Knowledge (XXG)

Superconductivity

Source 📝

31: 2391: 1562: 1805: 1334:, a compound consisting of three parts niobium and one part tin, was capable of supporting a current density of more than 100,000 amperes per square centimeter in a magnetic field of 8.8 tesla. Despite being brittle and difficult to fabricate, niobium–tin has since proved extremely useful in supermagnets generating magnetic fields as high as 20 tesla. In 1962, T. G. Berlincourt and R. R. Hake discovered that more ductile alloys of niobium and titanium are suitable for applications up to 10 tesla. Promptly thereafter, commercial production of 979: 1058:. It was put forward by the brothers Fritz and Heinz London in 1935, shortly after the discovery that magnetic fields are expelled from superconductors. A major triumph of the equations of this theory is their ability to explain the Meissner effect, wherein a material exponentially expels all internal magnetic fields as it crosses the superconducting threshold. By using the London equation, one can obtain the dependence of the magnetic field inside the superconductor on the distance to the surface. 59: 2126:. However, in the presence of an external magnetic field there is latent heat, because the superconducting phase has a lower entropy below the critical temperature than the normal phase. It has been experimentally demonstrated that, as a consequence, when the magnetic field is increased beyond the critical field, the resulting phase transition leads to a decrease in the temperature of the superconducting material. 1774: 1857:
lifetime of the universe, depending on the wire geometry and the temperature. In practice, currents injected in superconducting coils persisted for 28 years, 7 months, 27 days in a superconducting gravimeter in Belgium, from August 4, 1995 until March 31, 2024. In such instruments, the measurement is based on the monitoring of the levitation of a superconducting niobium sphere with a mass of four grams.
7219: 2083:
phase and so for some finite value of the magnetic field (proportional to the square root of the difference of the free energies at zero magnetic field) the two free energies will be equal and a phase transition to the normal phase will occur. More generally, a higher temperature and a stronger magnetic field lead to a smaller fraction of electrons that are superconducting and consequently to a longer
1645: 2027:, one of the first cuprate superconductors to be discovered, has a critical temperature above 90 K, and mercury-based cuprates have been found with critical temperatures in excess of 130 K. The basic physical mechanism responsible for the high critical temperature is not yet clear. However, it is clear that a two-electron pairing is involved, although the nature of the pairing ( 1967: 1958:
taken into account in sensitive experiments. However, as the temperature decreases far enough below the nominal superconducting transition, these vortices can become frozen into a disordered but stationary phase known as a "vortex glass". Below this vortex glass transition temperature, the resistance of the material becomes truly zero.
1183: 2316:. Depending on the geometry of the sample, one may obtain an intermediate state consisting of a baroque pattern of regions of normal material carrying a magnetic field mixed with regions of superconducting material containing no field. In Type II superconductors, raising the applied field past a critical value 2970:(1973), "for their experimental discoveries regarding tunneling phenomena in semiconductors and superconductors, respectively" and "for his theoretical predictions of the properties of a supercurrent through a tunnel barrier, in particular those phenomena which are generally known as the Josephson effects". 1325:
Soon after discovering superconductivity in 1911, Kamerlingh Onnes attempted to make an electromagnet with superconducting windings but found that relatively low magnetic fields destroyed superconductivity in the materials he investigated. Much later, in 1955, G. B. Yntema succeeded in constructing a
1233:
showed that Ginzburg–Landau theory predicts the division of superconductors into the two categories now referred to as Type I and Type II. Abrikosov and Ginzburg were awarded the 2003 Nobel Prize for their work (Landau had received the 1962 Nobel Prize for other work, and died in 1968). The
2922:
are more efficient and require only a fraction of the space, which would not only lead to a better environmental performance but could also improve public acceptance for expansion of the electric grid. Another attractive industrial aspect is the ability for high power transmission at lower voltages.
2216:
The Meissner effect is distinct from this – it is the spontaneous expulsion that occurs during transition to superconductivity. Suppose we have a material in its normal state, containing a constant internal magnetic field. When the material is cooled below the critical temperature, we
2672:
of approximately 1.1 degrees with cooling and applying a small electric charge. Even if the experiments were not carried out in a high-temperature environment, the results are correlated less to classical but high temperature superconductors, given that no foreign atoms need to be introduced.
2529:
This temperature jump is of particular engineering significance, since it allows liquid nitrogen as a refrigerant, replacing liquid helium. Liquid nitrogen can be produced relatively cheaply, even on-site. The higher temperatures additionally help to avoid some of the problems that arise at liquid
1957:
in the electronic superfluid, which dissipates some of the energy carried by the current. If the current is sufficiently small, the vortices are stationary, and the resistivity vanishes. The resistance due to this effect is minuscule compared with that of non-superconducting materials, but must be
2082:
of the superconducting phase increases quadratically with the magnetic field while the free energy of the normal phase is roughly independent of the magnetic field. If the material superconducts in the absence of a field, then the superconducting phase free energy is lower than that of the normal
1350:
and ease of fabrication. However, both niobium–tin and niobium–titanium find wide application in MRI medical imagers, bending and focusing magnets for enormous high-energy-particle accelerators, and a host of other applications. Conectus, a European superconductivity consortium, estimated that in
6074:
Design and in-field testing of the world's first ReBCO rotor for a 3.6 MW wind generator" by Anne Bergen, Rasmus Andersen, Markus Bauer, Hermann Boy, Marcel ter Brake, Patrick Brutsaert, Carsten BĂŒhrer, Marc DhallĂ©, Jesper Hansen and Herman ten Kate, 25 October 2019, Superconductor Science and
1856:
machines. Experiments have demonstrated that currents in superconducting coils can persist for years without any measurable degradation. Experimental evidence points to a lifetime of at least 100,000 years. Theoretical estimates for the lifetime of a persistent current can exceed the estimated
5660:
Drozdov, A. P.; Kong, P. P.; Minkov, V. S.; Besedin, S. P.; Kuzovnikov, M. A.; Mozaffari, S.; Balicas, L.; Balakirev, F. F.; Graf, D. E.; Prakapenka, V. B.; Greenberg, E.; Knyazev, D. A.; Tkacz, M.; Eremets, M. I. (2019). "Superconductivity at 250 K in Lanthanum Hydride under High Pressures".
2727:
Superconductors are promising candidate materials for devising fundamental circuit elements of electronic, spintronic, and quantum technologies. One such example is a superconducting diode, in which supercurrent flows along one direction only, that promise dissipationless superconducting and
1014:
transition of helium at 2.2 K, without recognizing its significance. The precise date and circumstances of the discovery were only reconstructed a century later, when Onnes's notebook was found. In subsequent decades, superconductivity was observed in several other materials. In 1913,
2308:
A superconductor with little or no magnetic field within it is said to be in the Meissner state. The Meissner state breaks down when the applied magnetic field is too large. Superconductors can be divided into two classes according to how this breakdown occurs. In Type I superconductors,
1953:, an extremely low but non-zero resistivity appears at temperatures not too far below the nominal superconducting transition when an electric current is applied in conjunction with a strong magnetic field, which may be caused by the electric current. This is due to the motion of 2212:
magnetic field is applied to a conductor, it will induce an electric current in the conductor that creates an opposing magnetic field. In a perfect conductor, an arbitrarily large current can be induced, and the resulting magnetic field exactly cancels the applied field.
2189:, and cooled below its transition temperature, the magnetic field is ejected. The Meissner effect does not cause the field to be completely ejected but instead, the field penetrates the superconductor but only to a very small distance, characterized by a parameter  2715: 1066: 2376:. This experiment measured the magnetic fields of four superconducting gyroscopes to determine their spin axes. This was critical to the experiment since it is one of the few ways to accurately determine the spin axis of an otherwise featureless sphere. 1346:. Although niobium–titanium boasts less-impressive superconducting properties than those of niobium–tin, niobium–titanium has, nevertheless, become the most widely used "workhorse" supermagnet material, in large measure a consequence of its very high 1745:, the critical magnetic field, and the critical current density at which superconductivity is destroyed. On the other hand, there is a class of properties that are independent of the underlying material. The Meissner effect, the quantization of the 923:, the complete cancelation of the magnetic field in the interior of the superconductor during its transitions into the superconducting state. The occurrence of the Meissner effect indicates that superconductivity cannot be understood simply as the 2169: 1538: > 77 K, although this is generally used only to emphasize that liquid nitrogen coolant is sufficient. Low temperature superconductors refer to materials with a critical temperature below 30 K, and are cooled mainly by 2762:
industries. They can also be used in large wind turbines to overcome the restrictions imposed by high electrical currents, with an industrial grade 3.6 megawatt superconducting windmill generator having been tested successfully in Denmark.
5725:; Fatemi, Valla; Demir, Ahmet; Fang, Shiang; Tomarken, Spencer L.; Luo, Jason Y.; Sanchez-Yamagishi, J. D.; Watanabe, K.; Taniguchi, T. (2018-03-05). "Correlated insulator behaviour at half-filling in magic-angle graphene superlattices". 4597: 2197:, decaying exponentially to zero within the bulk of the material. The Meissner effect is a defining characteristic of superconductivity. For most superconductors, the London penetration depth is on the order of 100 nm. 2098:
is proportional to the temperature in the normal (non-superconducting) regime. At the superconducting transition, it suffers a discontinuous jump and thereafter ceases to be linear. At low temperatures, it varies instead as
4119:
Hashimoto, Takahiro; Ota, Yuichi; Tsuzuki, Akihiro; Nagashima, Tsubaki; Fukushima, Akiko; Kasahara, Shigeru; Matsuda, Yuji; Matsuura, Kohei; Mizukami, Yuta; Shibauchi, Takasada; Shin, Shik; Okazaki, Kozo (1 November 2020).
2695:
On 31 December 2023 "Global Room-Temperature Superconductivity in Graphite" was published in the journal "Advanced Quantum Technologies" claiming to demonstrate superconductivity at room temperature and ambient pressure in
2641:) at extremely high pressures (around 150 gigapascals) was first predicted and then confirmed to be a high-temperature superconductor with a transition temperature of 80 K. Additionally, in 2019 it was discovered that 1864:
moving across a heavy ionic lattice. The electrons are constantly colliding with the ions in the lattice, and during each collision some of the energy carried by the current is absorbed by the lattice and converted into
1276:. This BCS theory explained the superconducting current as a superfluid of Cooper pairs, pairs of electrons interacting through the exchange of phonons. For this work, the authors were awarded the Nobel Prize in 1972. 2541:, and spin fluctuation which has the most support in the research community. The second hypothesis proposed that electron pairing in high-temperature superconductors is mediated by short-range spin waves known as 2129:
Calculations in the 1970s suggested that it may actually be weakly first-order due to the effect of long-range fluctuations in the electromagnetic field. In the 1980s it was shown theoretically with the help of a
2284: 963:
boils at 77 K (−196 Â°C) and thus the existence of superconductivity at higher temperatures than this facilitates many experiments and applications that are less practical at lower temperatures.
2692:
by the editors because the validity of background subtraction procedures had been called into question. All nine authors maintain that the raw data strongly support the main claims of the paper.
2716: 2717: 5920:
Snider, Elliot; Dasenbrock-Gammon, Nathan; McBride, Raymond; Debessai, Mathew; Vindana, Hiranya; Vencatasamy, Kevin; Lawler, Keith V.; Salamat, Ashkan; Dias, Ranga P. (26 September 2022).
2172: 34:
A high-temperature superconductor levitating above a magnet. Persistent electric current flows on the surface of the superconductor, acting to exclude the magnetic field of the magnet (
3374:"Further experiments with liquid helium. C. On the change of electric resistance of pure metals at very low temperatures etc. IV. The resistance of pure mercury at helium temperatures" 2176: 2175: 2171: 2170: 3789:
Combescot, M.; Pogosov, W. V.; Betbeder-Matibet, O. (2013). "BCS ansatz for superconductivity in the light of the Bogoliubov approach and the Richardson–Gaudin exact wave function".
2859:
the lower weight and volume of superconducting generators could lead to savings in construction and tower costs, offsetting the higher costs for the generator and lowering the total
2177: 5563:
Drozdov, A. P.; Eremets, M. I.; Troyan, I. A.; Ksenofontov, V.; Shylin, S. I. (2015). "Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system".
616: 1761:, and thus possesses certain distinguishing properties which are largely independent of microscopic details. Off diagonal long range order is closely connected to the formation of 1358:
made the important theoretical prediction that a supercurrent can flow between two pieces of superconductor separated by a thin layer of insulator. This phenomenon, now called the
1880:
The situation is different in a superconductor. In a conventional superconductor, the electronic fluid cannot be resolved into individual electrons. Instead, it consists of bound
4299:
Superconductors come broadly in two types: conventional, in which the activity can be explained by the mainstream theory of superconductivity, and unconventional, where it can't.
2923:
Advancements in the efficiency of cooling systems and use of cheap coolants such as liquid nitrogen have also significantly decreased cooling costs needed for superconductivity.
3960: 3770: 3749: 3654: 2533:
Many other cuprate superconductors have since been discovered, and the theory of superconductivity in these materials is one of the major outstanding challenges of theoretical
1553:
group of superconductors which display behaviour and properties typical of high-temperature superconductors, yet some of the group have critical temperatures below 30 K.
2718: 589: 1351:
2014, global economic activity for which superconductivity was indispensable amounted to about five billion euros, with MRI systems accounting for about 80% of that total.
7701: 1178:{\displaystyle {\frac {\partial \mathbf {j} }{\partial t}}={\frac {ne^{2}}{m}}\mathbf {E} ,\qquad \mathbf {\nabla } \times \mathbf {j} =-{\frac {ne^{2}}{m}}\mathbf {B} .} 6091: 601: 4681:
Drozdov, A.; Eremets, M.; Troyan, I.; Ksenofontov, V. (17 August 2015). "Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system".
2817: 1996:. The value of this critical temperature varies from material to material. Conventional superconductors usually have critical temperatures ranging from around 20  1749:
or permanent currents, i.e. the state of zero resistance are the most important examples. The existence of these "universal" properties is rooted in the nature of the
2327:
penetrates the material, but there remains no resistance to the flow of electric current as long as the current is not too large. At a second critical field strength
1283:
showed that the BCS wavefunction, which had originally been derived from a variational argument, could be obtained using a canonical transformation of the electronic
2530:
helium temperatures, such as the formation of plugs of frozen air that can block cryogenic lines and cause unanticipated and potentially hazardous pressure buildup.
7021: 6567: 2841: 2709: 2174: 30: 5439:
Ren, Zhi-An; et al. (2008). "Superconductivity and phase diagram in iron-based arsenic-oxides ReFeAsO1-d (Re = rare-earth metal) without fluorine doping".
2065: 2045: 4428:
Flores-Livas, JosĂ© A.; et al. (29 April 2020). "A perspective on conventional high-temperature superconductors at high pressure: Methods and materials".
2758:. They can also be used for magnetic separation, where weakly magnetic particles are extracted from a background of less or non-magnetic particles, as in the 2372:
Conversely, a spinning superconductor generates a magnetic field, precisely aligned with the spin axis. The effect, the London moment, was put to good use in
5358:
Takahashi, Hiroki; Igawa, Kazumi; Arii, Kazunobu; Kamihara, Yoichi; et al. (2008). "Superconductivity at 43 K in an iron-based layered compound LaO
3495: 2004:, for example, has a critical temperature of 4.2 K. As of 2015, the highest critical temperature found for a conventional superconductor is 203 K for H 6754: 6691: 3940:
Berlincourt, T. G. & Hake, R. R. (1962). "Pulsed-Magnetic-Field Studies of Superconducting Transition Metal Alloys at High and Low Current Densities".
3905:
Kunzler, J. E.; Buehler, E.; Hsu, F. L. S.; Wernick, J. H. (1961). "Superconductivity in Nb3Sn at High Current Density in a Magnetic Field of 88 kgauss".
7156: 2235: 1453:, meaning it has two critical fields, between which it allows partial penetration of the magnetic field through isolated points. These points are called 852: 1873:
of the lattice ions. As a result, the energy carried by the current is constantly being dissipated. This is the phenomenon of electrical resistance and
1322:. Two superconductors with greatly different values of the critical magnetic field are combined to produce a fast, simple switch for computer elements. 621: 6411: 2552:
theory, was proposed by Gubser, Hartnoll, Herzog, and Horowitz, as a possible explanation of high-temperature superconductivity in certain materials.
