Knowledge (XXG)

Neurotransmission

Source 📝

658:
CB1-HcrtR1 heteromer compared with the HcrtR1-HcrtR1 homomer was reported (Ward et al., 2011b). These data provide unambiguous identification of CB1-HcrtR1 heteromerization, which has a substantial functional impact. ... The existence of a cross-talk between the hypocretinergic and endocannabinoid systems is strongly supported by their partially overlapping anatomical distribution and common role in several physiological and pathological processes. However, little is known about the mechanisms underlying this interaction. ... Acting as a retrograde messenger, endocannabinoids modulate the glutamatergic excitatory and GABAergic inhibitory synaptic inputs into the dopaminergic neurons of the VTA and the glutamate transmission in the NAc. Thus, the activation of CB1 receptors present on axon terminals of GABAergic neurons in the VTA inhibits GABA transmission, removing this inhibitory input on dopaminergic neurons (Riegel and Lupica, 2004). Glutamate synaptic transmission in the VTA and NAc, mainly from neurons of the PFC, is similarly modulated by the activation of CB1 receptors (Melis et al., 2004).
267:
amplifies this process. Neurotransmitters containing vesicles cluster around active sites, and after they have been released may be recycled by one of three proposed mechanisms. The first proposed mechanism involves partial opening and then re-closing of the vesicle. The second two involve the full fusion of the vesicle with the membrane, followed by recycling, or recycling into the endosome. Vesicular fusion is driven largely by the concentration of calcium in micro domains located near calcium channels, allowing for only microseconds of neurotransmitter release, while returning to normal calcium concentration takes a couple of hundred of microseconds. The vesicle exocytosis is thought to be driven by a protein complex called
197:); instead, neurons interact at close contact points called synapses. A neuron transports its information by way of an action potential. When the nerve impulse arrives at the synapse, it may cause the release of neurotransmitters, which influence another (postsynaptic) neuron. The postsynaptic neuron may receive inputs from many additional neurons, both excitatory and inhibitory. The excitatory and inhibitory influences are summed, and if the net effect is inhibitory, the neuron will be less likely to "fire" (i.e., generate an action potential), and if the net effect is excitatory, the neuron will be more likely to fire. How likely a neuron is to fire depends on how far its 275:. Once released, a neurotransmitter enters the synapse and encounters receptors. Neurotransmitter receptors can either be ionotropic or g protein coupled. Ionotropic receptors allow for ions to pass through when agonized by a ligand. The main model involves a receptor composed of multiple subunits that allow for coordination of ion preference. G protein coupled receptors, also called metabotropic receptors, when bound to by a ligand undergo conformational changes yielding in intracellular response. Termination of neurotransmitter activity is usually done by a transporter, however enzymatic deactivation is also plausible. 63: 316:
Neurotransmission implies both a convergence and a divergence of information. First one neuron is influenced by many others, resulting in a convergence of input. When the neuron fires, the signal is sent to many other neurons, resulting in a divergence of output. Many other neurons are influenced by
209:
are activated so that the net inward sodium current exceeds all outward currents. Excitatory inputs bring a neuron closer to threshold, while inhibitory inputs bring the neuron farther from threshold. An action potential is an "all-or-none" event; neurons whose membranes have not reached threshold
147:
Neurotransmission is regulated by several different factors: the availability and rate-of-synthesis of the neurotransmitter, the release of that neurotransmitter, the baseline activity of the postsynaptic cell, the number of available postsynaptic receptors for the neurotransmitter to bind to, and
293:
is the adding together of these impulses at the axon hillock. If the neuron only gets excitatory impulses, it will generate an action potential. If instead the neuron gets as many inhibitory as excitatory impulses, the inhibition cancels out the excitation and the nerve impulse will stop there.
266:
Neurotransmitters are spontaneously packed in vesicles and released in individual quanta-packets independently of presynaptic action potentials. This slow release is detectable and produces micro-inhibitory or micro-excitatory effects on the postsynaptic neuron. An action potential briefly
657:
Direct CB1-HcrtR1 interaction was first proposed in 2003 (Hilairet et al., 2003). Indeed, a 100-fold increase in the potency of hypocretin-1 to activate the ERK signaling was observed when CB1 and HcrtR1 were co-expressed ... In this study, a higher potency of hypocretin-1 to regulate
71: 307:
means that the effects of impulses received at the same place can add up if the impulses are received in close temporal succession. Thus the neuron may fire when multiple impulses are received, even if each impulse on its own would not be sufficient to cause firing.
