Knowledge

Symbolic regression

Source 📝

137:
means that it will possibly take a symbolic regression algorithm longer to find an appropriate model and parametrization, than traditional regression techniques. This can be attenuated by limiting the set of building blocks provided to the algorithm, based on existing knowledge of the system that produced the data; but in the end, using symbolic regression is a decision that has to be balanced with how much is known about the underlying system.
101:(to ensure the models accurately predict the data), but also special complexity measures, thus ensuring that the resulting models reveal the data's underlying structure in a way that's understandable from a human perspective. This facilitates reasoning and favors the odds of getting insights about the data-generating system, as well as improving generalisability and extrapolation behaviour by preventing 213:
In the real-world track, methods were trained to build interpretable predictive models for 14-day forecast counts of COVID-19 cases, hospitalizations, and deaths in New York State. These models were reviewed by a subject expert and assigned trust ratings and evaluated for accuracy and simplicity. The
136:
This approach has the disadvantage of having a much larger space to search, because not only the search space in symbolic regression is infinite, but there are an infinite number of models which will perfectly fit a finite data set (provided that the model complexity isn't artificially limited). This
144:
requires diversity in order to effectively explore the search space, the result is likely to be a selection of high-scoring models (and their corresponding set of parameters). Examining this collection could provide better insight into the underlying process, and allows the user to identify an
132:
While conventional regression techniques seek to optimize the parameters for a pre-specified model structure, symbolic regression avoids imposing prior assumptions, and instead infers the model from the data. In other words, it attempts to discover both model structures and model parameters.
62:. Usually, a subset of these primitives will be specified by the person operating it, but that's not a requirement of the technique. The symbolic regression problem for mathematical functions has been tackled with a variety of methods, including recombining equations most commonly using 178:
in Boston, MA. The competition pitted nine leading symbolic regression algorithms against each other on a novel set of data problems and considered different evaluation criteria. The competition was organized in two tracks, a synthetic track and a real-world data track.
22: 124:. Nevertheless, if the sought-for equation is not too complex it is possible to solve the symbolic regression problem exactly by generating every possible function (built from some predefined set of operators) and evaluating them on the dataset in question. 74:. Another non-classical alternative method to SR is called Universal Functions Originator (UFO), which has a different mechanism, search-space, and building strategy. Further methods such as Exact Learning attempt to transform the fitting problem into a 93:. It attempts to uncover the intrinsic relationships of the dataset, by letting the patterns in the data itself reveal the appropriate models, rather than imposing a model structure that is deemed mathematically tractable from a human perspective. The 254:
developed the "AI Feynman" algorithm, which attempts symbolic regression by training a neural network to represent the mystery function, then runs tests against the neural network to attempt to break up the problem into smaller parts. For example, if
516:, solved only 71. AI Feynman, in contrast to classic symbolic regression methods, requires a very large dataset in order to first train the neural network and is naturally biased towards equations that are common in elementary physics. 458: 187:
In the synthetic track, methods were compared according to five properties: re-discovery of exact expressions; feature selection; resistance to local optima; extrapolation; and sensitivity to noise. Rankings of the methods were:
504:, which reduces the size of the problem to be more manageable. AI Feynman also transforms the inputs and outputs of the mystery function in order to produce a new function which can be solved with other techniques, and performs 1201:
Kevin René Broløs; Meera Vieira Machado; Chris Cave; Jaan Kasak; Valdemar Stentoft-Hansen; Victor Galindo Batanero; Tom Jelen; Casper Wilstrup (2021-04-12). "An Approach to Symbolic Regression Using Feyn".
1166:
Udrescu, Silviu-Marian; Tan, Andrew; Feng, Jiahai; Neto, Orisvaldo; Wu, Tailin; Tegmark, Max (2020-12-16). "AI Feynman 2.0: Pareto-optimal symbolic regression exploiting graph modularity".
243:
by implementing evolutionary algorithms that iteratively improve the best-fit expression over many generations. Recently, researchers have proposed algorithms utilizing other tactics in
1401: 46:
No particular model is provided as a starting point for symbolic regression. Instead, initial expressions are formed by randomly combining mathematical building blocks such as
166:. The benchmark intends to be a living project: it encourages the submission of improvements, new datasets, and new methods, to keep track of the state of the art in SR. 1452: 162:
was proposed as a large benchmark for symbolic regression. In its inception, SRBench featured 14 symbolic regression methods, 7 other ML methods, and 252 datasets from
175: 258: 533:
is a quantum-inspired simulation and machine learning technology that helps search through an infinite list of potential mathematical models to solve a problem.
