308: 291: 280: 279: 275: 271: 270: 266: 254: 231: 225: 224: 223: 216: 210: 209: 206: 203: 202: 198: 195: 185: 182: 179: 176: 173: 172: 168: 166: 164: 162: 159: 157: 154: 153: 149: 146: 135: 132: 129: 126: 120: 119: 115: 113: 111: 109: 106: 104: 102: 101: 94: 92: 90: 88: 81: 79: 77: 76: 70: 68: 66: 62: 58: 53: 51: 47: 43: 34: 30: 19: 871: 861: 815: 797: 780: 776: 769: 758: 747: 736: 728: 720: 708:. Retrieved 698: 689: 634:hydrocarbons 627: 590: 550: 537:process heat 498:cogeneration 475:or additives 400: 379:condensation 274:distillation 221: 54: 41: 39: 29: 862:MPR Profile 598:superalloys 594:superalloys 561:criticality 415:endothermic 411:heat engine 199:Reaction 2 882:Categories 829:References 710:23 January 500:is desired 490:Waste heat 434:Advantages 419:exothermic 130:Reaction 1 681:Footnotes 473:catalysts 150:Separate 864:issue 9) 805:Archived 644:See also 547:Research 466:Scalable 180:Separate 61:hydrogen 48:used to 602:mullite 457:nuclear 390:O → 2 H 407:iodine 403:sulfur 350:+ heat 295:+ heat 244:- heat 65:oxygen 874:2003) 845:(PDF) 837:(PDF) 445:High 346:2 HI 236:+ 2 H 860:(in 712:2014 569:VHTR 405:and 401:The 309:+ 2 232:+ SO 174:2 HI 63:and 40:The 785:doi 612:(Si 573:CEA 514:or 496:if 394:+ O 255:+ H 140:+ H 95:½ O 884:: 781:32 779:. 727:. 604:, 600:, 361:+ 337:SO 317:+ 304:SO 302:2 287:SO 281:2 259:SO 253:HI 251:2 240:O 190:SO 169:↑ 136:SO 116:↑ 52:. 870:( 847:. 839:. 791:. 787:: 714:. 618:4 616:N 614:3 567:( 396:2 392:2 388:2 375:2 365:2 363:H 359:2 357:I 353:→ 339:4 335:2 331:2 321:2 319:O 315:O 313:2 311:H 306:2 298:→ 289:4 285:2 283:H 267:) 261:4 257:2 247:→ 238:2 234:2 229:2 227:I 213:2 211:H 204:↓ 196:→ 192:4 188:2 186:H 183:→ 177:← 160:↓ 155:↑ 147:← 144:O 142:2 138:2 133:← 127:→ 123:2 121:I 107:↓ 97:2 86:O 84:2 82:H 20:)

Index

Sulfur-iodine cycle

thermochemical cycle
produce hydrogen
chemical reactions
hydrogen
oxygen
I2
HI
Bunsen reaction
distillation
H2SO4
SO2
H2O
O2
H2
condensation
sulfur
iodine
heat engine
endothermic
exothermic
heat of combustion
continuous production
thermal efficiency
nuclear
Scalable
catalysts
electrolysis of water
thermal power plant

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.