600:
Thus, it is conceivable that low levels of CB1 receptors are located on glutamatergic and GABAergic terminals impinging on DA neurons , where they can fine-tune the release of inhibitory and excitatory neurotransmitter and regulate DA neuron
300:
means that the effects of impulses received at different places on the neuron add up, so that the neuron may fire when such impulses are received simultaneously, even if each impulse on its own would not be sufficient to cause firing.
372:
Some neurons can release at least two neurotransmitters at the same time, the other being a cotransmitter, in order to provide the stabilizing negative feedback required for meaningful encoding, in the absence of inhibitory
166:. The released neurotransmitter may then move across the synapse to be detected by and bind with receptors in the postsynaptic neuron. Binding of neurotransmitters may influence the postsynaptic neuron in either an 74: 78: 77: 73: 72: 603:
Consistently, in vitro electrophysiological experiments from independent laboratories have provided evidence of CB1 receptor localization on glutamatergic and GABAergic axon terminals in the VTA and SNc.
79: 257:
Deactivation of the neurotransmitter. The neurotransmitter is either destroyed enzymatically, or taken back into the terminal from which it came, where it can be reused, or degraded and removed.
76: 1275:
Thomas EA, Bornstein JC (2003). "Inhibitory cotransmission or after-hyperpolarizing potentials can regulate firing in recurrent networks with excitatory metabotropic transmission".
354:
Recent studies in a myriad of systems have shown that most, if not all, neurons release several different chemical messengers. Cotransmission allows for more complex effects at
970:
Wang JH, Wei J, Chen X, Yu J, Chen N, Shi J (September 2008). "Gain and fidelity of transmission patterns at cortical excitatory unitary synapses improve spike encoding".
189:
Neurons form complex biological neural networks through which nerve impulses (action potentials) travel. Neurons do not touch each other (except in the case of an
294:
Action potential generation is proportionate to the probability and pattern of neurotransmitter release, and to postsynaptic receptor sensitization.
75: 935: 909: 884: 174:
way. The binding of neurotransmitters to receptors in the postsynaptic neuron can trigger either short term changes, such as changes in the
1124: 470:
One unusual pair of co-transmitters is GABA and glutamate which are released from the same axon terminals of neurons originating from the
339:. To release neurotransmitters, the synaptic vesicles transiently dock and fuse at the base of specialized 10–15 nm cup-shaped 1074:"Upregulation of transmitter release probability improves a conversion of synaptic analogue signals into neuronal digital spikes" 1492: 415: 361:
In modern neuroscience, neurons are often classified by their cotransmitter. For example, striatal "GABAergic neurons" utilize
138: 66:
The presynaptic neuron (top) releases a neurotransmitter, which activates receptors on the nearby postsynaptic cell (bottom).
1320:"Cannabinoids inhibit noradrenergic and purinergic sympathetic cotransmission in the rat isolated mesenteric arterial bed" 408: 119: 38: 531: 456: 284: 536: 526: 441: 724:
Ayakannu, Thangesweran; Taylor, Anthony H.; Marczylo, Timothy H.; Willets, Jonathon M.; Konje, Justin C. (2013).
355: 133:
levels) that signal through receptors that are located on the axon terminal of the presynaptic neuron, mainly at
1487: 475: 1372:"Selective Brain Distribution and Distinctive Synaptic Architecture of Dual Glutamatergic-GABAergic Neurons" 541: 516: 479: 111: 664:
Figure 1: Schematic of brain CB1 expression and orexinergic neurons expressing OX1 (HcrtR1) or OX2 (HcrtR2)
335:
At the nerve terminal, neurotransmitters are present within 35–50 nm membrane-encased vesicles called
210:
will not fire, while those that do must fire. Once the action potential is initiated (traditionally at the
471: 437: 179: 502:
of different signaling pathways led to the discovery of a genetic association with intracranial volume.
464: 83:
Ligand-gated ion channel showing the binding of transmitter (Tr) and changing of membrane potential (Vm)
1240:
Trudeau LE, Gutiérrez R (June 2007). "On cotransmission & neurotransmitter phenotype plasticity".
1026: 877:
The Neurobiology of Pain: Symposium of the Northern Neurobiology Group Held at Leeds on 18 April 1983
460: 351:
has been solved, providing the molecular architecture and the complete composition of the machinery.