498: 478: 1044: 1442:"Performance improvement of machine learning via automatic discovery of facilitating functions as applied to a problem of symbolic system identification" 1043:
La Cava, William; Orzechowski, Patryk; Burlacu, Bogdan; de Franca, Fabricio; Virgolin, Marco; Jin, Ying; Kommenda, Michael; Moore, Jason (2021).
43:
that searches the space of mathematical expressions to find the model that best fits a given dataset, both in terms of accuracy and simplicity.
1421: 1412: 1376: 1482:(Java applet) — approximates a function by evolving combinations of simple arithmetic operators, using algorithms developed by 509: 105:. Accuracy and simplicity may be left as two separate objectives of the regression—in which case the optimum solutions form a 694: 75: 943:"Order of nonlinearity as a complexity measure for models generated by symbolic regression via pareto genetic programming" 629: 599: 98: 120:
problem, in the sense that one cannot always find the best possible mathematical expression to fit to a given dataset in
1517: 1512: 679: 603: 574: 570: 501: 659: 564: 560: 557:, a software environment for heuristic and evolutionary algorithms, including symbolic regression (free, open source) 174:
In 2022, SRBench announced the competition Interpretable Symbolic Regression for Data Science, which was held at the
669: 635:-compatible interface, achieved one of the best trade-offs between accuracy and simplicity of discovered models on 110: 1522: 674: 71: 908: 508:
to reduce the number of independent variables involved. The algorithm was able to "discover" 100 equations from
1491: 244: 240: 47: 942: 735: 649: 141: 55: 1432: 664: 861: 1114: 816: 727: 505: 740: 689: 684: 654: 625: 607: 67: 63: 40: 1076:
Michael Kommenda; William La Cava; Maimuna Majumder; Fabricio Olivetti de França; Marco Virgolin.
1336: 1203: 1167: 1104: 1056: 1025: 1007: 965: 923: 889: 780: 761: 109:—or they may be combined into a single objective by means of a model selection principle such as 1297: 542: 539:
is a Genetic Programming-based automated feature construction algorithm for symbolic regression.
218: 202: 1441: 1331:
Izzo, Dario; Biscani, Francesco; Mereta, Alessio (2016). "Differentiable genetic programming".
89:
specification of a model, symbolic regression isn't affected by human bias, or unknown gaps in
1279: 1244: 1148: 1130: 881: 842: 779:
Ying Jin; Weilin Fu; Jian Kang; Jiadong Guo; Jian Guo (2019). "Bayesian Symbolic Regression".
753: 79: 51: 1002:
Bartlett, Deaglan; Desmond, Harry; Ferreira, Pedro (2023). "Exhaustive Symbolic Regression".
1271: 1236: 1138: 1122: 1017: 957: 915: 873: 832: 824: 745: 584: 453:{\displaystyle f(x_{1},...,x_{i},x_{i+1},...,x_{n})=g(x_{1},...,x_{i})+h(x_{i+1},...,x_{n})} 94: 90: 1381: 140:
Nevertheless, this characteristic of symbolic regression also has advantages: because the
121: 25: 1468: 1049:
Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks
460:, tests against the neural network can recognize the separation and proceed to solve for 1118: 820: 731: 1143: 1092: 837: 804: 483: 463: 59: 715: 536: 1506: 1029: 927: 893: 1477: 1400:
Mark J. Willis; Hugo G. Hiden; Ben McKay; Gary A. Montague; Peter Marenbach (1997).
969: 21: 765: 632: 554: 106: 1263: 919: 1224: 1077: 251: 145:
approximation that better fits their needs in terms of accuracy and simplicity.
117: 102: 1264:"SR-Forest: A Genetic Programming based Heterogeneous Ensemble Learning Method" 877: 1275: 1240: 1078:"SRBench Competition 2022: Interpretable Symbolic Regression for Data Science" 1021: 1283: 1248: 1134: 984: 961: 885: 551:, differentiable Cartesian Genetic Programming in python (free, open source) 1483: 749: 617: 228: 1152: 1126: 846: 828: 757: 1262:
Zhang, Hengzhe; Zhou, Aimin; Chen, Qi; Xue, Bing; Zhang, Mengjie (2023).
