Knowledge (XXG)

Symplectic filling

Source 📝

530:
It is known that this list is strictly increasing in difficulty in the sense that there are examples of contact 3-manifolds with weak but no strong filling, and others that have strong but no Stein filling. Further, it can be shown that each type of filling is an example of the one preceding it, so
547:, but it has been shown that any semi-filling can be modified to be a filling of the same type, of the same 3-manifold, in the symplectic world (Stein manifolds always have one boundary component). 460: 243: 489: 516: 352: 295: 205: 402: 601: 377: 79:
There are many types of fillings, and a few examples of these types (within a probably limited perspective) follow.
322: 84: 302: 132: 210: 465: 54: 167: 151: 61: 531:
that a Stein filling is a strong symplectic filling, for example. It used to be that one spoke of
494: 328: 271: 181: 565: 540: 112: 155: 583: 366: 595: 104: 136: 588:
H. Geiges, An Introduction to Contact Topology, Cambridge University Press, 2008
20: 46: 35: 397: 28: 569: 123:
All the following cobordisms are oriented, with the orientation on
107:
at each point of the boundary is the one pointing directly out of
76: = 3, where one may consider certain types of fillings. 72:. Perhaps the most active area of current research is when 392:
that are complex with respect to the complex structure on
103:, which is the one where the first basis vector of the 497: 468: 405: 331: 274: 213: 184: 510: 483: 454: 346: 289: 237: 199: 455:{\displaystyle \{x\in \mathbb {C} ^{2}:|x|=1\}} 8: 449: 406: 526:| < 1} bounded by that sphere. 115:. Mathematicians call this orientation the 252:symplectic filling of a contact manifold ( 498: 496: 475: 471: 470: 467: 438: 430: 421: 417: 416: 404: 330: 273: 223: 218: 212: 183: 99:is given by the boundary orientation of 396:. The canonical example of this is the 357:A Stein filling of a contact manifold ( 16:Cobordism W between X and the empty set 558:A Few Remarks about Symplectic Filling 127:given by a symplectic structure. Let 68: + 1)-dimensional manifold 7: 384:is the set of complex tangencies to 238:{\displaystyle \omega |_{\xi }>0} 388:– that is, those tangent planes to 87:filling of any orientable manifold 535:in this context, which means that 332: 275: 185: 14: 484:{\displaystyle \mathbb {C} ^{2}} 462:where the complex structure on 439: 431: 378:strictly pseudoconvex boundary 219: 1: 95:such that the orientation of 511:{\displaystyle {\sqrt {-1}}} 347:{\displaystyle \partial W=X} 305:near the boundary (which is 290:{\displaystyle \partial W=X} 260:) is a symplectic manifold ( 200:{\displaystyle \partial W=X} 309:) and α is a primitive for 111:, with respect to a chosen 618: 49:. More to the point, the 564:, 2004, p. 277–293 560:, Geometry and Topology 539:is one of possibly many 518:in each coordinate and 582:(2004), p. 73–80 576:On Symplectic Fillings 512: 485: 456: 348: 291: 239: 201: 578:Algebr. Geom. Topol. 