1203:
physicists arrived at an understanding of "conventional" superconductivity, through a pair of remarkable and important theories: the phenomenological
1567:
Bottom: Periodic table of superconducting binary hydrides (0–300 GPa). Theoretical predictions indicated in blue and experimental results in red
631: 6326: 6227: 5305:
Dai, P.; Chakoumakos, B. C.; Sun, G. F.; Wong, K. W.; et al. (1995). "Synthesis and neutron powder diffraction study of the superconductor HgBa
3538: 2719: 1457:. Furthermore, in multicomponent superconductors it is possible to have a combination of the two behaviours. In that case the superconductor is of 3021: 2677:". These act as a single particle and can pair up across the graphene's layers, leading to the basic conditions required for superconductivity. 5977:
Kopelevich, Yakov; Torres, José; Da Silva, Robson; Oliveira, Felipe; Diamantini, Maria Cristina; Trugenberger, Carlo; Vinokur, Valerii (2024).
5494:
Li, Yinwei; Hao, Jian; Liu, Hanyu; Li, Yanling; Ma, Yanming (2014-05-07). "The metallization and superconductivity of dense hydrogen sulfide".
2173: 456: 6418: 2684:(critical temperature 288 K) made from hydrogen, carbon and sulfur under pressures of around 270 gigapascals was described in a paper in 2522:
material, which had a transition temperature of 35 K (Nobel Prize in Physics, 1987). It was soon found that replacing the lanthanum with
7676: 6551: 6532: 6499: 6480: 6461: 6442: 5183: 4923: 4369: 3253: 3226: 3192: 3133: 2661: 873: 471: 93: 6729: 3373: 1790: 7113: 6851: 2942:(1913), "for his investigations on the properties of matter at low temperatures which led, inter alia, to the production of liquid helium". 2816:. Superconducting photon detectors can be realised in a variety of device configurations. Depending on the particular mode of operation, a 1034:
discovered that superconductors expelled applied magnetic fields, a phenomenon which has come to be known as the Meissner effect. In 1935,
951:
materials have a critical temperature above 90 K (−183 Â°C). Such a high transition temperature is theoretically impossible for a
2828:. The large resistance change at the transition from the normal to the superconducting state is used to build thermometers in cryogenic 6644:
Video about Type I Superconductors: R=0/transition temperatures/ B is a state variable/ Meissner effect/ Energy gap(Giaever)/ BCS model
1010:. At the temperature of 4.2 K, he observed that the resistance abruptly disappeared. In the same experiment, he also observed the 6961: 3016: 2852: 2697: 2385: 1662: 1515: 5636: 4048: 351: 7049: 3080: 3053: 2919: 2689: 1728: 1339: 924: 83: 2506:
Until 1986, physicists had believed that BCS theory forbade superconductivity at temperatures above about 30 K. In that year,
2070:
Similarly, at a fixed temperature below the critical temperature, superconducting materials cease to superconduct when an external
5795: 1741:
Several physical properties of superconductors vary from material to material, such as the critical temperature, the value of the
1447:, above which all superconductivity is lost and below which the magnetic field is completely expelled from the superconductor; or 998:
Superconductivity was discovered on April 8, 1911, by Heike Kamerlingh Onnes, who was studying the resistance of solid mercury at
6770: 6630: 1211: 956: 2334:, superconductivity is destroyed. The mixed state is actually caused by vortices in the electronic superfluid, sometimes called 1709: 7423: 6966: 6684: 2681: 1950: 1284: 266: 1681: 1235: 1026:
Great efforts have been devoted to finding out how and why superconductivity works; the important step occurred in 1933, when
7493: 7418: 7149: 6749: 5048: 4751: 4665: 3168: 2538: 1809: 1666: 845: 611: 88: 6719: 3243: 2673:
The superconductivity effect came about as a result of electrons twisted into a vortex between the graphene layers, called "
3097: 2090:
The onset of superconductivity is accompanied by abrupt changes in various physical properties, which is the hallmark of a
1396:, this leads to a precise measurement of the Planck constant. Josephson was awarded the Nobel Prize for this work in 1973. 7605: 7433: 7090: 6942: 6886: 6861: 4915: 2860: 2810: 2589: 2511: 1561: 1485: 1424: 1303: 626: 331: 7488: 7233: 4481:
Hirsch, J. E.; Maple, M. B.; Marsiglio, F. (2015-07-15). "Superconducting materials classes: Introduction and overview".
1688: 1519:
if it reaches a superconducting state above a temperature of 30 K (−243.15 Â°C); as in the initial discovery by
1408: 1294:
Generalizations of BCS theory for conventional superconductors form the basis for the understanding of the phenomenon of
7681: 7615: 6992: 6921: 2390: 1230: 973: 491: 481: 466: 231: 98: 531: 221: 7686: 6937: 6856: 5100:
La supraconductivité non-conventionnelle du ruthénate de strontium: corrélations électroniques et couplage spin-orbite
2871: 1804: 1471: 952: 784: 659: 556: 6724: 6648: 3768:
Gor'kov, L. P. (1959). "Microscopic derivation of the Ginzburg–Landau equations in the theory of superconductivity".
1214: 1204: 451: 7696: 7661: 7044: 7039: 6677: 5079: 3710:
Reynolds, C. A.; Serin, B.; Wright, W. H. & Nesbitt, L. B. (1950). "Superconductivity of Isotopes of Mercury".
2899: 2739: 1853: 1754: 1695: 1494: 1229:-like wave equation, had great success in explaining the macroscopic properties of superconductors. In particular, 1054:
The theoretical model that was first conceived for superconductivity was completely classical: it is summarized by
284: 6744: 5902: 4094: 2217:
would observe the abrupt expulsion of the internal magnetic field, which we would not expect based on Lenz's law.
1655: 7706: 7666: 7142: 6997: 6664:
The Schrödinger Equation in a Classical Context: A Seminar on Superconductivity – The Feynman Lectures on Physics
4596:
Van Camp, Michel; de Viron, Olivier; Watlet, Arnaud; Meurers, Bruno; Francis, Olivier; Caudron, Corentin (2017).
2802: 2775: 2229: 1627:; though perhaps these examples should be included among the chemical elements, as they are composed entirely of 1612: 1550: 1249:
Also in 1950, Maxwell and Reynolds et al. found that the critical temperature of a superconductor depends on the
1043: 838: 799: 326: 316: 256: 251: 191: 4542: 2588:
In February 2008, an iron-based family of high-temperature superconductors was discovered. Hideo Hosono, of the
1848:
Superconductors are also able to maintain a current with no applied voltage whatsoever, a property exploited in
7711: 7640: 7539: 7169: 6780: 6222: 5166:
Pines, D. (2002), "The Spin Fluctuation Model for High Temperature Superconductivity: Progress and Prospects",
4813: 3542: 2534: 2194: 2084: 1200: 6831: 5978: 5200:"Toward a theory of high-temperature superconductivity in the antiferromagnetically correlated cuprate oxides" 2851:
Other early markets are arising where the relative efficiency, size and weight advantages of devices based on
1677: 978: 769: 649: 336: 7534: 7123: 6982: 6914: 6318: 4985: 2779: 2309:
superconductivity is abruptly destroyed when the strength of the applied field rises above a critical value
2115: 1458: 1226: 774: 744: 176: 166: 161: 7294: 2122:
was long a matter of debate. Experiments indicate that the transition is second-order, meaning there is no
7671: 7559: 7549: 7299: 7034: 7007: 6987: 6909: 6319:"Superconducting transmission lines – Sustainable electric energy transfer with higher public acceptance?" 4393:(7358). Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.: 37–39. 3004: 2939: 2932: 2907: 2806: 2731: 2556: 2549: 2519: 2507: 2427: 2415: 2139: 2087:
of external magnetic fields and currents. The penetration depth becomes infinite at the phase transition.
2009: 1946: 1849: 1616: 1449: 1273: 1188: 945: 941: 904: 596: 366: 141: 3843: 1592: 6904: 6223:"A review of offshore wind turbine nacelle: Technical challenges, and research and developmental trends" 6165: 4605: 4231: 2903: 2147: 1816: 1798: 1746: 1439: 1404: 1367: 1355: 1343: 694: 381: 371: 321: 311: 58: 7108: 6430: 4939:
Callaway, David J. E. (1990). "On the remarkable structure of the superconducting intermediate state".
2980:(1987), "for their important break-through in the discovery of superconductivity in ceramic materials". 1588: 1565:
Top: Periodic table of superconducting elemental solids and their experimental critical temperature (T)
1480: 1335: 4312: 7691: 7478: 7238: 7064: 6586: 6283: 6187: 6121: 6086: 6033: 5933: 5832: 5744: 5680: 5582: 5513: 5460: 5382: 5332: 5271: 5211: 5124: 4994: 4950: 4876: 4849: 4778: 4700: 4614: 4500: 4447: 4272: 4133: 4012: 3975: 3914: 3879: 3808: 3721: 3684: 3624: 3578: 3504: 3459: 3419: 3385: 3336: 3287: 3109: 2953: 2751: 2439: 1239: 912: 897: 881: 819: 719: 684: 436: 301: 201: 186: 121: 2131: 1291:
showed that the BCS theory reduced to the Ginzburg–Landau theory close to the critical temperature.
226: 7453: 7345: 7335: 7248: 7203: 6415: 4806:"Disorder Version of the Abelian Higgs Model and the Order of the Superconductive Phase Transition" 3450: 2983: 2911: 2555:
From about 1993, the highest-temperature superconductor known was a ceramic material consisting of
2483: 1985:
In superconducting materials, the characteristics of superconductivity appear when the temperature
1393: 1327: 1326:
small 0.7-tesla iron-core electromagnet with superconducting niobium wire windings. Then, in 1961,
779: 759: 754: 561: 546: 431: 401: 296: 3448:
Meissner, W. & Ochsenfeld, R. (1933). "Ein neuer Effekt bei Eintritt der SupraleitfÀhigkeit".
2181:
Meissner effect in a high-temperature superconductor (black pellet) with a NdFeB magnet (metallic)
7600: 7529: 7363: 7095: 6846: 6806: 6576: 6509: 6372: 6299: 6273: 6203: 6177: 6146: 6057: 5990: 5959: 5864: 5776: 5734: 5704: 5670: 5614: 5572: 5545: 5503: 5476: 5450: 5406: 5287: 5148: 4892: 4866: 4830: 4724: 4690: 4638: 4524: 4490: 4463: 4437: 4410: 4324: 4069: 3824: 3798: 3520: 3475: 3303: 3139: 2991: 2987: 2967: 2956:(1972), "for their jointly developed theory of superconductivity, usually called the BCS-theory". 2790: 1927: 1820: 1608: 1399:
In 2008, it was proposed that the same mechanism that produces superconductivity could produce a
654: 394: 196: 156: 5260:
Schilling, A.; et al. (1993). "Superconductivity above 130 K in the Hg–Ba–Ca–Cu–O system".
2766:
In the 1950s and 1960s, superconductors were used to build experimental digital computers using
1330:, E. Buehler, F. S. L. Hsu, and J. H. Wernick made the startling discovery that, at 4.2 kelvin, 6658: 6653: 5425: 1702: 7630: 7595: 7554: 7443: 7395: 7380: 7273: 7243: 6871: 6614: 6547: 6528: 6495: 6476: 6457: 6438: 6138: 6049: 5951: 5883: 5856: 5848: 5768: 5760: 5696: 5606: 5598: 5537: 5529: 5398: 5229: 5179: 5140: 5012: 4981:"Superconductivity at 93 K in a New Mixed-Phase Y–Ba–Cu–O Compound System at Ambient Pressure" 4941: 4919: 4857: 4850:"Vortex interactions and thermally induced crossover from type-I to type-II superconductivity" 4747: 4716: 4661: 4630: 4516: 4402: 4365: 4342: 4290: 4167: 4149: 3354: 3249: 3222: 3188: 3182: 3164: 3129: 3076: 3049: 2977: 2910:. However, superconductivity is sensitive to moving magnetic fields, so applications that use 2844:
offer high speed, low noise single-photon detection and have been employed widely in advanced
2747: 2642: 2302: 2151: 2079: 2001: 1893: 1750: 1576: 1524: 1315: 1299: 1031: 934: 929: 916: 714: 6416:
60050-815:2000, International Electrotechnical Vocabulary (IEV) – Part 815: Superconductivity
6390: 3159: 3070: 1042:
showed that the Meissner effect was a consequence of the minimization of the electromagnetic
7585: 7208: 7080: 7054: 6826: 6801: 6734: 6604: 6594: 6364: 6335: 6291: 6244: 6236: 6195: 6130: 6041: 6000: 5941: 5875: 5840: 5752: 5688: 5590: 5521: 5468: 5390: 5373: 5340: 5279: 5262: 5219: 5171: 5132: 5030: 5002: 4958: 4884: 4822: 4786: 4708: 4622: 4576: 4508: 4455: 4394: 4334: 4280: 4256: 4157: 4141: 4122:"Bose–Einstein condensation superconductivity induced by disappearance of the nematic state" 4043: 4020: 3983: 3922: 3887: 3816: 3729: 3692: 3632: 3586: 3512: 3467: 3427: 3344: 3295: 3119: 3043: 2825: 2665: 2625: 2347: 2339: 2119: 2091: 1954: 1572: 1359: 1280: 1269: 1055: 1027: 893: 889: 814: 729: 689: 679: 566: 521: 504: 421: 356: 126: 50: 7103: 6649:
Lectures on Superconductivity (series of videos, including interviews with leading experts)
5115:
Mann, Adam (July 20, 2011). "High-temperature superconductivity at 25: Still in suspense".
5098: 3493:
London, F. & London, H. (1935). "The Electromagnetic Equations of the Supraconductor".
2138:
of the superconductor play a major role, that the transition is of second order within the
1331: 7575: 7428: 7165: 6836: 6626: 6422: 4769: 4210: 4185: 4038: 4003: 3870: 3712: 3675: 3615: 3569: 3322: 2845: 2771: 2373: 2355: 2298: 2163: 1897: 1624: 1596: 1528: 1490: 1389: 1222: 1020: 987: 960: 920: 749: 674: 669: 536: 411: 376: 271: 236: 136: 35: 2323:
leads to a mixed state (also known as the vortex state) in which an increasing amount of
1527:. It may also reference materials that transition to superconductivity when cooled using 789: 6590: 6287: 6199: 6191: 6037: 5937: 5836: 5748: 5684: 5586: 5517: 5464: 5386: 5336: 5275: 5215: 5128: 4998: 4954: 4880: 4782: 4704: 4618: 4504: 4451: 4276: 4137: 4016: 3979: 3918: 3883: 3812: 3725: 3688: 3628: 3582: 3508: 3463: 3423: 3389: 3340: 3291: 3114: 2994:(2003), "for pioneering contributions to the theory of superconductors and superfluids". 2394:
Timeline of superconducting materials. Colors represent different classes of materials:
1892:. This pairing is very weak, and small thermal vibrations can fracture the bond. Due to 884:, whose resistance decreases gradually as its temperature is lowered, even down to near 7373: 7368: 7325: 7258: 7253: 6841: 6785: 6775: 6739: 6609: 6562: 4162: 4121: 3404: 2949: 2915: 2887: 2071: 2050: 2030: 1915: 1888:. This pairing is caused by an attractive force between electrons from the exchange of 1870: 1824: 1758: 1454: 1444: 1400: 1288: 1225:. This theory, which combined Landau's theory of second-order phase transitions with a 983: 908: 877: 709: 704: 526: 416: 341: 291: 241: 214: 171: 146: 116: 109: 6563:"On the electron pairing mechanism of copper-oxide high temperature superconductivity" 5922:"Retraction Note: Room-temperature superconductivity in a carbonaceous sulfur hydride" 5170:, NATO Science Series: B, vol. 371, New York: Kluwer Academic, pp. 111–142, 2107:. This exponential behavior is one of the pieces of evidence for the existence of the 1429:
There are many criteria by which superconductors are classified. The most common are:
7655: 7610: 7590: 7513: 7473: 7408: 7340: 7263: 6150: 6061: 6020: 5963: 5868: 5708: 5441: 5344: 5152: 4962: 4834: 4805: 4642: 4467: 4024: 3987: 3828: 3327: 3307: 2973: 2735: 2367: 2358:, are Type I, while almost all impure and compound superconductors are Type II. 2324: 2205: 2095: 1874: 1539: 1520: 1295: 1264:
The complete microscopic theory of superconductivity was finally proposed in 1957 by
1003: 885: 824: 809: 794: 734: 446: 361: 346: 261: 246: 151: 6376: 6303: 6264:
Linder, Jacob; Robinson, Jason W. A. (2 April 2015). "Superconducting spintronics".