1423:"Novel genetic loci underlying human intracranial volume identified through genome-wide association" 499: 202: 183: 148:
the subsequent removal or deactivation of the neurotransmitter by enzymes or presynaptic reuptake.
1370:
Dh, Root; S, Zhang; Dj, Barker; J, Miranda-Barrientos; B, Liu; Hl, Wang; M, Morales (2018-06-19).
673: 668: 663: 455:
can modify the overall response to sympathetic nerve stimulation, and indicate that prejunctional
254:
After its release, the transmitter binds to and activates a receptor in the postsynaptic membrane.
1300: 995: 498:
Neurotransmission is genetically associated with other characteristics or features. For example,
198: 190: 175: 171: 167: 156: 130: 1421:
Adams HH, Hibar DP, Chouraki V, Stein JL, Nyquist PA, Rentería ME, et al. (December 2016).
1128: 118:
of another neuron (the postsynaptic neuron) a short distance away. A similar process occurs in
1452: 1403: 1349: 1292: 1257: 1222: 1173: 1105: 1054: 987: 951:
Williams SM, McNamara JO, Lamantia AS, Katz LC, Fitzpatrick D, Augustine GJ, Purves D (2001).
931: 905: 880: 857: 839: 800: 792: 765: 747: 706: 648: 591: 521: 1015:"Quantal glutamate release is essential for reliable neuronal encodings in cerebral networks" 122:, where the dendrites of the postsynaptic neuron release retrograde neurotransmitters (e.g., 1442: 1434: 1393: 1383: 1339: 1331: 1284: 1249: 1212: 1204: 1163: 1155: 1095: 1085: 1044: 1034: 979: 847: 831: 755: 737: 698: 638: 628: 581: 573: 336: 272: 227: 160: 152: 123: 99: 289:
Each neuron connects with numerous other neurons, receiving numerous impulses from them.
268: 215: 205:, the voltage at which an action potential is triggered because enough voltage-dependent 1030: 1447: 1422: 1398: 1371: 1344: 1319: 1217: 1192: 1168: 1159: 1143: 1100: 1073: 1049: 1014: 852: 819: 760: 725: 643: 616: 586: 561: 433: 362: 329: 206: 1288: 617:"Cannabinoid-hypocretin cross-talk in the central nervous system: what we know so far" 1481: 487: 401: 244:
Storage of the neurotransmitter in storage granules or vesicles in the axon terminal.
238: 163: 127: 103: 17: 1304: 999: 214:), it will propagate along the axon, leading to release of neurotransmitters at the 511: 452: 211: 194: 62: 1388: 1039: 486:
whereas the projections from the supramammillary nucleus are known to target the
1208: 449: 426: 374: 366: 340: 1472: 952: 702: 577: 562:"Endocannabinoid signaling in midbrain dopamine neurons: more than physiology?" 820:"The role of spontaneous neurotransmission in synapse and circuit development" 445: 248: 843: 796: 751: 633: 463:-inhibitory action. Thus cannabinoids can inhibit both the noradrenergic and 686: 422: 395: 344: 234: 134: 1456: 1407: 1353: 1335: 1296: 1261: 1226: 1177: 1109: 1090: 1058: 991: 861: 804: 769: 710: 652: 595: 358:, and thus allows for more complex communication to occur between neurons. 742: 1144:"Discovery of the 'porosome'; the universal secretory machinery in cells" 669:
Figure 2: Synaptic signaling mechanisms in cannabinoid and orexin systems
483: 391: 348: 115: 98:"send, let through") is the process by which signaling molecules called 983: 385: 141: 930:(4th ed.). Amsterdam: Elsevier/Academic Press. pp. 133–181. 835: 726:"The Endocannabinoid System and Sex Steroid Hormone-Dependent Cancers" 1253: 247:
Calcium enters the axon terminal during an action potential, causing
107: 1438: 328:
is the release of several types of neurotransmitters from a single
926:
Squire L, Berg D, Bloom FE, du Lac S, Ghosh A, Spitzer NC (2013).
517:
Biological neuron model § Synaptic transmission (Koch & Segev)
61: 1193:"Neuronal porosome proteome: Molecular dynamics and architecture" 1191:
Lee JS, Jeremic A, Shin L, Cho WJ, Chen X, Jena BP (July 2012).
955:. In Purves D, Augustine GJ, Fitzpatrick D, et al. (eds.). 381: 233:
Synthesis of the neurotransmitter. This can take place in the
674:
Figure 3: Schematic of brain pathways involved in food intake
218:
to pass along information to yet another adjacent neuron.