1045:"Contemporary Symbolic Regression Methods and their Relative Performance" 611: 567:
technique for various problems including symbolic regression (commercial)
530: 500:
separately and with different variables as inputs. This is an example of
223: 192: 78:
in a natural function space, usually built around generalizations of the
592:, symbolic regression software based on simulated annealing (commercial) 1356: 595: 197: 163: 1361: 1302: 815:(16). American Association for the Advancement of Science: eaay2631. 580: 548: 513: 1495: 1317: 941:
Ekaterina J. Vladislavleva; Guido F. Smits; Dick Den Hertog (2009).
726:(5923). American Association for the Advancement of Science: 81–85. 97:
that drives the evolution of the models takes into account not only
1341: 1208: 1172: 1109: 1061: 1012: 785: 621: 1318:"Differentiable Cartesian Genetic Programming, v1.6 Documentation" 20: 1402:"Genetic programming: An introduction and survey of applications" 589: 28:
as it can be used in symbolic regression to represent a function.
1377:"'Machine Scientists' Distill the Laws of Physics From Raw Data" 1093:"AI Feynman: A physics-inspired method for symbolic regression" 805:"AI Feynman: A physics-inspired method for symbolic regression" 636: 577:
for symbolic regression and classification (free, open source)
583:, evolutionary symbolic regression software (commercial), and 159: 1333:
Proceedings of the European Conference on Genetic Programming
545:
is a deep learning framework for symbolic optimization tasks
909:"A Natural Representation of Functions for Exact Learning" 716:"Distilling free-form natural laws from experimental data" 512:, while a leading software using evolutionary algorithms, 650:
Closed-form expression § Conversion from numerical forms
1187: 1478:"Simple Symbolic Regression Using Genetic Programming" 1429:
Empowering Knowledge Computing with Variable Selection
1223:
Zhang, Hengzhe; Zhou, Aimin; Zhang, Hu (August 2022).
1440:
John R. Koza; Martin A. Keane; James P. Rice (1993).
486: 466: 261: 1492:"Symbolic Regression: Function Discovery & More" 1091:Udrescu, Silviu-Marian; Tegmark, Max (2020-04-17). 1188:"Feyn is a Python module for running the QLattice" 492: 472: 452: 116:It has been proven that symbolic regression is an 1449:IEEE International Conference on Neural Networks 1357:"High-Performance Symbolic Regression in Python" 860:Ali R. Al-Roomi; Mohamed E. El-Hawary (2020). 1268:IEEE Transactions on Evolutionary Computation 1229:IEEE Transactions on Evolutionary Computation 1004:IEEE Transactions on Evolutionary Computation 950:IEEE Transactions on Evolutionary Computation 598:, symbolic regression environment written in 8: 239:Most symbolic regression algorithms prevent 803:Silviu-Marian Udrescu; Max Tegmark (2020). 798: 796: 66:, as well as more recent methods utilizing 983:Virgolin, Marco; Pissis, Solon P. (2022). 1340: 1207: 1171: 1142: 1108: 1060: 1011: 989:Transactions on Machine Learning Research 836: 784: 739: 485: 465: 441: 410: 388: 363: 341: 310: 297: 272: 260: 1225:"An Evolutionary Forest for Regression" 706: 614:-free optimization (free, open source) 1420:Wouter Minnebo; Sean Stijven (2011). 7: 714:Michael Schmidt; Hod Lipson (2009). 