5549: 5480: 4896: 4528: 4414: 3479: 3144: 1773: 7635: 7508: 7503: 7498: 7463: 7413: 7330: 6876: 6866: 6821: 6816: 6514: 6207: 5780: 5618: 5472: 5291: 4728: 2963: 2945: 2906:, enhancing spintronic devices with superconducting materials, and superconducting 2895: 2883: 2856: 2798: 2783: 2225: 2221: 2201: 1265: 1039: 1035: 804: 699: 664: 606: 541: 426: 306: 181: 6663: 6355:
Ren, Li; et al. (2009). "Technical and Economical Assessment of HTS Cables".
6134: 5410: 5056: 4459: 4070:"Newly discovered fundamental state of matter, a superinsulator, has been created" 3652:
Ginzburg, V. L. & Landau, L. D. (1950). "On the theory of superconductivity".
1938:, the fluid will not be scattered by the lattice. The Cooper pair fluid is thus a 1838: 1489:. Alternatively, a superconductor is called unconventional if the superconducting 461: 3212: 7544: 7438: 7350: 7218: 7002: 6811: 6113: 5224: 5199: 4512: 4338: 3820: 2914:(e.g. transformers) will be more difficult to develop than those that rely upon 2875: 2829: 2669: 2601: 2143: 2135: 2123: 1935: 1885: 1762: 1644: 1502: 1498: 1314:
The first practical application of superconductivity was developed in 1954 with
1007: 724: 576: 406: 68: 6340: 6240: 6045: 5946: 5921: 5879: 5007: 4980: 4888: 4285: 4260: 4001:
Josephson, B. D. (1962). "Possible new effects in superconductive tunnelling".
1302:
universality class. The extent to which such generalizations can be applied to
17: 7483: 7458: 7385: 7355: 7289: 7268: 6714: 6368: 5844: 5692: 4767:
Dolecek, R. L. (1954). "Adiabatic Magnetization of a Superconducting Sphere".
2867: 2657:) becomes a superconductor at 250 K under a pressure of 170 gigapascals. 2542: 2403: 2108: 1939: 1902: 1742: 1476: 1412: 1218: 1011: 991: 441: 6142: 6053: 5764: 5602: 5533: 4634: 4520: 4346: 4153: 3926: 3747:
Bogoliubov, N. N. (1958). "A new method in the theory of superconductivity".
3637: 3610: 3358: 3124: 2220:
The Meissner effect was given a phenomenological explanation by the brothers
6599: 6166:"Superconducting nanowire single-photon detectors: physics and applications" 6112:
Morozov, Dmitry V.; Casaburi, Alessandro; Hadfield, Robert H. (2022-03-11).
5323: 5175: 4485:. Superconducting Materials: Conventional, Unconventional and Undetermined. 4319:. Superconducting Materials: Conventional, Unconventional and Undetermined. 3891: 3591: 3564: 3218: 2959: 2837: 2515: 2471: 2455: 1620: 1347: 1261:
interaction as the microscopic mechanism responsible for superconductivity.
1243: 999: 764: 739: 551: 476: 73: 6618: 6004: 5955: 5887: 5860: 5772: 5700: 5610: 5541: 5402: 5233: 5144: 5016: 4720: 4406: 4294: 4171: 4145: 3733: 3696: 3516: 2154:. The results were strongly supported by Monte Carlo computer simulations. 1860:
In a normal conductor, an electric current may be visualized as a fluid of
1411:(BEC) in 2020 suggests that there is a "smooth transition between" BEC and 903:
The superconductivity phenomenon was discovered in 1911 by Dutch physicist
7134: 4790: 3673:
Maxwell, E. (1950). "Isotope Effect in the Superconductivity of Mercury".
2548:
In 2008, holographic superconductivity, which uses holographic duality or
2526:(i.e., making YBCO) raised the critical temperature above 90 K. 2008:
S, although high pressures of approximately 90 gigapascals were required.
1475:
if it is driven by electron–phonon interaction and explained by the usual
38:). This current effectively forms an electromagnet that repels the magnet. 7620: 7448: 7029: 5722: 4871: 4626: 4581: 4564: 2891: 2833: 2821: 2767: 2755: 2674: 2618: 1861: 1319: 1254: 516: 511: 131: 5756: 5594: 5394: 4712: 4095:"Researchers demonstrate a superconductor previously thought impossible" 1966: 7580: 7468: 7403: 7320: 7315: 6249: 4826: 4261:"Surprise graphene discovery could unlock secrets of superconductivity" 3471: 3299: 2759: 2523: 2351: 2343: 1831: 1782: 1669: in this section. Unsourced material may be challenged and removed. 1600: 1250: 948: 486: 6295: 5852: 5820: 5525: 3431: 3349: 7189: 5821:"Room-temperature superconductivity in a carbonaceous sulfur hydride" 5283: 3524: 3010: 2495: 2451: 2335: 1997: 1889: 1628: 1258: 982:
Heike Kamerlingh Onnes (right), the discoverer of superconductivity.
571: 78: 6669: 5136: 4398: 1253:
of the constituent element. This important discovery pointed to the
6581: 6278: 5995: 5739: 5675: 5577: 4695: 4495: 4442: 4329: 3868:
Yntema, G. B. (1955). "Superconducting Winding for Electromagnet".
3096:
Bardeen, John; Cooper, Leon; Schrieffer, J. R. (December 1, 1957).
2797:(superconducting quantum interference devices), the most sensitive 2592:, and colleagues found lanthanum oxygen fluorine iron arsenide (LaO 2279:{\displaystyle \nabla ^{2}\mathbf {H} =\lambda ^{-2}\mathbf {H} \,} 1910:
that must be supplied in order to excite the fluid. Therefore, if Δ
1808:
Cross section of a preformed superconductor rod from the abandoned
1061:
The two constitutive equations for a superconductor by London are:
915:, superconductivity is a phenomenon which can only be explained by 7198: 7184: 7085: 7059: 6182: 5508: 5455: 3803: 2794: 2713: 2604:
that superconducts below 26 K. Replacing the lanthanum in LaO
2389: 2185:
When a superconductor is placed in a weak external magnetic field
2167: 1965: 1845:. If the voltage is zero, this means that the resistance is zero. 1803: 1772: 1584: 1560: 1363: 977: 29: 3007: â€“ Use of cryogenic liquid hydrogen to cool an electromagnet 2204:
one would expect in a perfect electrical conductor: according to
7118: 5637:"Room-Temperature Superconductivity Achieved for the First Time" 4598:"Geophysics From Terrestrial Time-Variable Gravity Measurements" 2879: 2813: 2770:
switches. More recently, superconductors have been used to make
2467: 2013: 1866: 1778: 1604: 1580: 1366:. It is used in the most accurate available measurements of the 1016: 7138: 6673: 6490:
Matricon, Jean; Waysand, Georges; Glashausser, Charles (2003).
1549: > 4.2 K). One exception to this rule is the 7194: 5426:"Second Family of High-Temperature Superconductors Discovered" 4313:"Superconducting materials classes: Introduction and overview" 2743: 1638: 1234:
four-dimensional extension of the Ginzburg–Landau theory, the
3214:
SQUIDS, the Josephson Effects and Superconducting Electronics
6659:
DoITPoMS Teaching and Learning Package – "Superconductivity"
6643: 6018:
Nadeem, Muhammad; Fuhrer, Michael S.; Wang, Xiaolin (2023).
5168:
The Gap Symmetry and Fluctuations in High-Tc Superconductors
1837:
across the sample. The resistance of the sample is given by
880:
are expelled from the material. Unlike an ordinary metallic
4563:
Van Camp, Michel; Francis, Olivier; Lecocq, Thomas (2017).
4385:
Grant, Paul Michael (2011). "The great quantum conundrum".
3849:. Lincoln Laboratory, Massachusetts Institute of Technology 3609:
Bardeen, J.; Cooper, L. N. & Schrieffer, J. R. (1957).
3563:
Bardeen, J.; Cooper, L. N. & Schrieffer, J. R. (1957).
3274:
Bednorz, J. G. & MĂŒller, K. A. (1986). "Possible high T
2200:
The Meissner effect is sometimes confused with the kind of
4746:. Mineola, New York: Dover Publications, Inc. p. 16. 3604: 3602: 5053:
Superconducting Rock Magnetometer Cryogenic System Manual
4660:. Mineola, New York: Dover Publications, Inc. p. 8. 4311:
Hirsch, J. E.; Maple, M. B.; Marsiglio, F. (2015-07-15).
2660:
In 2018, a research team from the Department of Physics,
1279:
The BCS theory was set on a firmer footing in 1958, when
2855:
outweigh the additional costs involved. For example, in
1781:. Both the massive and slim cables are rated for 12,500 6631:"High-Temperature Superconductivity Understood at Last" 5979:"Global Room-Temperature Superconductivity in Graphite" 4918:. Vol. 8. Oxford, England: Butterworth-Heinemann. 2866:
Promising future applications include high-performance
2301:, predicts that the magnetic field in a superconductor 5198:
Monthoux, P.; Balatsky, A. V. & Pines, D. (1991).
2809:. Series of Josephson devices are used to realize the 892:
below which the resistance drops abruptly to zero. An
6473:
The Physics of Organic Superconductors and Conductors
3844:"The Cryotron – A Superconductive Computer Component" 3443: 3441: 2238: 2053: 2033: 1407:. The first development and study of superconducting 1069: 5903:"Finally, the First Room-Temperature Superconductor" 3013: â€“ Class of two-dimensional inorganic compounds 2728:
semiconducting-superconducting hybrid technologies.
2150:
regime, and that the two regions are separated by a
27:
Electrical conductivity with exactly zero resistance
7568: 7522: 7394: 7308: 7282: 7226: 7177: 7073: 7020: 6975: 6951: 6930: 6894: 6885: 6794: 6763: 6707: 3157:Reprinted in NikolaÄ­ Nikolaevich Bogoliubov (1963) 2700:with dense arrays of nearly parallel line defects. 1019:was found to superconduct at 7 K, and in 1941 6019: 3187:(4th ed.). Infobase Publishing. p. 238. 2278: 2059: 2039: 1942:, meaning it can flow without energy dissipation. 1819:of a sample of some material is to place it in an 1362:, is exploited by superconducting devices such as 1177: 6561:O'Mahony, Shane M.; University of Oxford (2022). 6092:Institute of Electrical and Electronics Engineers 5796:"A New Twist Reveals Superconductivity's Secrets" 4483:Physica C: Superconductivity and Its Applications 4317:Physica C: Superconductivity and Its Applications 3771:Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki 3750:Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki 3655:Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki 2621:leads to superconductors that work at 55 K. 2557:mercury, barium, calcium, copper and oxygen (HgBa 2305:from whatever value it possesses at the surface. 5080:"type II Superconductors and the Vortex Lattice" 4362:Introduction to Unconventional Superconductivity 2842:Superconducting nanowire single-photon detectors 2537:. There are currently two main hypotheses – the 1981:, green) at the superconducting phase transition 6568:Proceedings of the National Academy of Sciences 5248:Holographic Duality in Condensed Matter Physics 2710:Technological applications of superconductivity 1906:, meaning there is a minimum amount of energy Δ 900:can persist indefinitely with no power source. 6510:"Physicist Discovers Exotic Superconductivity" 6357:IEEE Transactions on Applied Superconductivity 1403:state in some materials, with almost infinite 1207:(1950) and the microscopic BCS theory (1957). 7150: 6685: 6492:The Cold Wars: A History of Superconductivity 5246:Jan Zaanen, Yan Liu, Ya Sun K.Schalm (2015). 4910:Landau, Lev D.; Lifschitz, Evgeny M. (1984). 3403:vanDelft, Dirk; Kes, Peter (September 2010). 3278:superconductivity in the Ba−La−Cu−O system". 846: 8: 3961:"Emergence of Nb-Ti as Supermagnet Material" 3496:Proceedings of the Royal Society of London A 3048:. Cambridge University Press. pp. 1–2. 2836:. The same effect is used in ultrasensitive 2012:can have much higher critical temperatures: 868:is a set of physical properties observed in 6087:"Dudley Buck's Forgotten Cryotron Computer" 5819:Snider, Eliot; et al. (Oct 14, 2020). 4565:"Recording Belgium's Gravitational History" 4232:"Type-1.5 superconductor shows its stripes" 3072:Superconductivity: Physics and Applications 2820:Josephson junction can be used as a photon 2723:Video of superconducting levitation of YBCO 2510:and MĂŒller discovered superconductivity in 1753:of the superconductor and the emergence of 7157: 7143: 7135: 6891: 6692: 6678: 6670: 6475:. Vol. 110 (1st ed.). Springer. 6452:Larkin, Anatoly; Varlamov, Andrei (2005). 4364:. Amsterdam: CRC Press. pp. vii, 20. 3321:van Delft, Dirk; Kes, Peter (2010-09-01). 