110:(the presynaptic neuron), and bind to and react with the 687:"Role of endogenous cannabinoids in synaptic signaling" 42: 444:
co-transmitters. It is found that the endocannabinoid
1473:
Historical evolution of the neurotransmission concept
615:
Flores A, Maldonado R, Berrendero F (December 2013).
1318:Pakdeechote P, Dunn WR, Ralevic V (November 2007). 959:(2nd ed.). Sunderland, MA: Sinauer Associates. 879:(1st ed.). Manchester Univ Pr. p. 111. 251:of the neurotransmitter into the synaptic cleft. 818:Andreae, Laura C.; Burrone, Juan (March 2018). 343:structures at the presynaptic membrane called 182:, or longer term changes by the activation of 685:Freund TF, Katona I, Piomelli D (July 2003). 467:components of sympathetic neurotransmission. 8: 26: 1148:Journal of Cellular and Molecular Medicine 222:Stages in neurotransmission at the synapse 1446: 1397: 1387: 1343: 1216: 1167: 1099: 1089: 1048: 1038: 904:(5th ed.). Worth. pp. 102–104. 851: 759: 741: 642: 632: 585: 159:, a neurotransmitter is released at the 69: 32:This is an accepted version of this page 785:Rinsho Shinkeigaku = Clinical Neurology 552: 126:; synthesized in response to a rise in 28: 1013:Yu J, Qian H, Chen N, Wang JH (2011). 730:International Journal of Endocrinology 1365: 1363: 1072:Yu J, Qian H, Wang JH (August 2012). 902:Fundamentals of Human Neuropsychology 7: 59:Impulse transmission between neurons 560:Melis M, Pistis M (December 2007). 1160:10.1111/j.1582-4934.2006.tb00294.x 953:"Summation of Synaptic Potentials" 57: 783:Nagatsu, T. (December 2000). "". 824:Journal of Neuroscience Research 482:. The former two project to the 369:as their primary cotransmitter. 1324:British Journal of Pharmacology 916:(reference for all five stages) 416:calcitonin gene-related peptide 1: 1289:10.1016/S0306-4522(03)00039-3 409:vasoactive intestinal peptide 1389:10.1016/j.celrep.2018.05.063 1125:"PSY 340 Brain and Behavior" 1040:10.1371/journal.pone.0025219 120:retrograde neurotransmission 1209:10.1016/j.jprot.2012.05.017 900:Kolb B, Whishaw IQ (2003). 875:Holden A, Winlow W (1984). 532:Molecular neuropharmacology 404:(ACh)–glutamate co-release. 285:Summation (neurophysiology) 157:graded electrical potential 151:In response to a threshold 1509: 703:10.1152/physrev.00004.2003 578:10.2174/157015907782793612 537:Neuromuscular transmission 527:G protein-coupled receptor 312:Convergence and divergence 282: 225: 621:Frontiers in Neuroscience 566:Current Neuropharmacology 271:, that is the target for 237:, in the axon, or in the 94:"passage, crossing" from 928:Fundamental neuroscience 634:10.3389/fnins.2013.00256 476:internal globus pallidus 347:. The neuronal porosome 39:latest accepted revision 1242:Molecular Interventions 972:Journal of Cell Science 542:Neuropsychopharmacology 480:supramammillary nucleus 180:postsynaptic potentials 1493:Molecular neuroscience 1336:10.1038/sj.bjp.0707397 1091:10.1186/1756-6606-5-26 472:ventral tegmental area 356:postsynaptic receptors 84: 67: 1197:Journal of Proteomics 1131:on February 19, 2006. 691:Physiological Reviews 82: 65: 18:Synaptic transmission 1142:Anderson LL (2006). 490:of the hippocampus. 