128:Difference from classical regression 1469:"Symbolic regression — an overview" 14: 219:uDSR (Deep Symbolic Optimization) 203:uDSR (Deep Symbolic Optimization) 198:PySR (Python Symbolic Regression) 1422:"Chapter 4: Symbolic Regression" 985:"Symbolic Regression is NP-hard" 862:"Universal Functions Originator" 606:, using regularized evolution, 510:The Feynman Lectures on Physics 695:Discovery system (AI research) 571:Multi Expression Programming X 447: 403: 394: 356: 347: 265: 229:geneticengine (Genetic Engine) 1: 907:Benedict W. J. Irwin (2021). 1298:"Deep symbolic optimization" 680:Multi expression programming 575:Multi expression programming 214:ranking of the methods was: 1409:IEE Conference Publications 660:Gene expression programming 639:in 2021 (free, open source) 565:Gene expression programming 16:Type of regression analysis 1539: 920:10.21203/rs.3.rs-149856/v1 878:10.1016/j.asoc.2020.106417 670:Linear genetic programming 250:Silviu-Marian Udrescu and 111:minimum description length 1276:10.1109/TEVC.2023.3243172 1241:10.1109/TEVC.2021.3136667 1022:10.1109/TEVC.2023.3280250 872:. Elsevier B.V.: 106417. 675:Mathematical optimization 628:symbolic regression with 563:, - an implementation of 1476:Hansueli Gerber (1998). 962:10.1109/tevc.2008.926486 170:SRBench Competition 2022 750:10.1126/science.1165893 573:, an implementation of 241:combinatorial explosion 1127:10.1126/sciadv.aay2631 866:Applied Soft Computing 829:10.1126/sciadv.aay2631 494: 474: 454: 142:evolutionary algorithm 48:mathematical operators 29: 1490:Katya Vladislavleva. 1467:Ivan Zelinka (2004). 1433:University of Antwerp 665:Kolmogorov complexity 495: 475: 455: 24: 506:dimensional analysis 484: 464: 259: 235:Non-standard methods 1518:Genetic programming 1513:Regression analysis 1455:. pp. 191–198. 1415:. pp. 314–319. 1119:2020SciA....6.2631U 821:2020SciA....6.2631U 732:2009Sci...324...81S 690:Reverse mathematics 685:Regression analysis 655:Genetic programming 608:simulated annealing 537:Evolutionary Forest 64:genetic programming 41:regression analysis 33:Symbolic regression 502:divide and conquer 490: 470: 450: 52:analytic functions 30: 1451:. San Francisco: 1365:. 18 August 2022. 525:End-user software 493:{\displaystyle h} 473:{\displaystyle g} 85:By not requiring 80:Meijer-G function 1530: 1523:Computer algebra 1499: 1494:. Archived from 1481: 1472: 1456: 1446: 1436: 1431:(M.Sc. thesis). 1426: 1416: 1406: 1387: 1386: 1373: 1367: 1366: 1353: 1347: 1346: 1344: 1328: 1322: 1321: 1320:. June 10, 2022. 1314: 1308: 1307: 1306:. June 22, 2022. 1294: 1288: 1287: 1259: 1253: 1252: 1220: 1214: 1213: 1211: 1198: 1192: 1191: 1190:. June 22, 2022. 1184: 1178: 1177: 1175: 1163: 1157: 1156: 1146: 1112: 1103:(16): eaay2631. 1097:Science Advances 1088: 1082: 1081: 1073: 1067: 1066: 1064: 1040: 1034: 1033: 1015: 999: 993: 992: 980: 974: 973: 947: 938: 932: 931: 913: 904: 898: 897: 857: 851: 850: 840: 809:Science_Advances 800: 791: 790: 788: 776: 770: 769: 743: 711: 585:software library 499: 497: 496: 491: 479: 477: 476: 471: 459: 457: 456: 451: 446: 445: 421: 420: 393: 392: 368: 367: 346: 345: 321: 320: 302: 301: 277: 276: 209:Real-world Track 176:GECCO conference 95:fitness function 91:domain knowledge 68:Bayesian methods 1538: 1537: 1533: 1532: 1531: 1529: 1528: 1527: 1503: 1502: 1489: 1475: 1466: 1463: 1444: 1439: 1424: 1419: 1404: 1399: 1396: 1394:Further reading 1391: 1390: 1385:. May 10, 2022. 