2232:in a superconductor is minimized provided 1810:Texas Superconducting Super Collider (SSC) 853: 839: 57: 41: 7702:Science and technology in the Netherlands 6608: 6598: 6580: 6454:Theory of Fluctuations in Superconductors 6339: 6277: 6248: 6181: 5994: 5945: 5738: 5674: 5576: 5507: 5454: 5223: 5049:"Section 4.1 'Air plug in the fill line'" 5006: 4870: 4694: 4580: 4494: 4441: 4328: 4284: 4161: 3942:Bulletin of the American Physical Society 3802: 3636: 3590: 3565:"Microscopic Theory of Superconductivity" 3348: 3269: 3267: 3265: 3143: 3123: 3113: 3069:Fossheim, Kristian; Sudboe, Asle (2005). 2275: 2270: 2261: 2249: 2243: 2237: 2052: 2032: 1945:In the class of superconductors known as 1729:Learn how and when to remove this message 1513:A superconductor is generally considered 1167: 1155: 1145: 1134: 1126: 1117: 1105: 1095: 1076: 1070: 1068: 1002:temperatures using the recently produced 6327:Renewable and Sustainable Energy Reviews 6228:Renewable and Sustainable Energy Reviews 5250:. Cambridge University Press, Cambridge. 5078:Abrikosov, Alexei A. (8 December 2003). 4360:Mineev, V.P.; Samokhin, K (1999-09-21). 3206: 3204: 2935:for superconductivity related subjects: 1989:is lowered below a critical temperature 1571:Superconductor material classes include 1023:was found to superconduct at 16 K. 888:, a superconductor has a characteristic 6542:Tipler, Paul; Llewellyn, Ralph (2002). 3184:The Facts on File Dictionary of Physics 3160:The Theory of Superconductivity, Vol. 4 3034: 3022:Superconducting magnetic energy storage 2918:. Compared to traditional power lines, 2818:superconductor–insulator–superconductor 1900:of this Cooper pair fluid possesses an 1869:, which is essentially the vibrational 602:Electromagnetism and special relativity 49: 3378:Proceedings of the Section of Sciences 2228:, who showed that the electromagnetic 1493:transforms according to a non-trivial 6170:Superconductor Science and Technology 5630: 5628: 4974: 4972: 3541:. The Open University. Archived from 2840:made from superconducting materials. 2754:and plasma confining magnets in some 2666:superconductivity in bilayer graphene 2662:Massachusetts Institute of Technology 2297:This equation, which is known as the 2074:is applied which is greater than the 955:, leading the materials to be termed 940:In 1986, it was discovered that some 622:Maxwell equations in curved spacetime 7: 5037:. Goddard Space Flight Center, NASA. 4848:Hove, J.; Mo, S.; Sudbo, A. (2002). 3405:"The Discovery of Superconductivity" 3323:"The discovery of superconductivity" 2890:(e.g. for vehicle propulsion, as in 2750:, the beam-steering magnets used in 1797:superconductor-based cables for the 1777:Electric cables for accelerators at 1667:adding citations to reliable sources 1217:of superconductivity was devised by 1046:carried by superconducting current. 5901:Chang, Kenneth (October 14, 2020). 4912:Electrodynamics of Continuous Media 4543:"Classification of Superconductors" 2688:. However, in 2022 the article was 1815:The simplest method to measure the 6114:"Superconducting photon detectors" 6021:"The superconducting diode effect" 3075:. John Wiley and Sons. p. 7. 3017:Potential applications of graphene 2920:superconducting transmission lines 2853:high-temperature superconductivity 2789:Superconductors are used to build 2698:Highly oriented pyrolytic graphite 2386:High-temperature superconductivity 2380:High-temperature superconductivity 2338:because the flux carried by these 2240: 1127: 1083: 1073: 25: 6525:Introduction to Superconductivity 6437:. Vol. 1. World Scientific. 5635:Wood, Charlie (14 October 2020). 4744:Introduction to Superconductivity 4658:Introduction to Superconductivity 4051:from the original on Mar 25, 2021 4039:"The Nobel Prize in Physics 1973" 2931:As of 2022, there have been five 2793:which are the building blocks of 2442:-based (purple inverted triangle) 2294:is the London penetration depth. 2142:regime and of first order (i.e., 1615:(like fluorine-doped LaOFeAs) or 1340:Westinghouse Electric Corporation 7217: 6435:Gauge Fields in Condensed Matter 5055:. 2G Enterprises. Archived from 3372:Kamerlingh Onnes, Heike (1911). 3024: â€“ Energy storage technique 2271: 2250: 1951:high-temperature superconductors 1643: 1187:The first equation follows from 1168: 1135: 1118: 1077: 959:. The cheaply available coolant 957:high-temperature superconductors 6654:YouTube Video Levitating magnet 6546:(4th ed.). W. H. Freeman. 6164:Natarajan, C. M. (April 2012). 5794:Wood, Charlie (16 March 2021). 5496:The Journal of Chemical Physics 5031:"Introduction to Liquid Helium" 4979:Wu, M. K.; et al. (1987). 3248:. CRC Press. pp. 102–103. 2682:room-temperature superconductor 1654:needs additional citations for 1191:for superconducting electrons. 1125: 6085:Brock, David C. (2014-03-19). 2734:are some of the most powerful 2539:resonating-valence-bond theory 2094:. For example, the electronic 1850:superconducting electromagnets 1338:supermagnet wire commenced at 1304:unconventional superconductors 1199:During the 1950s, theoretical 1: 7606:Macroscopic quantum phenomena 6527:(2nd ed.). Dover Books. 6391:"All Nobel Prizes in Physics" 6200:10.1088/0953-2048/25/6/063001 6135:10.1080/00107514.2022.2043596 5983:Advanced Quantum Technologies 5097:Gingras, Olivier (Sep 2021). 4916:Course of Theoretical Physics 4460:10.1016/j.physrep.2020.02.003 3611:"Theory of Superconductivity" 3098:"Theory of Superconductivity" 2861:levelized cost of electricity 2590:Tokyo Institute of Technology 2512:lanthanum barium copper oxide 2067:wave) remains controversial. 2000:to less than 1 K. Solid 1843:R = V / I 1769:Zero electrical DC resistance 1755:off-diagonal long range order 1425:Superconductor classification 1298:, because they fall into the 1195:Conventional theories (1950s) 1056:London constitutive equations 1050:London constitutive equations 919:. It is characterized by the 627:Relativistic electromagnetism 7677:Unsolved problems in physics 7616:Order and disorder (physics) 6494:. Rutgers University Press. 6431:"Superflow and Vortex Lines" 6317:Thomas; et al. (2016). 5345:10.1016/0921-4534(94)02461-8 4963:10.1016/0550-3213(90)90672-Z 4218:Technical University of Graz 4025:10.1016/0031-9163(62)91369-0 3988:10.1016/0011-2275(87)90057-9 3791:Physica C: Superconductivity 2884:compact fusion power devices 2498:-based (pink six-point star) 1433:Response to a magnetic field 974:History of superconductivity 6456:. Oxford University Press. 6221:Islam; et al. (2014). 6210:– via IOP Publishing. 5225:10.1103/PhysRevLett.67.3448 5035:Cryogenics and Fluid Branch 4513:10.1016/j.physc.2015.03.002 4339:10.1016/j.physc.2015.03.002 3959:Berlincourt, T. G. (1987). 3821:10.1016/j.physc.2012.10.011 2900:magnetic levitation devices 2872:electric power transmission 1970:Behavior of heat capacity ( 953:conventional superconductor 7728: 7022:Technological applications 6341:10.1016/j.rser.2015.10.041 6241:10.1016/j.rser.2014.01.085 6046:10.1038/s42254-023-00632-w 5947:10.1038/s41586-022-05294-9 5880:10.1038/s41586-022-05294-9 5473:10.1209/0295-5075/83/17002 5424:Cho, Adrian (2014-10-30). 5008:10.1103/PhysRevLett.58.908 4889:10.1103/PhysRevB.66.064524 4286:10.1038/d41586-018-02773-w 4186:"Superconductivity | CERN" 3042:Combescot, Roland (2022). 2803:scanning SQUID microscopes 2801:known. SQUIDs are used in 2707: 2383: 2365: 2290:is the magnetic field and 2161: 1830:and measure the resulting 1495:irreducible representation 1443:, meaning it has a single 1422: 971: 352:LiĂ©nard–Wiechert potential 7215: 6764:Characteristic parameters 6523:Tinkham, Michael (2004). 6369:10.1109/TASC.2009.2019058 5845:10.1038/s41586-020-2801-z 5693:10.1038/s41586-019-1201-8 4742:Tinkham, Michael (1996). 4656:Tinkham, Michael (1996). 3245:Quantum Physics of Matter 2776:rapid single flux quantum 1977:, blue) and resistivity ( 1918:of the lattice, given by 1757:. Superconductivity is a 1613:superconducting pnictides 617:Mathematical descriptions 327:Electromagnetic radiation 317:Electromagnetic induction 257:Magnetic vector potential 252:Magnetic scalar potential 7641:Thermo-dielectric effect 7540:Enthalpy of vaporization 7234:Bose–Einstein condensate 6781:London penetration depth 6429:Kleinert, Hagen (1989). 5428:. ScienceNOW Daily News. 4814:Lettere al Nuovo Cimento 3927:10.1103/PhysRevLett.6.89 3638:10.1103/PhysRev.108.1175 3211:Gallop, John C. (1990). 3125:10.1103/physrev.108.1175 2780:RF and microwave filters 2738:known. They are used in 2535:condensed matter physics 2350:superconductors, except 2195:London penetration depth 2085:London penetration depth 1437:A superconductor can be 1413:Bardeen-Cooper-Shrieffer 1409:Bose–Einstein condensate 1394:quantum Hall resistivity 1306:is still controversial. 7535:Enthalpy of sublimation 7074:List of superconductors 6952:By critical temperature 6600:10.1073/pnas.2207449119 5204:Physical Review Letters 5176:10.1007/0-306-47081-0_7 4986:Physical Review Letters 3907:Physical Review Letters 3892:10.1103/PhysRev.98.1144 3592:10.1103/PhysRev.106.162 3181:Daintith, John (2009). 2933:Nobel Prizes in Physics 2732:Superconducting magnets 2118:of the superconducting 2076:critical magnetic field 2010:Cuprate superconductors 1947:type II superconductors 1852:such as those found in 1617:organic superconductors 1509:By critical temperature 167:Electrostatic induction 162:Electrostatic discharge 7550:Latent internal energy 7300:Color-glass condensate 6397:. Nobel Media AB 2014. 6026:Nature Reviews Physics 6005:10.1002/qute.202300230 4146:10.1126/sciadv.abb9052 3734:10.1103/PhysRev.78.487 3697:10.1103/PhysRev.78.477 3539:"The London equations" 3517:10.1098/rspa.1935.0048 3242:Durrant, Alan (2000). 3005:Hydrogen cryomagnetics 2940:Heike Kamerlingh Onnes 2908:magnetic refrigeration 2904:fault current limiters 2807:magnetoencephalography 2724: 2550:AdS/CFT correspondence 2503: 2474:-based (orange square) 2280: 2182: 2078:. This is because the 2061: 2041: 1982: 1949:, including all known 1884:of electrons known as 1812: 1801: 1568: 1479:or its extension, the 1465:By theory of operation 1236:Coleman-Weinberg model 1215:Ginzburg–Landau theory 1205:Ginzburg–Landau theory 1179: 995: 905:Heike Kamerlingh Onnes 597:Electromagnetic tensor 39: 7360:Magnetically ordered 6720:Bean's critical state 6471:Lebed, A. G. (2008). 5874:(Retracted, see 5321:by Tl substitution". 4804:Kleinert, H. (1982). 4791:10.1103/PhysRev.96.25 4606:Reviews of Geophysics 4209:Orthacker, Angelina. 2880:power storage devices 2752:particle accelerators 2722: 2393: 2281: 2180: 2132:disorder field theory 2062: 2042: 1969: 1817:electrical resistance 1807: 1776: 1635:Elementary properties 1564: 1405:electrical resistance 1368:magnetic flux quantum 1344:Wah Chang Corporation 1180: 981: 913:atomic spectral lines 874:electrical resistance 590:Covariant formulation 382:Synchrotron radiation 322:Electromagnetic pulse 312:Electromagnetic field 33: 7239:Fermionic condensate 6895:By magnetic response 6122:Contemporary Physics 4627:10.1002/2017rg000566 4582:10.1029/2017eo089743 3545:on December 23, 2012 2954:J. Robert Schrieffer 2440:Buckminsterfullerene 2303:decays exponentially 2236: 2051: 2031: 1663:improve this article 1469:A superconductor is 1318:'s invention of the 1240:quantum field theory 1067: 930:perfect conductivity 898:superconducting wire 890:critical temperature 632:Stress–energy tensor 557:Reluctance (complex) 302:Displacement current 7682:Magnetic levitation 7454:Chemical ionization 7346:Programmable matter 7336:Quantum spin liquid 7204:Supercritical fluid 6847:persistent currents 6832:Little–Parks effect 6591:2022PNAS..11907449O 6575:(37): e2207449119. 