513: 491:is multiplication by 486: 457: 349: 292: 240: 202: 495: 466: 403: 329: 272: 211: 182: 117:outward normal first 91:is another manifold 55:topological manifold 541:boundary components 168:symplectic manifold 602:Geometric topology 508: 481: 452: 344: 287: 235: 197: 506: 113:Riemannian metric 609: 517: 515: 514: 509: 507: 499: 490: 488: 487: 482: 480: 479: 474: 461: 459: 458: 453: 442: 434: 426: 425: 420: 353: 351: 350: 345: 325:of the boundary 296: 294: 293: 288: 244: 242: 241: 236: 228: 227: 222: 206: 204: 203: 198: 156:contact manifold 617: 616: 612: 611: 610: 608: 607: 606: 592: 591: 556:Y. Eliashberg, 553: 493: 492: 469: 464: 463: 415: 401: 400: 327: 326: 270: 269: 217: 209: 208: 180: 179: 17: 12: 11: 5: 615: 613: 605: 604: 594: 593: 590: 589: 586: 572: 552: 549: 528: 527: 522:is the ball {| 505: 502: 478: 473: 451: 448: 445: 441: 437: 433: 429: 424: 419: 414: 411: 408: 367:Stein manifold 355: 343: 340: 337: 334: 286: 283: 280: 277: 246: 234: 231: 226: 221: 216: 196: 193: 190: 187: 121: 120: 15: 13: 10: 9: 6: 4: 3: 2: 614: 603: 600: 599: 597: 587: 585: 581: 577: 573: 571: 567: 563: 559: 555: 554: 550: 548: 546: 542: 538: 534: 533:semi-fillings 525: 521: 503: 500: 476: 446: 443: 435: 427: 422: 412: 409: 399: 395: 391: 387: 383: 379: 375: 371: 368: 364: 360: 356: 341: 338: 335: 324: 320: 316: 312: 308: 304: 300: 284: 281: 278: 267: 263: 259: 255: 251: 247: 232: 229: 224: 214: 194: 191: 188: 177: 173: 169: 165: 161: 157: 154:filling of a 153: 150: 146: 145: 144: 142: 138: 134: 130: 126: 118: 114: 110: 106: 105:tangent space 102: 98: 94: 90: 86: 82: 81: 80: 77: 75: 71: 67: 63: 59: 56: 53:-dimensional 52: 48: 44: 40: 37: 33: 30: 26: 22: 579: 575: 570:math/0311459 561: 557: 544: 536: 532: 529: 523: 519: 393: 389: 385: 381: 373: 369: 362: 358: 323:neighborhood 318: 314: 310: 306: 298: 265: 261: 257: 253: 249: 175: 171: 163: 159: 148: 140: 137:contact form 128: 124: 122: 116: 108: 100: 96: 92: 88: 78: 73: 69: 65: 57: 50: 42: 38: 31: 24: 18: 574:J. Etnyre, 313:. That is, 131:denote the 119:convention. 21:mathematics 551:References 372:which has 297:such that 207:such that 152:symplectic 501:− 413:∈ 333:∂ 276:∂ 225:ξ 215:ω 186:∂ 47:empty set 36:cobordism 596:Category 398:3-sphere 85:oriented 62:boundary 45:and the 41:between 29:manifold 376:as its 365:) is a 268:) with 178:) with 166:) is a 135:of the 64:of an ( 60:is the 25:filling 584:online 250:strong 139:  133:kernel 566:arXiv 321:in a 303:exact 34:is a 27:of a 380:and 230:> 149:weak 23:, a 543:of 301:is 83:An 19:In 598:: 319:dα 317:= 248:A 147:A 143:. 580:4 568:: 562:8 545:W 537:X 524:x 520:W 504:1 477:2 472:C 450:} 447:1 444:= 440:| 436:x 432:| 428:: 423:2 418:C 410:x 407:{ 394:W 390:X 386:X 382:ξ 374:X 370:W 363:ξ 361:, 359:X 354:. 342:X 339:= 336:W 315:ω 311:ω 307:X 299:ω 285:X 282:= 279:W 266:ω 264:, 262:W 258:ξ 256:, 254:X 245:. 233:0 220:| 195:X 192:= 189:W 176:ω 174:, 172:W 170:( 164:ξ 162:, 160:X 158:( 141:α 129:ξ 125:W 109:W 101:W 97:X 93:W 89:X 74:n 70:W 66:n 58:X 51:n 43:X 39:W 32:X

Index

mathematics
manifold
cobordism
empty set
topological manifold
boundary
oriented
tangent space
Riemannian metric
kernel
contact form
symplectic
contact manifold
symplectic manifold
exact
neighborhood
Stein manifold
strictly pseudoconvex boundary
3-sphere
boundary components
arXiv
math/0311459
online
Category
Geometric topology

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.