377:. Examples include: 102:are released by the 1427:Nature Neuroscience 1031:2011PLoSO...625219Y 743:10.1155/2013/259676 500:enrichment analyses 494:Genetic association 262:General description 203:threshold potential 29:Page version status 984:10.1242/jcs.025684 978:(Pt 17): 2951–60. 672: • 667: • 662: • 418:(CGRP) co-release. 305:Temporal summation 199:membrane potential 191:electrical synapse 184:signaling cascades 176:membrane potential 85: 68: 35: 1433:(12): 1569–1582. 1382:(12): 3465–3479. 937:978-0-12-385870-2 911:978-0-7167-5300-1 886:978-0-7190-1061-3 836:10.1002/jnr.24154 791:(12): 1185–1188. 522:Electrophysiology 411:(VIP) co-release. 337:synaptic vesicles 298:Spatial summation 100:neurotransmitters 88:Neurotransmission 80: 16:(Redirected from 1500: 1461: 1460: 1450: 1418: 1412: 1411: 1401: 1391: 1367: 1358: 1357: 1347: 1315: 1309: 1308: 1272: 1266: 1265: 1254:10.1124/mi.7.3.5 1237: 1231: 1230: 1220: 1188: 1182: 1181: 1171: 1139: 1133: 1132: 1127:. Archived from 1120: 1114: 1113: 1103: 1093: 1069: 1063: 1062: 1052: 1042: 1010: 1004: 1003: 967: 961: 960: 948: 942: 941: 923: 917: 915: 897: 891: 890: 872: 866: 865: 855: 815: 809: 808: 780: 774: 773: 763: 745: 721: 715: 714: 682: 676: 660: 646: 636: 612: 606: 605: 589: 557: 273:botulinum toxins 228:Chemical synapse 153:action potential 124:endocannabinoids 81: 21: 1508: 1507: 1503: 1502: 1501: 1499: 1498: 1497: 1488:Neurophysiology 1478: 1477: 1469: 1464: 1439:10.1038/nn.4398 1420: 1419: 1415: 1369: 1368: 1361: 1317: 1316: 1312: 1274: 1273: 1269: 1239: 1238: 1234: 1203:(13): 3952–62. 1190: 1189: 1185: 1141: 1140: 1136: 1122: 1121: 1117: 1078:Molecular Brain 1071: 1070: 1066: 1012: 1011: 1007: 969: 968: 964: 950: 949: 945: 938: 925: 924: 920: 912: 899: 898: 894: 887: 874: 873: 869: 817: 816: 812: 782: 781: 777: 723: 722: 718: 684: 683: 679: 671: 666: 661: 614: 613: 609: 602: 559: 558: 554: 550: 508: 496: 425:co-release (in 363:opioid peptides 323: 314: 287: 281: 264: 230: 224: 216:synaptic bouton 207:sodium channels 70: 60: 55: 54: 53: 52: 51: 50: 47:9 February 2024 34: 22: 15: 12: 11: 5: 1506: 1504: 1496: 1495: 1490: 1480: 1479: 1476: 1475: 1468: 1467:External links 1465: 1463: 1462: 1413: 1359: 1310: 1267: 1232: 1183: 1134: 1115: 1064: 1005: 962: 943: 936: 918: 910: 892: 885: 867: 830:(3): 354–359. 810: 775: 716: 697:(3): 1017–66. 677: 607: 551: 549: 546: 545: 544: 539: 534: 529: 524: 519: 514: 507: 504: 495: 492: 431: 430: 419: 412: 405: 399: 389: 330:nerve terminal 326:Cotransmission 322: 321:Cotransmission 319: 313: 310: 283:Main article: 280: 277: 263: 260: 259: 258: 255: 252: 245: 242: 226:Main article: 223: 220: 58: 56: 36: 30: 27: 25: 24: 23: 14: 13: 10: 9: 6: 4: 3: 2: 1505: 1494: 1491: 1489: 1486: 1485: 1483: 1474: 1471: 1470: 1466: 1458: 1454: 1449: 1444: 1440: 1436: 1432: 1428: 1424: 1417: 1414: 1409: 1405: 1400: 1395: 1390: 1385: 1381: 1377: 1373: 1366: 1364: 1360: 1355: 1351: 1346: 1341: 1337: 1333: 1330:(5): 725–33. 1329: 1325: 1321: 1314: 1311: 1306: 1302: 1298: 1294: 1290: 1286: 1283:(2): 333–51. 1282: 1278: 1271: 1268: 1263: 1259: 1255: 1251: 1248:(3): 138–46. 1247: 1243: 1236: 1233: 1228: 1224: 1219: 1214: 1210: 1206: 1202: 1198: 1194: 1187: 1184: 1179: 1175: 1170: 1165: 1161: 1157: 1154:(1): 126–31. 1153: 1149: 1145: 1138: 1135: 1130: 1126: 1119: 1116: 1111: 1107: 1102: 1097: 1092: 1087: 1083: 1079: 1075: 1068: 1065: 1060: 1056: 1051: 1046: 1041: 1036: 1032: 1028: 1025:(9): e25219. 