6288:2015NatPh..11..307L 6192:2012SuScT..25f3001N 6038:2023NatRP...5..558N 5938:2022Natur.610..804S 5837:2020Natur.586..373S 5757:10.1038/nature26154 5749:2018Natur.556...80C 5685:2019Natur.569..528D 5595:10.1038/nature14964 5587:2015Natur.525...73D 5518:2014JChPh.140q4712L 5465:2008EL.....8317002R 5395:10.1038/nature06972 5387:2008Natur.453..376T 5337:1995PhyC..243..201D 5276:1993Natur.363...56S 5216:1991PhRvL..67.3448M 5129:2011Natur.475..280M 4999:1987PhRvL..58..908W 4955:1990NuPhB.344..627C 4881:2002PhRvB..66f4524H 4783:1954PhRv...96...25D 4713:10.1038/nature14964 4705:2015Natur.525...73D 4619:2017RvGeo..55..938V 4613:(4): 2017RG000566. 4505:2015PhyC..514....1H 4452:2020PhR...856....1F 4277:2018Natur.555..151G 4211:"Superconductivity" 4138:2020SciA....6.9052H 4017:1962PhL.....1..251J 3980:1987Cryo...27..283B 3919:1961PhRvL...6...89K 3884:1955PhRv...98.1144. 3813:2013PhyC..485...47C 3726:1950PhRv...78..487R 3689:1950PhRv...78..477M 3629:1957PhRv..108.1175B 3583:1957PhRv..106..162B 3509:1935RSPSA.149...71L 3464:1933NW.....21..787M 3451:Naturwissenschaften 3424:2010PhT....63i..38V 3390:1910KNAB...13.1274K 3341:2010PhT....63i..38V 3292:1986ZPhyB..64..189B 3115:1957PhRv..108.1175B 2984:Alexei A. Abrikosov 2912:alternating current 2791:Josephson junctions 2670:twisted at an angle 2484:Strontium ruthenate 2416:Heavy fermion-based 2406:(dark green circle) 2103:for some constant, 1914:is larger than the 1789:regular cables for 1759:thermodynamic phase 1743:superconducting gap 1678:"Superconductivity" 1531:– that is, at only 1483:. Otherwise, it is 1392:. Coupled with the 1189:Newton's second law 547:Magnetomotive force 432:Electromotive force 402:Alternating current 337:Jefimenko equations 297:Cyclotron radiation 7687:Physical phenomena 7601:Leidenfrost effect 7530:Enthalpy of fusion 7295:Quark–gluon plasma 6807:Andreev reflection 6802:Abrikosov vortices 6421:2020-03-07 at the 5907:The New York Times 4827:10.1007/BF02754760 3472:10.1007/BF01504252 3300:10.1007/BF01303701 3221:. pp. 1, 20. 2992:Anthony J. Leggett 2988:Vitaly L. Ginzburg 2968:Brian D. Josephson 2748:mass spectrometers 2725: 2624:In 2014 and 2015, 2504: 2418:(light green star) 2276: 2183: 2057: 2037: 1983: 1928:Boltzmann constant 1821:electrical circuit 1813: 1802: 1609:magnesium diboride 1569: 1238:, is important in 1175: 996: 994:stand to his left. 896:through a loop of 872:: materials where 395:Electrical network 232:Gauss magnetic law 197:Static electricity 157:Electric potential 40: 7697:Phase transitions 7662:Superconductivity 7649: 7648: 7631:Superheated vapor 7626:Superconductivity 7596:Equation of state 7444:Flash evaporation 7396:Phase transitions 7381:String-net liquid 7274:Photonic molecule 7244:Degenerate matter 7132: 7131: 7050:quantum computing 7016: 7015: 6872:superdiamagnetism 6701:Superconductivity 6553:978-0-7167-4345-3 6534:978-0-486-43503-9 6518:. 17 August 2006. 6501:978-0-8135-3295-0 6482:978-3-540-76667-4 6463:978-0-19-852815-9 6444:978-9971-5-0210-2 6296:10.1038/nphys3242 5831:(7829): 373–377. 5669:(7757): 528–531. 5526:10.1063/1.4874158 5381:(7193): 376–378. 5210:(24): 3448–3451. 5185:978-0-306-45934-4 4942:Nuclear Physics B 4925:978-0-7506-2634-7 4858:Physical Review B 4371:978-90-5699-209-5 4271:(7695): 151–152. 4257:Gibney, Elizabeth 3432:10.1063/1.3490499 3350:10.1063/1.3490499 3255:978-0-7503-0721-5 3228:978-0-7503-0051-3 3194:978-1-4381-0949-7 3135:978-0-677-00080-0 3045:Superconductivity 2830:micro-calorimeter 2720: 2643:lanthanum hydride 2178: 2152:tricritical point 2080:Gibbs free energy 2060:{\displaystyle d} 2040:{\displaystyle s} 1962:Phase transition 1955:magnetic vortices 1894:quantum mechanics 1823:in series with a 1739: 1738: 1731: 1713: 1593:germanium–niobium 1573:chemical elements 1481:Eliashberg theory 1316:Dudley Allen Buck 1300:lambda transition 1165: 1115: 1090: 935:classical physics 917:quantum mechanics 866:Superconductivity 863: 862: 562:Reluctance (real) 532:Gyrator–capacitor 477:Resonant cavities 367:Maxwell equations 16:(Redirected from 7719: 7707:Dutch inventions 7667:Phases of matter 7586:Compressed fluid 7221: 7166:States of matter 7159: 7152: 7145: 7136: 7081:bilayer graphene 7055:Rutherford cable 6967:room temperature 6962:high temperature 6892: 6852:proximity effect 6827:Josephson effect 6771:coherence length 6694: 6687: 6680: 6671: 6622: 6612: 6602: 6584: 6557: 6538: 6519: 6505: 6486: 6467: 6448: 6399: 6398: 6387: 6381: 6380: 6363:(3): 1774–1777. 6352: 6346: 6345: 6343: 6323: 6314: 6308: 6307: 6281: 6261: 6255: 6254: 6252: 6218: 6212: 6211: 6185: 6161: 6155: 6154: 6118: 6109: 6103: 6102: 6100: 6099: 6082: 6076: 6072: 6066: 6065: 6023: 6015: 6009: 6008: 5998: 5974: 5968: 5967: 5949: 5917: 5911: 5910: 5898: 5892: 5891: 5872: 5816: 5810: 5809: 5807: 5806: 5791: 5785: 5784: 5742: 5719: 5713: 5712: 5678: 5657: 5651: 5650: 5648: 5647: 5632: 5623: 5622: 5580: 5560: 5554: 5553: 5511: 5491: 5485: 5484: 5458: 5436: 5430: 5429: 5421: 5415: 5414: 5355: 5349: 5348: 5331:(3–4): 201–206. 5302: 5296: 5295: 5284:10.1038/363056a0 5257: 5251: 5244: 5238: 5237: 5227: 5195: 5189: 5188: 5163: 5157: 5156: 5112: 5106: 5104: 5094: 5088: 5087: 5075: 5069: 5068: 5066: 5064: 5045: 5039: 5038: 5027: 5021: 5020: 5010: 4976: 4967: 4966: 4936: 4930: 4929: 4907: 4901: 4900: 4874: 4872:cond-mat/0202215 4854: 4845: 4839: 4838: 4810: 4801: 4795: 4794: 4764: 4758: 4757: 4739: 4733: 4732: 4698: 4678: 4672: 4671: 4653: 4647: 4646: 4602: 4593: 4587: 4586: 4584: 4560: 4554: 4553: 4547: 4539: 4533: 4532: 4498: 4478: 4472: 4471: 4445: 4425: 4419: 4418: 4382: 4376: 4375: 4357: 4351: 4350: 4332: 4308: 4302: 4301: 4288: 4259:(5 March 2018). 4253: 4247: 4246: 4244: 4243: 4228: 4222: 4221: 4215: 4206: 4200: 4199: 4197: 4196: 4182: 4176: 4175: 4165: 4132:(45): eabb9052. 4126:Science Advances 4116: 4110: 4109: 4107: 4105: 4091: 4085: 4084: 4082: 4081: 4066: 4060: 4059: 4057: 4056: 4035: 4029: 4028: 3998: 3992: 3991: 3965: 3956: 3950: 3949: 3937: 3931: 3930: 3902: 3896: 3895: 3865: 3859: 3858: 3856: 3854: 3848: 3842:Buck, Dudley A. 3839: 3833: 3832: 3806: 3786: 3780: 3779: 3765: 3759: 3758: 3744: 3738: 3737: 3707: 3701: 3700: 3670: 3664: 3663: 3649: 3643: 3642: 3640: 3623:(5): 1175–1205. 3606: 3597: 3596: 3594: 3560: 3554: 3553: 3551: 3550: 3535: 3529: 3528: 3490: 3484: 3483: 3445: 3436: 3435: 3409: 3400: 3394: 3393: 3369: 3363: 3362: 3352: 3318: 3312: 3311: 3271: 3260: 3259: 3239: 3233: 3232: 3208: 3199: 3198: 3178: 3172: 3156: 3154: 3152: 3147: 3127: 3117: 3093: 3087: 3086: 3066: 3060: 3059: 3039: 2772:digital circuits 2721: 2656: 2655: 2654: 2640: 2638: 2637: 2626:hydrogen sulfide 2584: 2583:= 133–138 K 2493: 2481: 2465: 2449: 2437: 2425: 2413: 2401: 2356:carbon nanotubes 2285: 2283: 2282: 2277: 2274: 2269: 2268: 2253: 2248: 2247: 2179: 2120:phase transition 2092:phase transition 2066: 2064: 2063: 2058: 2046: 2044: 2043: 2038: 1734: 1727: 1723: 1720: 1714: 1712: 1671: 1647: 1639: 1625:carbon nanotubes 1589:niobium–titanium 1516:high-temperature 1360:Josephson effect 1336:niobium–titanium 1281:N. N. Bogolyubov 1212:phenomenological 1201:condensed matter 1184: 1182: 1181: 1176: 1171: 1166: 1161: 1160: 1159: 1146: 1138: 1130: 1121: 1116: 1111: 1110: 1109: 1096: 1091: 1089: 1081: 1080: 1071: 894:electric current 855: 848: 841: 522:Electric machine 505:Magnetic circuit 467:Parallel circuit 457:Network analysis 422:Electric current 357:London equations 202:Triboelectricity 192:Potential energy 61: 51:Electromagnetism 42: 21: 7727: 7726: 7722: 7721: 7720: 7718: 7717: 7716: 7712:1911 in science 7652: 7651: 7650: 7645: 7576:Baryonic matter 7564: 7518: 7489:Saturated fluid 7429:Crystallization 7390: 7364:Antiferromagnet 7304: 7278: 7222: 7213: 7173: 7163: 7133: 7128: 7099: 7069: 7012: 6971: 6958:low temperature 6947: 6926: 6881: 6837:Meissner effect 6790: 6786:Silsbee current 6759: 6725:Ginzburg–Landau 6703: 6698: 6640: 6627:Quanta Magazine 6560: 6554: 6541: 6535: 6522: 6508: 6502: 6489: 6483: 6470: 6464: 6451: 6445: 6428: 6423:Wayback Machine 6408: 6406:Further reading 6403: 6402: 6389: 6388: 6384: 6354: 6353: 6349: 6321: 6316: 6315: 6311: 6263: 6262: 6258: 6220: 6219: 6215: 6163: 6162: 6158: 6116: 6111: 6110: 6106: 6097: 6095: 6084: 6083: 6079: 6073: 6069: 6032:(10): 558–577. 6017: 6016: 6012: 5976: 5975: 5971: 5919: 5918: 5914: 5900: 5899: 5895: 5873: 5818: 5817: 5813: 5804: 5802: 5800:Quanta Magazine 5793: 5792: 5788: 5733:(7699): 80–84. 5721: 5720: 5716: 5659: 5658: 5654: 5645: 5643: 5641:Quanta Magazine 5634: 5633: 5626: 5562: 5561: 5557: 5493: 5492: 5488: 5438: 5437: 5433: 5423: 5422: 5418: 5370: 5364: 5357: 5356: 5352: 5320: 5316: 5312: 5308: 5304: 5303: 5299: 5270:(6424): 56–58. 5259: 5258: 5254: 5245: 5241: 5197: 5196: 5192: 5186: 5165: 5164: 5160: 5137:10.1038/475280a 5123:(7356): 280–2. 5114: 5113: 5109: 5096: 5095: 5091: 5077: 5076: 5072: 5062: 5060: 5047: 5046: 5042: 5029: 5028: 5024: 4978: 4977: 4970: 4938: 4937: 4933: 4926: 4909: 4908: 4904: 4852: 4847: 4846: 4842: 4821:(13): 405–412. 4808: 4803: 4802: 4798: 4770:Physical Review 4766: 4765: 4761: 4754: 4741: 4740: 4736: 4680: 4679: 4675: 4668: 4655: 4654: 4650: 4600: 4595: 4594: 4590: 4562: 4561: 4557: 4545: 4541: 4540: 4536: 4480: 4479: 4475: 4430:Physics Reports 4427: 4426: 4422: 4399:10.1038/476037a 4384: 4383: 4379: 4372: 4359: 4358: 4354: 4310: 4309: 4305: 4255: 4254: 4250: 4241: 4239: 4230: 4229: 4225: 4213: 4208: 4207: 4203: 4194: 4192: 4184: 4183: 4179: 4118: 4117: 4113: 4103: 4101: 4093: 4092: 4088: 4079: 4077: 4076:. April 9, 2008 4068: 4067: 4063: 4054: 4052: 4037: 4036: 4032: 4004:Physics Letters 4000: 3999: 3995: 3963: 3958: 3957: 3953: 3939: 3938: 3934: 3904: 3903: 3899: 3871:Physical Review 3867: 3866: 3862: 3852: 3850: 3846: 3841: 3840: 3836: 3788: 3787: 3783: 3767: 3766: 3762: 3746: 3745: 3741: 3713:Physical Review 3709: 3708: 3704: 3676:Physical Review 3672: 3671: 3667: 3651: 3650: 3646: 3616:Physical Review 3608: 3607: 3600: 3570:Physical Review 3562: 3561: 3557: 3548: 3546: 3537: 3536: 3532: 3492: 3491: 3487: 3458:(44): 787–788. 3447: 3446: 3439: 3407: 3402: 3401: 3397: 3371: 3370: 3366: 3320: 3319: 3315: 3277: 3273: 3272: 3263: 3256: 3241: 3240: 3236: 3229: 3210: 3209: 3202: 3195: 3180: 3179: 3175: 3150: 3148: 3136: 3102:Physical Review 3095: 3094: 3090: 3083: 3068: 3067: 3063: 3056: 3041: 3040: 3036: 3031: 3001: 2929: 2888:electric motors 2846:photon-counting 2786:base stations. 2778:technology and 2714: 2712: 2706: 2668:with one layer 2653: 2650: 2649: 2648: 2646: 2636: 2633: 2632: 2631: 2629: 2616: 2610: 2599: 2595: 2582: 2576: 2572: 2568: 2564: 2560: 2518:-based cuprate 2502: 2499: 2491: 2487: 2486:(grey pentagon) 2479: 2475: 2463: 2459: 2447: 2443: 2435: 2431: 2423: 2419: 2411: 2407: 2399: 2388: 2382: 2374:Gravity Probe B 2370: 2364: 2333: 2322: 2315: 2299:London equation 2257: 2239: 2234: 2233: 2168: 2166: 2164:Meissner effect 2160: 2158:Meissner effect 2134:, in which the 2049: 2048: 2029: 2028: 2025: 2021: 2017: 2007: 1995: 1976: 1964: 1898:energy spectrum 1771: 1751:broken symmetry 1735: 1724: 1718: 1715: 1672: 1670: 1660: 1648: 1637: 1597:niobium nitride 1566: 1559: 1548: 1537: 1529:liquid nitrogen 1511: 1505:of the system. 