1382:Quanta Magazine 1375: 1374: 1370: 1355: 1354: 1350: 1330: 1329: 1325: 1316: 1315: 1311: 1296: 1295: 1291: 1261: 1260: 1256: 1222: 1221: 1217: 1200: 1199: 1195: 1186: 1185: 1181: 1165: 1164: 1160: 1090: 1089: 1085: 1075: 1074: 1070: 1042: 1041: 1037: 1001: 1000: 996: 982: 981: 977: 945: 940: 939: 935: 911: 906: 905: 901: 859: 858: 854: 802: 801: 794: 778: 777: 773: 741:10.1.1.308.2245 713: 712: 708: 703: 646: 527: 522: 482: 481: 462: 461: 437: 406: 384: 359: 337: 306: 293: 268: 257: 256: 237: 211: 185: 183:Synthetic Track 172: 156: 151: 130: 122:polynomial time 76:moments problem 72:neural networks 60:state variables 39:) is a type of 26:Expression tree 17: 12: 11: 5: 1536: 1534: 1526: 1525: 1520: 1515: 1505: 1504: 1501: 1500: 1498:on 2014-12-18. 1487: 1473: 1462: 1461:External links 1459: 1458: 1457: 1437: 1417: 1395: 1392: 1389: 1388: 1368: 1348: 1323: 1309: 1289: 1254: 1235:(4): 735–749. 1215: 1193: 1179: 1158: 1083: 1068: 1035: 994: 975: 956:(2): 333–349. 933: 899: 852: 792: 771: 705: 704: 702: 699: 698: 697: 692: 687: 682: 677: 672: 667: 662: 657: 652: 645: 642: 641: 640: 615: 593: 587: 578: 568: 558: 552: 546: 540: 534: 526: 523: 521: 518: 489: 469: 449: 444: 440: 436: 433: 430: 427: 424: 419: 416: 413: 409: 405: 402: 399: 396: 391: 387: 383: 380: 377: 374: 371: 366: 362: 358: 355: 352: 349: 344: 340: 336: 333: 330: 327: 324: 319: 316: 313: 309: 305: 300: 296: 292: 289: 286: 283: 280: 275: 271: 267: 264: 236: 233: 232: 231: 226: 221: 210: 207: 206: 205: 200: 195: 184: 181: 171: 168: 155: 152: 150: 147: 129: 126: 15: 13: 10: 9: 6: 4: 3: 2: 1535: 1524: 1521: 1519: 1516: 1514: 1511: 1510: 1508: 1497: 1493: 1488: 1485: 1479: 1474: 1470: 1465: 1464: 1460: 1454: 1450: 1443: 1438: 1434: 1430: 1423: 1418: 1414: 1410: 1403: 1398: 1397: 1393: 1384: 1383: 1378: 1372: 1369: 1364: 1363: 1358: 1352: 1349: 1343: 1338: 1334: 1327: 1324: 1319: 1313: 1310: 1305: 1304: 1299: 1293: 1290: 1285: 1281: 1277: 1273: 1269: 1265: 1258: 1255: 1250: 1246: 1242: 1238: 1234: 1230: 1226: 1219: 1216: 1210: 1205: 1197: 1194: 1189: 1183: 1180: 1174: 1169: 1162: 1159: 1154: 1150: 1145: 1140: 1136: 1132: 1128: 1124: 1120: 1116: 1111: 1106: 1102: 1098: 1094: 1087: 1084: 1079: 1072: 1069: 1063: 1058: 1054: 1050: 1046: 1039: 1036: 1031: 1027: 1023: 1019: 1014: 1009: 1005: 998: 995: 990: 986: 979: 976: 971: 967: 963: 959: 955: 951: 944: 937: 934: 929: 925: 921: 917: 910: 903: 900: 895: 891: 887: 883: 879: 875: 871: 867: 863: 856: 853: 848: 844: 839: 834: 830: 826: 822: 818: 814: 810: 806: 799: 797: 793: 787: 782: 775: 772: 767: 763: 759: 755: 751: 747: 742: 737: 733: 729: 725: 721: 717: 710: 707: 700: 696: 693: 691: 688: 686: 683: 681: 678: 676: 673: 671: 668: 666: 663: 661: 658: 656: 653: 651: 648: 647: 643: 638: 634: 631: 627: 623: 619: 616: 613: 609: 605: 601: 597: 594: 591: 588: 586: 582: 579: 576: 572: 569: 566: 562: 561:GeneXProTools 559: 556: 553: 550: 547: 544: 541: 538: 535: 532: 529: 528: 524: 519: 517: 515: 511: 507: 503: 487: 467: 442: 438: 434: 431: 428: 425: 422: 417: 414: 411: 407: 400: 397: 389: 385: 381: 378: 375: 372: 369: 364: 360: 353: 350: 342: 338: 334: 331: 328: 325: 322: 317: 314: 311: 307: 303: 298: 294: 290: 287: 284: 281: 278: 273: 269: 262: 253: 248: 246: 242: 234: 230: 227: 225: 222: 220: 217: 216: 215: 208: 204: 201: 199: 196: 194: 191: 190: 189: 182: 180: 177: 169: 167: 165: 161: 153: 148: 146: 143: 138: 134: 127: 125: 123: 119: 114: 112: 108: 104: 100: 99:error metrics 96: 92: 88: 83: 81: 77: 73: 69: 65: 61: 57: 53: 49: 44: 42: 38: 34: 27: 23: 19: 1496:the original 1448: 1428: 1408: 1380: 1371: 1360: 1351: 1332: 1326: 1312: 1301: 1292: 1267: 1257: 1232: 1228: 1218: 1196: 1182: 1161: 1100: 1096: 1086: 1071: 1052: 1048: 1038: 1003: 997: 988: 978: 953: 949: 936: 914:(Preprint). 