1491:order parameter 1467: 1435: 1427: 1421: 1390:Planck constant 1375: 1312: 1310:Further history 1197: 1151: 1147: 1101: 1097: 1082: 1072: 1065: 1064: 1052: 1021:niobium nitride 988:Hendrik Lorentz 976: 970: 961:liquid nitrogen 921:Meissner effect 878:magnetic fields 870:superconductors 859: 830: 829: 645: 637: 636: 592: 582: 581: 537:Induction motor 507: 497: 496: 412:Current density 397: 387: 386: 377:Poynting vector 287: 285:Electrodynamics 277: 276: 272:Right-hand rule 237:Magnetic dipole 227:Biot–Savart law 217: 207: 206: 142:Electric dipole 137:Electric charge 112: 36:Meissner effect 28: 23: 22: 18:Superconduction 15: 12: 11: 5: 7725: 7723: 7715: 7714: 7709: 7704: 7699: 7694: 7689: 7684: 7679: 7674: 7669: 7664: 7654: 7653: 7647: 7646: 7644: 7643: 7638: 7633: 7628: 7623: 7618: 7613: 7608: 7603: 7598: 7593: 7588: 7583: 7578: 7572: 7570: 7566: 7565: 7563: 7562: 7557: 7555:Trouton's rule 7552: 7547: 7542: 7537: 7532: 7526: 7524: 7520: 7519: 7517: 7516: 7511: 7506: 7501: 7496: 7491: 7486: 7481: 7476: 7471: 7466: 7461: 7456: 7451: 7446: 7441: 7436: 7431: 7426: 7424:Critical point 7421: 7416: 7411: 7406: 7400: 7398: 7392: 7391: 7389: 7388: 7383: 7378: 7377: 7376: 7371: 7366: 7358: 7353: 7348: 7343: 7338: 7333: 7328: 7326:Liquid crystal 7323: 7318: 7312: 7310: 7306: 7305: 7303: 7302: 7297: 7292: 7286: 7284: 7280: 7279: 7277: 7276: 7271: 7266: 7261: 7259:Strange matter 7256: 7254:Rydberg matter 7251: 7246: 7241: 7236: 7230: 7228: 7224: 7223: 7216: 7214: 7212: 7211: 7206: 7201: 7192: 7187: 7181: 7179: 7175: 7174: 7164: 7162: 7161: 7154: 7147: 7139: 7130: 7129: 7127: 7126: 7121: 7116: 7111: 7106: 7101: 7097: 7093: 7088: 7083: 7077: 7075: 7071: 7070: 7068: 7067: 7062: 7057: 7052: 7047: 7042: 7037: 7035:electromagnets 7032: 7026: 7024: 7018: 7017: 7014: 7013: 7011: 7010: 7005: 7000: 6995: 6990: 6985: 6979: 6977: 6976:By composition 6973: 6972: 6970: 6969: 6964: 6959: 6955: 6953: 6949: 6948: 6946: 6945: 6943:unconventional 6940: 6934: 6932: 6931:By explanation 6928: 6927: 6925: 6924: 6919: 6918: 6917: 6912: 6907: 6898: 6896: 6889: 6887:Classification 6883: 6882: 6880: 6879: 6874: 6869: 6864: 6859: 6854: 6849: 6844: 6839: 6834: 6829: 6824: 6819: 6814: 6809: 6804: 6798: 6796: 6792: 6791: 6789: 6788: 6783: 6778: 6776:critical field 6773: 6767: 6765: 6761: 6760: 6758: 6757: 6752: 6747: 6745:Mattis–Bardeen 6742: 6737: 6732: 6730:Kohn–Luttinger 6727: 6722: 6717: 6711: 6709: 6705: 6704: 6699: 6697: 6696: 6689: 6682: 6674: 6668: 6667: 6661: 6656: 6651: 6646: 6639: 6638:External links 6636: 6635: 6634: 6625:Charlie Wood, 6623: 6558: 6552: 6544:Modern Physics 6539: 6533: 6520: 6506: 6500: 6487: 6481: 6468: 6462: 6449: 6443: 6426: 6407: 6404: 6401: 6400: 6395:Nobelprize.org 6382: 6347: 6309: 6272:(4): 307–315. 6266:Nature Physics 6256: 6213: 6156: 6104: 6077: 6067: 6010: 5969: 5912: 5893: 5811: 5786: 5714: 5652: 5624: 5571:(7567): 73–6. 5555: 5502:(17): 174712. 5486: 5431: 5416: 5366: 5359: 5350: 5318: 5314: 5310: 5306: 5297: 5252: 5239: 5190: 5184: 5158: 5107: 5089: 5070: 5059:on May 6, 2009 5040: 5022: 4993:(9): 908–910. 4968: 4949:(3): 627–645. 4931: 4924: 4902: 4840: 4796: 4759: 4752: 4734: 4689:(2–3): 73–76. 4673: 4666: 4648: 4588: 4555: 4534: 4473: 4420: 4377: 4370: 4352: 4303: 4248: 4223: 4201: 4177: 4111: 4086: 4061: 4044:NobelPrize.org 4030: 4011:(7): 251–253. 3993: 3974:(6): 283–289. 3951: 3932: 3897: 3860: 3834: 3781: 3760: 3739: 3702: 3665: 3644: 3598: 3577:(1): 162–164. 3555: 3530: 3503:(866): 71–88. 3485: 3437: 3395: 3364: 3313: 3286:(1): 189–193. 3275: 3261: 3254: 3234: 3227: 3200: 3193: 3173: 3134: 3088: 3081: 3061: 3054: 3033: 3032: 3030: 3027: 3026: 3025: 3019: 3014: 3008: 3000: 2997: 2996: 2995: 2981: 2978:K. Alex MĂŒller 2971: 2957: 2950:Leon N. Cooper 2943: 2928: 2925: 2916:direct current 2848:applications. 2736:electromagnets 2708:Main article: 2705: 2702: 2651: 2634: 2612: 2605: 2597: 2593: 2580: 2570: 2566: 2562: 2558: 2501: 2500: 2490: 2488: 2478: 2476: 2462: 2460: 2458:(red triangle) 2446: 2444: 2434: 2432: 2430:(blue diamond) 2422: 2420: 2410: 2408: 2398: 2395: 2384:Main article: 2381: 2378: 2366:Main article: 2363: 2360: 2331: 2320: 2313: 2273: 2267: 2264: 2260: 2256: 2252: 2246: 2242: 2162:Main article: 2159: 2156: 2072:magnetic field 2056: 2036: 2023: 2019: 2015: 2005: 1993: 1974: 1963: 1960: 1916:thermal energy 1871:kinetic energy 1825:current source 1770: 1767: 1737: 1736: 1651: 1649: 1642: 1636: 1633: 1558: 1555: 1546: 1535: 1525:K. Alex MĂŒller 1510: 1507: 1486:unconventional 1466: 1463: 1445:critical field 1434: 1431: 1423:Main article: 1420: 1419:Classification 1417: 1401:superinsulator 1373: 1311: 1308: 1196: 1193: 1174: 1170: 1164: 1158: 1154: 1150: 1144: 1141: 1137: 1133: 1129: 1124: 1120: 1114: 1108: 1104: 1100: 1094: 1088: 1085: 1079: 1075: 1051: 1048: 984:Paul Ehrenfest 972:Main article: 969: 966: 909:ferromagnetism 861: 860: 858: 857: 850: 843: 835: 832: 831: 828: 827: 822: 817: 812: 807: 802: 797: 792: 787: 782: 777: 772: 767: 762: 757: 752: 747: 742: 737: 732: 727: 722: 717: 712: 707: 702: 697: 692: 687: 682: 677: 672: 667: 662: 657: 652: 646: 643: 642: 639: 638: 635: 634: 629: 624: 619: 614: 612:Four-potential 609: 604: 599: 593: 588: 587: 584: 583: 580: 579: 574: 569: 564: 559: 554: 549: 544: 539: 534: 529: 527:Electric motor 524: 519: 514: 508: 503: 502: 499: 498: 495: 494: 489: 484: 482:Series circuit 479: 474: 469: 464: 459: 454: 452:Kirchhoff laws 449: 444: 439: 434: 429: 424: 419: 417:Direct current 414: 409: 404: 398: 393: 392: 389: 388: 385: 384: 379: 374: 372:Maxwell tensor 369: 364: 359: 354: 349: 344: 342:Larmor formula 339: 334: 329: 324: 319: 314: 309: 304: 299: 294: 292:Bremsstrahlung 288: 283: 282: 279: 278: 275: 274: 269: 264: 259: 254: 249: 244: 242:Magnetic field 239: 234: 229: 224: 218: 215:Magnetostatics 213: 212: 209: 208: 205: 204: 199: 194: 189: 184: 179: 174: 169: 164: 159: 154: 149: 147:Electric field 144: 139: 134: 129: 124: 119: 117:Charge density 113: 110:Electrostatics 108: 107: 104: 103: 102: 101: 96: 91: 86: 81: 76: 71: 63: 62: 54: 53: 47: 46: 45:Articles about 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 7724: 7713: 7710: 7708: 7705: 7703: 7700: 7698: 7695: 7693: 7690: 7688: 7685: 7683: 7680: 7678: 7675: 7673: 7672:Exotic matter 7670: 7668: 7665: 7663: 7660: 7659: 7657: 7642: 7639: 7637: 7634: 7632: 7629: 7627: 7624: 7622: 7619: 7617: 7614: 7612: 7611:Mpemba effect 7609: 7607: 7604: 7602: 7599: 7597: 7594: 7592: 7591:Cooling curve 7589: 7587: 7584: 7582: 7579: 7577: 7574: 7573: 7571: 7567: 7561: 7558: 7556: 7553: 7551: 7548: 7546: 7543: 7541: 7538: 7536: 7533: 7531: 7528: 7527: 7525: 7521: 7515: 7514:Vitrification 7512: 7510: 7507: 7505: 7502: 7500: 7497: 7495: 7492: 7490: 7487: 7485: 7482: 7480: 7479:Recombination 7477: 7475: 7474:Melting point 7472: 7470: 7467: 7465: 7462: 7460: 7457: 7455: 7452: 7450: 7447: 7445: 7442: 7440: 7437: 7435: 7432: 7430: 7427: 7425: 7422: 7420: 7419:Critical line 7417: 7415: 7412: 7410: 7409:Boiling point 7407: 7405: 7402: 7401: 7399: 7397: 7393: 7387: 7384: 7382: 7379: 7375: 7372: 7370: 7367: 7365: 7362: 7361: 7359: 7357: 7354: 7352: 7349: 7347: 7344: 7342: 7341:Exotic matter 7339: 7337: 7334: 7332: 7329: 7327: 7324: 7322: 7319: 7317: 7314: 7313: 7311: 7307: 7301: 7298: 7296: 7293: 7291: 7288: 7287: 7285: 7281: 7275: 7272: 7270: 7267: 7265: 7262: 7260: 7257: 7255: 7252: 7250: 7247: 7245: 7242: 7240: 7237: 7235: 7232: 7231: 7229: 7225: 7220: 7210: 7207: 7205: 7202: 7200: 7196: 7193: 7191: 7188: 7186: 7183: 7182: 7180: 7176: 7171: 7167: 7160: 7155: 7153: 7148: 7146: 7141: 7140: 7137: 7125: 7122: 7120: 7117: 7115: 7112: 7110: 7107: 7105: 7102: 7100: 7094: 7092: 7089: 7087: 7084: 7082: 7079: 7078: 7076: 7072: 7066: 7063: 7061: 7058: 7056: 7053: 7051: 7048: 7046: 7043: 7041: 7038: 7036: 7033: 7031: 7028: 7027: 7025: 7023: 7019: 7009: 7006: 7004: 7001: 6999: 6996: 6994: 6993:heavy fermion 6991: 6989: 6986: 6984: 6981: 6980: 6978: 6974: 6968: 6965: 6963: 6960: 6957: 6956: 6954: 6950: 6944: 6941: 6939: 6936: 6935: 6933: 6929: 6923: 6922:ferromagnetic 6920: 6916: 6913: 6911: 6908: 6906: 6903: 6902: 6900: 6899: 6897: 6893: 6890: 6888: 6884: 6878: 6875: 6873: 6870: 6868: 6867:supercurrents 6865: 6863: 6860: 6858: 6855: 6853: 6850: 6848: 6845: 6843: 6840: 6838: 6835: 6833: 6830: 6828: 6825: 6823: 6820: 6818: 6815: 6813: 6810: 6808: 6805: 6803: 6800: 6799: 6797: 6793: 6787: 6784: 6782: 6779: 6777: 6774: 6772: 6769: 6768: 6766: 6762: 6756: 6753: 6751: 6748: 6746: 6743: 6741: 6738: 6736: 6733: 6731: 6728: 6726: 6723: 6721: 6718: 6716: 6713: 6712: 6710: 6706: 6702: 6695: 6690: 6688: 6683: 6681: 6676: 6675: 6672: 6665: 6662: 6660: 6657: 6655: 6652: 6650: 6647: 6645: 6642: 6641: 6637: 6632: 6628: 6624: 6620: 6616: 6611: 6606: 6601: 6596: 6592: 6588: 6583: 6578: 6574: 6570: 6569: 6564: 6559: 6555: 6549: 6545: 6540: 6536: 6530: 6526: 6521: 6517: 6516: 6511: 6507: 6503: 6497: 6493: 6488: 6484: 6478: 6474: 6469: 6465: 6459: 6455: 6450: 6446: 6440: 6436: 6432: 6427: 6424: 6420: 6417: 6413: 6410: 6409: 6405: 6396: 6392: 6386: 6383: 6378: 6374: 6370: 6366: 6362: 6358: 6351: 6348: 6342: 6337: 6333: 6329: 6328: 6320: 6313: 6310: 6305: 6301: 6297: 6293: 6289: 6285: 6280: 6275: 6271: 6267: 6260: 6257: 6251: 6246: 6242: 6238: 6234: 6230: 6229: 6224: 6217: 6214: 6209: 6205: 6201: 6197: 6193: 6189: 6184: 6179: 6176:(6): 063001. 6175: 6171: 6167: 6160: 6157: 6152: 6148: 6144: 6140: 6136: 6132: 6128: 6124: 6123: 6115: 6108: 6105: 6094: 6093: 6088: 6081: 6078: 6071: 6068: 6063: 6059: 6055: 6051: 6047: 6043: 6039: 6035: 6031: 6027: 6022: 6014: 6011: 6006: 6002: 5997: 5992: 5988: 5984: 5980: 5973: 5970: 5965: 5961: 5957: 5953: 5948: 5943: 5939: 5935: 5932:(7933): 804. 5931: 5927: 5923: 5916: 5913: 5908: 5904: 5897: 5894: 5889: 5885: 5881: 5877: 5870: 5866: 5862: 5858: 5854: 5850: 5846: 5842: 5838: 5834: 5830: 5826: 5822: 5815: 5812: 5801: 5797: 5790: 5787: 5782: 5778: 5774: 5770: 5766: 5762: 5758: 5754: 5750: 5746: 5741: 5736: 5732: 5728: 5724: 5718: 5715: 5710: 5706: 5702: 5698: 5694: 5690: 5686: 5682: 5677: 5672: 5668: 5664: 5656: 5653: 5642: 5638: 5631: 5629: 5625: 5620: 5616: 5612: 5608: 5604: 5600: 5596: 5592: 5588: 5584: 5579: 5574: 5570: 5566: 5559: 5556: 5551: 5547: 5543: 5539: 5535: 5531: 5527: 5523: 5519: 5515: 5510: 5505: 5501: 5497: 5490: 5487: 5482: 5478: 5474: 5470: 5466: 5462: 5457: 5452: 5448: 5444: 5443: 5435: 5432: 5427: 5420: 5417: 5412: 5408: 5404: 5400: 5396: 5392: 5388: 5384: 5380: 5376: 5375: 5369: 5363: 5354: 5351: 5346: 5342: 5338: 5334: 5330: 5326: 5325: 5301: 5298: 5293: 5289: 5285: 5281: 5277: 5273: 5269: 5265: 5264: 5256: 5253: 5249: 5243: 5240: 5235: 5231: 5226: 5221: 5217: 5213: 5209: 5205: 5201: 5194: 5191: 5187: 5181: 5177: 5173: 5169: 5162: 5159: 5154: 5150: 5146: 5142: 5138: 5134: 5130: 5126: 5122: 5118: 5111: 5108: 5102: 5101: 5093: 5090: 5085: 5084:Nobel Lecture 5081: 5074: 5071: 5058: 5054: 5050: 5044: 5041: 5036: 5032: 5026: 5023: 5018: 5014: 5009: 5004: 5000: 4996: 4992: 4988: 4987: 4982: 4975: 4973: 4969: 4964: 4960: 4956: 4952: 4948: 4944: 4943: 4935: 4932: 4927: 4921: 4917: 4913: 4906: 4903: 4898: 4894: 4890: 4886: 4882: 4878: 4873: 4868: 4865:(6): 064524. 4864: 4860: 4859: 4851: 4844: 4841: 4836: 4832: 4828: 4824: 4820: 4816: 4815: 4807: 4800: 4797: 4792: 4788: 4784: 4780: 4776: 4772: 4771: 4763: 4760: 4755: 4749: 4745: 4738: 4735: 4730: 4726: 4722: 4718: 4714: 4710: 4706: 4702: 4697: 4692: 4688: 4684: 4677: 4674: 4669: 4663: 4659: 4652: 4649: 4644: 4640: 4636: 4632: 4628: 4624: 4620: 4616: 4612: 4608: 4607: 4599: 4592: 4589: 4583: 4578: 4574: 4570: 4566: 4559: 4556: 4551: 4544: 4538: 4535: 4530: 4526: 4522: 4518: 4514: 4510: 4506: 4502: 4497: 4492: 4488: 4484: 4477: 4474: 4469: 4465: 4461: 4457: 4453: 4449: 4444: 4439: 4435: 4431: 4424: 4421: 4416: 4412: 4408: 4404: 4400: 4396: 4392: 4388: 4381: 4378: 4373: 4367: 4363: 4356: 4353: 4348: 4344: 4340: 4336: 4331: 4326: 4322: 4318: 4314: 4307: 4304: 4300: 4296: 4292: 4287: 4282: 4278: 4274: 4270: 4266: 4262: 4258: 4252: 4249: 4237: 4236:Physics World 4233: 4227: 4224: 4219: 4212: 4205: 4202: 4191: 4187: 4181: 4178: 4173: 4169: 4164: 4159: 4155: 4151: 4147: 4143: 4139: 4135: 4131: 4127: 4123: 4115: 4112: 4100: 4096: 4090: 4087: 4075: 4074:Science Daily 4071: 4065: 4062: 4050: 4046: 4045: 4040: 4034: 4031: 4026: 4022: 4018: 4014: 4010: 4006: 4005: 3997: 3994: 3989: 3985: 3981: 3977: 3973: 3969: 3962: 3955: 3952: 3947: 3943: 3936: 3933: 3928: 3924: 3920: 3916: 3912: 3908: 3901: 3898: 3893: 3889: 3885: 3881: 3877: 3873: 3872: 3864: 3861: 3845: 3838: 3835: 3830: 3826: 3822: 3818: 3814: 3810: 3805: 3800: 3796: 3792: 3785: 3782: 3777: 3773: 3772: 3764: 3761: 3756: 3752: 3751: 3743: 3740: 3735: 3731: 3727: 3723: 3719: 3715: 3714: 3706: 3703: 3698: 3694: 3690: 3686: 3682: 3678: 3677: 3669: 3666: 3661: 3657: 3656: 3648: 3645: 3639: 3634: 3630: 3626: 3622: 3618: 3617: 3612: 3605: 3603: 3599: 3593: 3588: 3584: 3580: 3576: 3572: 3571: 3566: 3559: 3556: 3544: 3540: 3534: 3531: 3526: 3522: 3518: 3514: 3510: 3506: 3502: 3498: 3497: 3489: 3486: 3481: 3477: 3473: 3469: 3465: 3461: 3457: 3453: 3452: 3444: 3442: 3438: 3433: 3429: 3425: 3421: 3417: 3413: 3412:Physics Today 3406: 3399: 3396: 3391: 3387: 3384:: 1274–1276. 3383: 3379: 3375: 3368: 3365: 3360: 3356: 3351: 3346: 3342: 3338: 3334: 3330: 3329: 3328:Physics Today 3324: 3317: 3314: 3309: 3305: 3301: 3297: 3293: 3289: 3285: 3281: 3270: 3268: 3266: 3262: 3257: 3251: 3247: 3246: 3238: 3235: 3230: 3224: 3220: 3216: 3215: 3207: 3205: 3201: 3196: 3190: 3186: 3185: 3177: 3174: 3170: 3166: 3163:, CRC Press, 3162: 3161: 3146: 3141: 3137: 3131: 3126: 3121: 3116: 3111: 3107: 3103: 3099: 3092: 3089: 3084: 3082:9780470026434 3078: 3074: 3073: 3065: 3062: 3057: 3055:9781108428415 3051: 3047: 3046: 3038: 3035: 3028: 3023: 3020: 3018: 3015: 3012: 3009: 3006: 3003: 3002: 2998: 2993: 2989: 2985: 2982: 2979: 2975: 2974:Georg Bednorz 2972: 2969: 2965: 2961: 2958: 2955: 2951: 2947: 2944: 2941: 2938: 2937: 2936: 2934: 2926: 2924: 2921: 2917: 2913: 2909: 2905: 2901: 2897: 2896:maglev trains 2893: 2889: 2885: 2881: 2877: 2873: 2869: 2864: 2862: 2858: 2857:wind turbines 2854: 2849: 2847: 2843: 2839: 2835: 2831: 2827: 2823: 2819: 2815: 2812: 2808: 2804: 2800: 2799:magnetometers 2796: 2792: 2787: 2785: 2781: 2777: 2773: 2769: 2764: 2761: 2757: 2753: 2749: 2745: 2741: 2737: 2733: 2729: 2711: 2703: 2701: 2699: 2693: 2691: 2687: 2683: 2678: 2676: 2671: 2667: 2664:, discovered 2663: 2658: 2644: 2627: 2622: 2620: 2615: 2609: 2603: 2591: 2586: 2579: 2574: 2553: 2551: 2546: 2544: 2540: 2536: 2531: 2527: 2525: 2521: 2517: 2513: 2509: 2497: 2489: 2485: 2477: 2473: 2469: 2461: 2457: 2453: 2445: 2441: 2433: 2429: 2421: 2417: 2409: 2405: 2397: 2396: 2392: 2387: 2379: 2377: 2375: 2369: 2368:London moment 2362:London moment 2361: 2359: 2357: 2353: 2349: 2345: 2341: 2337: 2330: 2326: 2325:magnetic flux 2319: 2312: 2306: 2304: 2300: 2295: 2293: 2289: 2265: 2262: 2258: 2254: 2244: 2231: 2227: 2223: 2218: 2214: 2211: 2207: 2203: 2198: 2196: 2193:, called the 2192: 2188: 2165: 2157: 2155: 2153: 2149: 2146:) within the 2145: 2141: 2137: 2133: 2127: 2125: 2121: 2117: 2112: 2110: 2106: 2102: 2097: 2096:heat capacity 2093: 2088: 2086: 2081: 2077: 2073: 2068: 2054: 2034: 2026: 2011: 2003: 1999: 1992: 1988: 1980: 1973: 1968: 1961: 1959: 1956: 1952: 1948: 1943: 1941: 1937: 1933: 1929: 1925: 1921: 1917: 1913: 1909: 1905: 1904: 1899: 1895: 1891: 1887: 1883: 1878: 1876: 1875:Joule heating 1872: 1868: 1863: 1858: 1855: 1851: 1846: 1844: 1840: 1836: 1833: 1829: 1826: 1822: 1818: 1811: 1806: 1800: 1796: 1792: 1788: 1784: 1780: 1775: 1768: 1766: 1764: 1760: 1756: 1752: 1748: 1747:magnetic flux 1744: 1733: 1730: 1722: 1711: 1708: 1704: 1701: 1697: 1694: 1690: 1687: 1683: 1680: â€“  1679: 1675: 1674:Find sources: 1668: 1664: 1658: 1657: 1652:This section 1650: 1646: 1641: 1640: 1634: 1632: 1630: 1626: 1622: 1618: 1614: 1610: 1606: 1602: 1598: 1594: 1590: 1586: 1582: 1578: 1574: 1563: 1556: 1554: 1552: 1551:iron pnictide 1545: 1541: 1540:liquid helium 1534: 1530: 1526: 1522: 1521:Georg Bednorz 1518: 1517: 1508: 1506: 1504: 1500: 1496: 1492: 1488: 1487: 1482: 1478: 1474: 1473: 1464: 1462: 1460: 1456: 1452: 1451: 1446: 1442: 1441: 1432: 1430: 1426: 1418: 1416: 1414: 1410: 1406: 1402: 1397: 1395: 1391: 1387: 1383: 1379: 1376: =  1372: 1369: 1365: 1361: 1357: 1352: 1349: 1345: 1341: 1337: 1333: 1329: 1328:J. E. Kunzler 1323: 1321: 1317: 1309: 1307: 1305: 1301: 1297: 1296:superfluidity 1292: 1290: 1286: 1282: 1277: 1275: 1271: 1267: 1262: 1260: 1256: 1252: 1251:isotopic mass 1247: 1245: 1241: 1237: 1232: 1228: 1224: 1220: 1216: 1213: 1210:In 1950, the 1208: 1206: 1202: 1194: 1192: 1190: 1185: 1172: 1162: 1156: 1152: 1148: 1142: 1139: 1131: 1122: 1112: 1106: 1102: 1098: 1092: 1086: 1062: 1059: 1057: 1049: 1047: 1045: 1041: 1037: 1033: 1029: 1024: 1022: 1018: 1013: 1009: 1005: 1004:liquid helium 1001: 993: 989: 985: 980: 975: 967: 965: 962: 958: 954: 950: 947: 943: 938: 936: 932: 931: 926: 922: 918: 914: 910: 906: 901: 899: 895: 891: 887: 886:absolute zero 883: 879: 876:vanishes and 875: 871: 867: 856: 851: 849: 844: 842: 837: 836: 834: 833: 826: 823: 821: 818: 816: 813: 811: 808: 806: 803: 801: 798: 796: 793: 791: 788: 786: 783: 781: 778: 776: 773: 771: 768: 766: 763: 761: 758: 756: 753: 751: 748: 746: 743: 741: 738: 736: 733: 731: 728: 726: 723: 721: 718: 716: 713: 711: 708: 706: 703: 701: 698: 696: 693: 691: 688: 686: 683: 681: 678: 676: 673: 671: 668: 666: 663: 661: 658: 656: 653: 651: 648: 647: 641: 640: 633: 630: 628: 625: 623: 620: 618: 615: 613: 610: 608: 605: 603: 600: 598: 595: 594: 591: 586: 585: 578: 575: 573: 570: 568: 565: 563: 560: 558: 555: 553: 550: 548: 545: 543: 540: 538: 535: 533: 530: 528: 525: 523: 520: 518: 515: 513: 510: 509: 506: 501: 500: 493: 490: 488: 485: 483: 480: 478: 475: 473: 470: 468: 465: 463: 460: 458: 455: 453: 450: 448: 447:Joule heating 445: 443: 440: 438: 435: 433: 430: 428: 425: 423: 420: 418: 415: 413: 410: 408: 405: 403: 400: 399: 396: 391: 390: 383: 380: 378: 375: 373: 370: 368: 365: 363: 362:Lorentz force 360: 358: 355: 353: 350: 348: 345: 343: 340: 338: 335: 333: 330: 328: 325: 323: 320: 318: 315: 313: 310: 308: 305: 303: 300: 298: 295: 293: 290: 289: 286: 281: 280: 273: 270: 268: 265: 263: 262:Magnetization 260: 258: 255: 253: 250: 248: 247:Magnetic flux 245: 243: 240: 238: 235: 233: 230: 228: 225: 223: 220: 219: 216: 211: 210: 203: 200: 198: 195: 193: 190: 188: 185: 183: 180: 178: 175: 173: 170: 168: 165: 163: 160: 158: 155: 153: 152:Electric flux 150: 148: 145: 143: 140: 138: 135: 133: 130: 128: 125: 123: 120: 118: 115: 114: 111: 106: 105: 100: 97: 95: 92: 90: 89:Computational 87: 85: 82: 80: 77: 75: 72: 70: 67: 66: 65: 64: 60: 56: 55: 52: 48: 44: 43: 37: 32: 19: 7636:Superheating 7625: 7509:Vaporization 7504:Triple point 7499:Supercooling 7464:Lambda point 7414:Condensation 7331:Time crystal 7309:Other states 7249:Quantum Hall 7003:oxypnictides 6938:conventional 6877:superstripes 6822:flux pumping 6817:flux pinning 6812:Cooper pairs 6700: 6572: 6566: 6543: 6524: 6515:ScienceDaily 6513: 6491: 6472: 6453: 6434: 6394: 6385: 6360: 6356: 6350: 6331: 6325: 6312: 6269: 6265: 6259: 6232: 6226: 6216: 6173: 6169: 6159: 6129:(2): 69–91. 6126: 6120: 6107: 6096:. Retrieved 6090: 6080: 6070: 6029: 6025: 6013: 5986: 5982: 5972: 5929: 5925: 5915: 5906: 5896: 5828: 5824: 5814: 5803:. Retrieved 5799: 5789: 5730: 5726: 5717: 5666: 5662: 5655: 5644:. Retrieved 5640: 5568: 5564: 5558: 5499: 5495: 5489: 5449:(1): 17002. 5446: 5440: 5434: 5419: 5378: 5372: 5367: 5361: 5353: 5328: 5322: 5300: 5267: 5261: 5255: 5247: 5242: 5207: 5203: 5193: 5167: 5161: 5120: 5116: 5110: 5103:(in French). 5099: 5092: 5083: 5073: 5061:. Retrieved 5057:the original 5052: 5043: 5034: 5025: 4990: 4984: 4946: 4940: 4934: 4911: 4905: 4862: 4856: 4843: 4818: 4812: 4799: 4777:(1): 25–28. 4774: 4768: 4762: 4743: 4737: 4686: 4682: 4676: 4657: 4651: 4610: 4604: 4591: 4572: 4568: 4558: 4549: 4537: 4486: 4482: 4476: 4433: 4429: 4423: 4390: 4386: 4380: 4361: 4355: 4320: 4316: 4306: 4298: 4268: 4264: 4251: 4240:. Retrieved 4238:. 2009-02-17 4235: 4226: 4217: 4204: 4193:. Retrieved 4189: 4180: 4129: 4125: 4114: 4102:. Retrieved 4098: 4089: 4078:. Retrieved 4073: 4064: 4053:. Retrieved 4042: 4033: 4008: 4002: 3996: 3971: 3967: 3954: 3945: 3941: 3935: 3913:(3): 89–91. 3910: 3906: 3900: 3875: 3869: 3863: 3851:. Retrieved 3837: 3794: 3790: 3784: 3775: 3769: 3763: 3754: 3748: 3742: 3717: 3711: 3705: 3680: 3674: 3668: 3659: 3653: 3647: 3620: 3614: 3574: 3568: 3558: 3547:. Retrieved 3543:the original 3533: 3500: 3494: 3488: 3455: 3449: 3418:(9): 38–43. 3415: 3411: 3398: 3381: 3377: 3367: 3335:(9): 38–43. 3332: 3326: 3316: 3283: 3279: 3244: 3237: 3213: 3183: 3176: 3158: 3149:. Retrieved 3105: 3101: 3091: 3071: 3064: 3044: 3037: 2964:Ivar Giaever 2946:John Bardeen 2930: 2927:Nobel Prizes 2876:transformers 2865: 2850: 2788: 2784:mobile phone 2765: 2730: 2726: 2704:Applications 2694: 2685: 2679: 2659: 2623: 2613: 2607: 2587: 2577: 2554: 2547: 2532: 2528: 2505: 2371: 2346:. Most pure 2328: 2317: 2310: 2307: 2296: 2291: 2287: 2226:Heinz London 2219: 2215: 2209: 2202:diamagnetism 2199: 2190: 2186: 2184: 2136:vortex lines 2128: 2113: 2104: 2100: 2089: 2075: 2069: 1990: 1986: 1984: 1978: 1971: 1944: 1931: 1923: 1919: 1911: 1907: 1901: 1886:Cooper pairs 1881: 1879: 1859: 1847: 1842: 1834: 1827: 1814: 1794: 1786: 1763:Cooper pairs 1740: 1725: 1716: 1706: 1699: 1692: 1685: 1673: 1661:Please help 1656:verification 1653: 1570: 1543: 1532: 1514: 1512: 1484: 1472:conventional 1470: 1468: 1450:Type II 1448: 1438: 1436: 1428: 1398: 1385: 1381: 1377: 1370: 1353: 1324: 1313: 1293: 1278: 1263: 1248: 1209: 1198: 1186: 1063: 1060: 1053: 1040:Heinz London 1025: 997: 939: 928: 925:idealization 902: 869: 865: 864: 607:Four-current 542:Linear motor 427:Electrolysis 307:Eddy current 267:Permeability 187:Polarization 182:Permittivity 7692:Spintronics 7545:Latent heat 7494:Sublimation 7439:Evaporation 7374:Ferromagnet 7369:Ferrimagnet 7351:Dark matter 7283:High energy 6862:SU(2) color 6842:Homes's law 6250:10453/33256 6235:: 161–176. 6075:Technology. 5105:PhD thesis. 3878:(4): 1197. 3108:(5): 1175. 2680:In 2020, a 2602:oxypnictide 2543:paramagnons 2230:free energy 2144:latent heat 2124:latent heat 1936:temperature 1557:By material 1503:space group 1499:point group 1440:Type I 1332:niobium–tin 1289:Lev Gor'kov 1287:. In 1959, 1285:Hamiltonian 1227:Schrödinger 1044:free energy 1008:refrigerant 577:Transformer 407:Capacitance 332:Faraday law 127:Coulomb law 69:Electricity 7656:Categories 7560:Volatility 7523:Quantities 7484:Regelation 7459:Ionization 7434:Deposition 7386:Superglass 7356:Antimatter 7290:QCD matter 7269:Supersolid 7264:Superfluid 7227:Low energy 6998:iron-based 6857:reentrance 6582:2108.03655 6279:1510.00713 6098:2021-03-30 5996:2208.00854 5805:2021-03-23 5740:1802.00553 5676:1812.01561 5646:2020-10-29 5578:1506.08190 4753:0486435032 4696:1506.08190 4667:0486435032 4496:1504.03318 4443:1905.06693 4330:1504.03318 4242:2020-10-29 4195:2020-10-29 4104:8 December 4080:2008-10-23 4055:2021-03-30 3968:Cryogenics 3720:(4): 487. 3683:(4): 477. 3549:2011-10-16 3280:Z. Phys. B 3169:0677000804 3029:References 2868:smart grid 2838:bolometers 2746:machines, 2617:FeAs with 2600:FeAs), an 2520:perovskite 2514:(LBCO), a 2206:Lenz's law 2109:energy gap 1940:superfluid 1903:energy gap 1719:April 2018 1689:newspapers 1621:fullerenes 1477:BCS theory 1274:Schrieffer 1032:Ochsenfeld 1012:superfluid 992:Niels Bohr 946:perovskite 644:Scientists 492:Waveguides 472:Resistance 442:Inductance 222:AmpĂšre law 6795:Phenomena 6414:standard 6334:: 59–72. 6183:1204.5560 6151:247422273 6143:0010-7514 6062:261976918 6054:2522-5820 5964:252544156 5869:222823227 5765:1476-4687 5723:Cao, Yuan 5709:119231000 5603:0028-0836 5534:0021-9606 5509:1402.2721 5456:0804.2582 5324:Physica C 5153:205066154 5063:9 October 4835:121012850 4643:134876430 4635:1944-9208 4521:0921-4534 4468:155100283 4347:0921-4534 4190:home.cern 4154:2375-2548 3853:10 August 3829:119121639 3804:1111.4781 3797:: 47–57. 