902: 869: 865: 855: 812: 808: 774: 723: 719: 709: 633:scikit-learn 626:evolutionary 555:HeuristicLab 249: 238: 212: 186: 173: 157: 149:Benchmarking 139: 135: 131: 115: 107:Pareto front 86: 84: 45: 36: 32: 31: 18: 252:Max Tegmark 103:overfitting 1507:Categories 1342:1611.04766 1209:2104.05417 1173:2006.10782 1110:1905.11481 1062:2107.14351 1013:2211.11461 786:1910.08892 701:References 624:back-end) 1484:John Koza 1284:1089-778X 1249:1089-778X 1135:2375-2548 1030:253735380 928:234014141 894:219743405 886:1568-4946 736:CiteSeerX 590:TuringBot 158:In 2021, 56:constants 1153:32426452 970:12072764 847:32426452 758:19342586 644:See also 620:, fast ( 618:GP-GOMEA 612:gradient 531:QLattice 520:Software 224:QLattice 193:QLattice 87:a priori 1270:: 1–1. 1144:7159912 1115:Bibcode 838:7159912 817:Bibcode 766:7366016 728:Bibcode 720:Science 637:SRBench 160:SRBench 154:SRBench 118:NP-hard 1362:GitHub 1303:GitHub 1282:  1247:  1151:  1141:  1133:  1028:  968:  926:  892:  884:  845:  835:  764:  756:  738:  630:Python 610:, and 600:Python 581:Eureqa 514:Eureqa 58:, and 1445:(PDF) 1425:(PDF) 1405:(PDF) 1337:arXiv 1204:arXiv 1168:arXiv 1105:arXiv 1057:arXiv 1026:S2CID 1008:arXiv 1006:: 1. 966:S2CID 946:(PDF) 924:S2CID 912:(PDF) 890:S2CID 781:arXiv 762:S2CID 604:Julia 1453:IEEE 1280:ISSN 1245:ISSN 1149:PMID 1131:ISSN 882:ISSN 843:PMID 754:PMID 602:and 596:PySR 549:dCGP 543:uDSR 480:and 164:PMLB 70:and 1413:IEE 1272:doi 1237:doi 1139:PMC 1123:doi 1018:doi 958:doi 916:doi 874:doi 833:PMC 825:doi 746:doi 724:324 622:C++ 1509:: 1447:. 1427:. 1411:. 1407:. 1379:. 1359:. 1335:. 1300:. 1278:. 1266:. 1243:. 1233:26 1231:. 1227:. 1147:. 1137:. 1129:. 1121:. 1113:. 1099:. 1095:. 1055:. 1051:. 1047:. 1024:. 1016:. 987:. 964:. 954:13 952:. 948:. 922:. 888:. 880:. 870:94 868:. 864:. 841:. 831:. 823:. 811:. 807:. 795:^ 760:. 752:. 744:. 734:. 722:. 718:. 247:. 245:AI 113:. 82:. 54:, 50:, 37:SR 1486:. 1480:. 1471:. 1435:. 1345:. 1339:: 1286:. 1274:: 1251:. 1239:: 1212:. 1206:: 1176:. 1170:: 1155:. 1125:: 1117:: 1107:: 1101:6 1080:. 1065:. 1059:: 1053:1 1032:. 1020:: 1010:: 991:. 972:. 960:: 930:. 918:: 896:. 876:: 849:. 827:: 819:: 813:6 789:. 783:: 768:. 748:: 730:: 488:h 468:g 448:) 443:n 439:x 435:, 432:. 429:. 426:. 423:, 418:1 415:+ 412:i 408:x 404:( 401:h 398:+ 395:) 390:i 386:x 382:, 379:. 376:. 373:. 370:, 365:1 361:x 357:( 354:g 351:= 348:) 343:n 339:x 335:, 332:. 329:. 326:. 323:, 318:1 315:+ 312:i 308:x 304:, 299:i 295:x 291:, 288:. 285:. 282:. 279:, 274:1 270:x 266:( 263:f 35:(

Index


Expression tree
regression analysis
mathematical operators
analytic functions
constants
state variables
genetic programming
Bayesian methods
neural networks
moments problem
Meijer-G function
domain knowledge
fitness function
error metrics
overfitting
Pareto front
minimum description length
NP-hard
polynomial time
evolutionary algorithm
SRBench
PMLB
GECCO conference
QLattice
PySR (Python Symbolic Regression)
uDSR (Deep Symbolic Optimization)
uDSR (Deep Symbolic Optimization)
QLattice
geneticengine (Genetic Engine)

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.