3359:0031-9228 3308:118314311 3219:CRC Press 2960:Leo Esaki 2892:vactrains 2834:detectors 2774:based on 2690:retracted 2675:skyrmions 2516:lanthanum 2472:pnictogen 2456:allotrope 2348:elemental 2344:quantized 2263:− 2259:λ 2241:∇ 2208:, when a 2047:wave vs. 1862:electrons 1839:Ohm's law 1587:(such as 1415:regimes. 1384:), where 1356:Josephson 1354:In 1962, 1348:ductility 1244:cosmology 1231:Abrikosov 1143:− 1132:× 1128:∇ 1084:∂ 1074:∂ 1000:cryogenic 882:conductor 800:Steinmetz 730:Kirchhoff 715:Jefimenko 710:Hopkinson 695:Helmholtz 690:Heaviside 552:Permeance 437:Impedance 177:Insulator 172:Gauss law 122:Conductor 99:Phenomena 94:Textbooks 74:Magnetism 7621:Spinodal 7569:Concepts 7449:Freezing 7030:cryotron 6988:cuprates 6983:covalent 6740:Matthias 6708:Theories 6629:(2022). 6619:36067325 6419:Archived 6377:46117301 6304:31028550 5956:36163290 5888:36163290 5861:33057222 5773:29512654 5701:31118520 5611:26280333 5550:15633660 5542:24811660 5481:96240327 5403:18432191 5234:10044736 5145:21776057 5017:10035069 4897:13672575 4721:11369082 4529:12895850 4436:: 1–78. 4415:27665903 4407:21814269 4295:29517044 4263:. News. 4172:33158862 4099:phys.org 4049:Archived 3480:37842752 3171:, p. 73. 3145:73661301 2999:See also 2863:(LCOE). 2824:or as a 2822:detector 2768:cryotron 2756:tokamaks 2619:samarium 2340:vortices 2210:changing 1922:, where 1601:ceramics 1459:Type-1.5 1455:vortices 1320:cryotron 1255:electron 1223:Ginzburg 1028:Meissner 825:Wiechert 780:Poynting 670:Einstein 517:DC motor 512:AC motor 347:Lenz law 132:Electret 7581:Binodal 7469:Melting 7404:Boiling 7321:Crystal 7316:Colloid 7124:more... 7008:organic 6610:9477408 6587:Bibcode 6284:Bibcode 6208:4893642 6188:Bibcode 6034:Bibcode 5934:Bibcode 5853:1673473 5833:Bibcode 5781:4601086 5745:Bibcode 5681:Bibcode 5619:4468914 5583:Bibcode 5514:Bibcode 5461:Bibcode 5383:Bibcode 5371:FeAs". 5333:Bibcode 5292:4328716 5272:Bibcode 5212:Bibcode 5125:Bibcode 4995:Bibcode 4951:Bibcode 4877:Bibcode 4779:Bibcode 4729:4468914 4701:Bibcode 4615:Bibcode 4501:Bibcode 4489:: 1–8. 4448:Bibcode 4323:: 1–8. 4273:Bibcode 4163:7673702 4134:Bibcode 4013:Bibcode 3976:Bibcode 3915:Bibcode 3880:Bibcode 3809:Bibcode 3778:: 1364. 3722:Bibcode 3685:Bibcode 3662:: 1064. 3625:Bibcode 3579:Bibcode 3505:Bibcode 3460:Bibcode 3420:Bibcode 3386:Bibcode 3337:Bibcode 3288:Bibcode 3151:June 6, 3110:Bibcode 2832:photon 2760:pigment 2524:yttrium 2508:Bednorz 2428:Cuprate 2352:niobium 2336:fluxons 2140:type II 2002:mercury 1934:is the 1926:is the 1890:phonons 1832:voltage 1795:bottom: 1703:scholar 1577:mercury 1497:of the 1388:is the 1342:and at 1266:Bardeen 968:History 949:ceramic 942:cuprate 907:. Like 810:Thomson 785:Ritchie 775:Poisson 760:Neumann 755:Maxwell 750:Lorentz 745:LiĂ©nard 675:Faraday 660:Coulomb 487:Voltage 462:Ohm law 84:History 7209:Plasma 7190:Liquid 6901:Types 6735:London 6617:  6607:  6550:  6531:  6498:  6479:  6460:  6441:  6375:  6302:  6206:  6149:  6141:  6060:  6052:  5962:  5954:  5926:Nature 5886:  5882:, 5867:  5859:  5851:  5825:Nature 5779:  5771:  5763:  5727:Nature 5707:  5699:  5663:Nature 5617:  5609:  5601:  5565:Nature 5548:  5540:  5532:  5479:  5411:498756 5409:  5401:  5374:Nature 5290:  5263:Nature 5232:  5182:  5151:  5143:  5117:Nature 5015:  4922:  4895:  4833:  4750:  4727:  4719:  4683:Nature 4664:  4641:  4633:  4527:  4519:  4466:  4413:  4405:  4387:Nature 4368:  4345:  4293:  4265:Nature 4170:  4160:  4152:  3948:: 408. 3827:  3523:  3478:  3357:  3306:  3252:  3225:  3191:  3167:  3142:  3132:  3079:  3052:  3011:MXenes 2990:, and 2966:, and 2952:, and 2795:SQUIDs 2686:Nature 2496:Nickel 2494:  2492:  2482:  2480:  2466:  2464:  2452:Carbon 2450:  2448:  2438:  2436:  2426:  2424:  2414:  2412:  2402:  2400:  2286:where 2148:type I 1896:, the 1705:  1698:  1691:  1684:  1676:  1629:carbon 1595:, and 1585:alloys 1575:(e.g. 1364:SQUIDs 1270:Cooper 1259:phonon 1219:Landau 795:Singer 790:Savart 770:Ørsted 735:Larmor 725:Kelvin 680:Fizeau 650:AmpĂšre 572:Stator 79:Optics 7199:Vapor 7185:Solid 7178:State 7114:TBCCO 7086:BSCCO 7065:wires 7060:SQUID 6577:arXiv 6373:S2CID 6322:(PDF) 6300:S2CID 6274:arXiv 6204:S2CID 6178:arXiv 6147:S2CID 6117:(PDF) 6058:S2CID 5991:arXiv 5989:(2). 5960:S2CID 5865:S2CID 5777:S2CID 5735:arXiv 5705:S2CID 5671:arXiv 5615:S2CID 5573:arXiv 5546:S2CID 5504:arXiv 5477:S2CID 5451:arXiv 5407:S2CID 5288:S2CID 5149:S2CID 4893:S2CID 4867:arXiv 4853:(PDF) 4831:S2CID 4809:(PDF) 4725:S2CID 4691:arXiv 4639:S2CID 4601:(PDF) 4546:(PDF) 4525:S2CID 4491:arXiv 4464:S2CID 4438:arXiv 4411:S2CID 4325:arXiv 4214:(PDF) 3964:(PDF) 3847:(PDF) 3825:S2CID 3799:arXiv 3757:: 58. 3525:96265 3521:JSTOR 3476:S2CID 3408:(PDF) 3304:S2CID 3140:S2CID 2826:mixer 2575:with 2222:Fritz 2116:order 1882:pairs 1710:JSTOR 1696:books 1036:Fritz 1006:as a 820:Weber 815:Volta 805:Tesla 720:Joule 705:Hertz 700:Henry 685:Gauss 567:Rotor 7170:list 7119:YBCO 7109:NbTi 7104:NbSn 7091:LBCO 6615:PMID 6548:ISBN 6529:ISBN 6496:ISBN 6477:ISBN 6458:ISBN 6439:ISBN 6139:ISSN 6050:ISSN 5952:PMID 5884:PMID 5857:PMID 5849:OSTI 5769:PMID 5761:ISSN 5697:PMID 5607:PMID 5599:ISSN 5538:PMID 5530:ISSN 5399:PMID 5230:PMID 5180:ISBN 5141:PMID 5065:2012 5013:PMID 4920:ISBN 4748:ISBN 4717:PMID 4662:ISBN 4631:ISSN 4550:CERN 4517:ISSN 4403:PMID 4366:ISBN 4343:ISSN 4291:PMID 4168:PMID 4150:ISSN 4106:2020 3946:II-7 3855:2014 3355:ISSN 3250:ISBN 3223:ISBN 3189:ISBN 3165:ISBN 3153:2014 3130:ISBN 3077:ISBN 3050:ISBN 2976:and 2814:volt 2805:and 2782:for 2468:Iron 2354:and 2224:and 2114:The 1930:and 1867:heat 1787:Top: 1779:CERN 1682:news 1623:and 1607:and 1605:YBCO 1581:lead 1523:and 1272:and 1242:and 1221:and 1038:and 1030:and 1017:lead 911:and 740:Lenz 665:Davy 655:Biot 7195:Gas 7096:MgB 7045:NMR 7040:MRI 6915:1.5 6755:WHH 6750:RVB 6715:BCS 6605:PMC 6595:doi 6573:119 6412:IEC 6365:doi 6336:doi 6292:doi 6245:hdl 6237:doi 6196:doi 6131:doi 6042:doi 6001:doi 5942:doi 5930:610 5876:doi 5841:doi 5829:586 5753:doi 5731:556 5689:doi 5667:569 5591:doi 5569:525 5522:doi 5500:140 5469:doi 5442:EPL 5391:doi 5379:453 5341:doi 5329:243 5319:8+ÎŽ 5280:doi 5268:363 5220:doi 5172:doi 5133:doi 5121:475 5003:doi 4959:doi 4947:344 4885:doi 4823:doi 4787:doi 4709:doi 4687:525 4623:doi 4577:doi 4569:Eos 4509:doi 4487:514 4456:doi 4434:856 4395:doi 4391:476 4335:doi 4321:514 4281:doi 4269:555 4158:PMC 4142:doi 4021:doi 3984:doi 3923:doi 3888:doi 3817:doi 3795:485 3730:doi 3693:doi 3633:doi 3621:108 3587:doi 3575:106 3513:doi 3501:149 3468:doi 3428:doi 3345:doi 3296:doi 3120:doi 3106:108 2898:), 2894:or 2744:NMR 2740:MRI 2647:LaH 2594:1−x 2571:8+ÎŽ 2404:BCS 2342:is 2014:YBa 1854:MRI 1841:as 1799:LHC 1791:LEP 1665:by 1631:). 1611:), 1599:), 1583:), 1579:or 1501:or 1380:/(2 933:in 927:of 765:Ohm 7658:: 7197:/ 6910:II 6613:. 6603:. 6593:. 6585:. 6571:. 6565:. 6512:. 6433:. 6393:. 6371:. 6361:19 6359:. 6332:55 6330:. 6324:. 6298:. 6290:. 6282:. 6270:11 6268:. 6243:. 6233:33 6231:. 6225:. 6202:. 6194:. 6186:. 6174:25 6172:. 6168:. 6145:. 6137:. 6127:62 6125:. 6119:. 6089:. 6056:. 6048:. 6040:. 6028:. 6024:. 5999:. 5985:. 5981:. 5958:. 5950:. 5940:. 5928:. 5924:. 5905:. 5863:. 5855:. 5847:. 5839:. 5827:. 5823:. 5798:. 5775:. 5767:. 5759:. 5751:. 5743:. 5729:. 5703:. 5695:. 5687:. 5679:. 5665:. 5639:. 5627:^ 5613:. 5605:. 5597:. 5589:. 5581:. 5567:. 5544:. 5536:. 5528:. 5520:. 5512:. 5498:. 5475:. 5467:. 5459:. 5447:83 5445:. 5405:. 5397:. 5389:. 5377:. 5360:1− 5339:. 5327:. 5313:Cu 5309:Ca 5286:. 5278:. 5266:. 5228:. 5218:. 5208:67 5206:. 5202:. 5178:, 5147:. 5139:. 5131:. 5119:. 5082:. 5051:. 5033:. 5011:. 5001:. 4991:58 4989:. 4983:. 4971:^ 4957:. 4945:. 4914:. 4891:. 4883:. 4875:. 4863:66 4861:. 4855:. 4829:. 4819:35 4817:. 4811:. 4785:. 4775:96 4773:. 4723:. 4715:. 4707:. 4699:. 4685:. 4637:. 4629:. 4621:. 4611:55 4609:. 4603:. 4575:. 4573:98 4571:. 4567:. 4548:. 4523:. 4515:. 4507:. 4499:. 4462:. 4454:. 4446:. 4432:. 4409:. 4401:. 4389:. 4341:. 4333:. 4315:. 4297:. 4289:. 4279:. 4267:. 4234:. 4216:. 4188:. 4166:. 4156:. 4148:. 4140:. 4128:. 4124:. 4097:. 4072:. 4047:. 4041:. 4019:. 4007:. 3982:. 3972:27 3970:. 3966:. 3944:. 3921:. 3909:. 3886:. 3876:98 3874:. 3823:. 3815:. 3807:. 3793:. 3776:36 3774:. 3755:34 3753:. 3728:. 3718:78 3716:. 3691:. 3681:78 3679:. 3660:20 3658:. 3631:. 3619:. 3613:. 3601:^ 3585:. 3573:. 3567:. 3519:. 3511:. 3499:. 3474:. 3466:. 3456:21 3454:. 3440:^ 3426:. 3416:63 3414:. 3410:. 3382:13 3380:. 3376:. 3353:. 3343:. 3333:63 3331:. 3325:. 3302:. 3294:. 3284:64 3282:. 3264:^ 3217:. 3203:^ 3138:. 3128:. 3118:. 3104:. 3100:. 2986:, 2962:, 2948:, 2902:, 2886:, 2882:, 2878:, 2874:, 2870:, 2811:SI 2652:10 2606:1− 2585:. 2565:Cu 2561:Ca 2545:. 2332:c2 2321:c1 2111:. 2018:Cu 1920:kT 1877:. 1793:; 1785:. 1765:. 1591:, 1461:. 1268:, 1246:. 990:, 986:, 937:. 7172:) 7168:( 7158:e 7151:t 7144:v 7098:2 6905:I 6693:e 6686:t 6679:v 6666:. 6633:. 6621:. 6597:: 6589:: 6579:: 6556:. 6537:. 6504:. 6485:. 6466:. 6447:. 6425:. 6379:. 6367:: 6344:. 6338:: 6306:. 6294:: 6286:: 6276:: 6253:. 6247:: 6239:: 6198:: 6190:: 6180:: 6153:. 6133:: 6101:. 6064:. 6044:: 6036:: 6030:5 6007:. 6003:: 5993:: 5987:7 5966:. 5944:: 5936:: 5909:. 5890:) 5878:: 5871:. 5843:: 5835:: 5808:. 5783:. 5755:: 5747:: 5737:: 5711:. 5691:: 5683:: 5673:: 5649:. 5621:. 5593:: 5585:: 5575:: 5552:. 5524:: 5516:: 5506:: 5483:. 5471:: 5463:: 5453:: 5413:. 5393:: 5385:: 5368:x 5365:F 5362:x 5347:. 5343:: 5335:: 5317:O 5315:3 5311:2 5307:2 5294:. 5282:: 5274:: 5236:. 5222:: 5214:: 5174:: 5155:. 5135:: 5127:: 5086:. 5067:. 5019:. 5005:: 4997:: 4965:. 4961:: 4953:: 4928:. 4899:. 4887:: 4879:: 4869:: 4837:. 4825:: 4793:. 4789:: 4781:: 4756:. 4731:. 4711:: 4703:: 4693:: 4670:. 4645:. 4625:: 4617:: 4585:. 4579:: 4552:. 4531:. 4511:: 4503:: 4493:: 4470:. 4458:: 4450:: 4440:: 4417:. 4397:: 4374:. 4349:. 4337:: 4327:: 4283:: 4275:: 4245:. 4220:. 4198:. 4174:. 4144:: 4136:: 4130:6 4108:. 4083:. 4058:. 4027:. 4023:: 4015:: 4009:1 3990:. 3986:: 3978:: 3929:. 3925:: 3917:: 3911:6 3894:. 3890:: 3882:: 3857:. 3831:. 3819:: 3811:: 3801:: 3736:. 3732:: 3724:: 3699:. 3695:: 3687:: 3641:. 3635:: 3627:: 3595:. 3589:: 3581:: 3552:. 3527:. 3515:: 3507:: 3482:. 3470:: 3462:: 3434:. 3430:: 3422:: 3392:. 3388:: 3361:. 3347:: 3339:: 3310:. 3298:: 3290:: 3276:c 3258:. 3231:. 3197:. 3155:. 3122:: 3112:: 3085:. 3058:. 2742:/ 2645:( 2639:S 2635:2 2630:H 2628:( 2614:x 2611:F 2608:x 2598:x 2596:F 2581:c 2578:T 2573:) 2569:O 2567:3 2563:2 2559:2 2470:- 2454:- 2329:H 2318:H 2314:c 2311:H 2292:λ 2288:H 2272:H 2266:2 2255:= 2251:H 2245:2 2191:λ 2187:H 2105:α 2101:e 2055:d 2035:s 2024:7 2022:O 2020:3 2016:2 2006:2 1998:K 1994:c 1991:T 1987:T 1979:ρ 1975:v 1972:c 1932:T 1924:k 1912:E 1908:E 1835:V 1828:I 1783:A 1732:) 1726:( 1721:) 1717:( 1707:· 1700:· 1693:· 1686:· 1659:. 1619:( 1603:( 1547:c 1544:T 1542:( 1536:c 1533:T 1386:h 1382:e 1378:h 1374:0 1371:Ί 1257:– 1173:. 1169:B 1163:m 1157:2 1153:e 1149:n 1140:= 1136:j 1123:, 1119:E 1113:m 1107:2 1103:e 1099:n 1093:= 1087:t 1078:j 944:- 854:e 847:t 840:v 20:)

Index

Superconduction

Meissner effect
Electromagnetism
Solenoid
Electricity
Magnetism
Optics
History
Computational
Textbooks
Phenomena
Electrostatics
Charge density
Conductor
Coulomb law
Electret
Electric charge
Electric dipole
Electric field
Electric flux
Electric potential
Electrostatic discharge
Electrostatic induction
Gauss law
Insulator
Permittivity
Polarization
Potential energy
Static electricity

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