1024: 1020: 1016: 1009: 1006: 1001: 997: 993: 989: 985: 981: 977: 973: 966: 963: 958: 954: 947: 944: 939: 933: 929: 922: 919: 913: 907: 903: 896: 893: 888: 882: 878: 871: 868: 863: 859: 854: 849: 845: 841: 837: 833: 829: 825: 821: 814: 811: 806: 802: 798: 794: 790: 786: 779: 776: 771: 767: 762: 757: 753: 749: 744: 739: 735: 731: 727: 720: 717: 712: 708: 704: 700: 696: 692: 688: 681: 678: 675: 670: 665: 659: 654: 650: 645: 640: 635: 630: 626: 622: 618: 611: 608: 604: 597: 593: 588: 583: 579: 575: 572:(4): 268–77. 571: 567: 563: 556: 553: 547: 543: 540: 538: 535: 533: 530: 528: 525: 523: 520: 518: 515: 513: 510: 509: 505: 503: 501: 493: 491: 489: 488:dentate gyrus 485: 481: 477: 473: 468: 466: 462: 458: 457:CB1 receptors 454: 451: 447: 443: 439: 435: 434:Noradrenaline 428: 424: 420: 417: 413: 410: 406: 403: 402:Acetylcholine 400: 397: 393: 390: 387: 383: 380: 379: 378: 376: 370: 368: 364: 359: 357: 352: 350: 346: 342: 338: 333: 331: 327: 320: 318: 317:this neuron. 311: 309: 306: 302: 299: 295: 292: 286: 278: 276: 274: 270: 261: 256: 253: 250: 246: 243: 240: 239:axon terminal 236: 232: 231: 229: 221: 219: 217: 213: 208: 204: 200: 196: 192: 187: 185: 181: 177: 173: 169: 165: 162: 158: 154: 149: 145: 143: 140: 139:glutamatergic 136: 132: 129: 128:intracellular 125: 121: 117: 113: 109: 105: 104:axon terminal 101: 97: 93: 89: 64: 48: 44: 40: 33: 19: 1430: 1426: 1416: 1379: 1376:Cell Reports 1375: 1327: 1323: 1313: 1280: 1277:Neuroscience 1276: 1270: 1245: 1241: 1235: 1200: 1196: 1186: 1151: 1147: 1137: 1129:the original 1118: 1081: 1077: 1067: 1022: 1018: 1008: 975: 971: 965: 957:Neuroscience 956: 946: 927: 921: 901: 895: 876: 870: 827: 823: 813: 788: 784: 778: 733: 729: 719: 694: 690: 680: 656: 624: 620: 610: 599: 569: 565: 555: 512:Autoreceptor 497: 469: 459:mediate the 453:WIN 55,212-2 432: 375:interneurons 371: 360: 353: 334: 325: 324: 315: 304: 303: 297: 296: 290: 288: 265: 212:axon hillock 201:is from the 195:gap junction 188: 150: 146: 96:transmittere 95: 91: 87: 86: 46: 37:This is the 31: 1123:Hevern VW. 450:cannabinoid 442:sympathetic 427:hippocampus 398:co-release. 388:co-release. 367:substance P 341:lipoprotein 161:presynaptic 92:transmissio 1482:Categories 1084:(26): 26. 736:: 259676. 548:References 465:purinergic 421:Glutamate– 193:through a 172:excitatory 168:inhibitory 844:0360-4012 797:0009-918X 752:1687-8337 446:anadamide 423:dynorphin 396:glutamate 345:porosomes 291:Summation 279:Summation 235:cell body 135:GABAergic 116:dendrites 112:receptors 1457:27694991 1408:29924991 1354:17641668 1305:26851745 1297:12890506 1262:17609520 1227:22659300 1178:16563225 1110:22852823 1059:21949885 1019:PLOS ONE 1000:31747181 992:18697836 862:29034487 805:11464453 770:24369462 711:12843414 653:24391536 596:19305743 506:See also 484:habenula 461:sympatho 448:and the 392:Dopamine 349:proteome 164:terminal 142:synapses 90:(Latin: 43:reviewed 1448:5227112 1399:7534802 1345:2190027 1218:4580231 1169:3933105 1101:3497613 1050:3176814 1027:Bibcode 853:5813191 761:3863507 644:3868890 627:: 256. 601:firing. 587:2644494 474:(VTA), 386:glycine 249:release 178:called 131:calcium 114:on the 1455:  1445:  1406:  1396:  1352:  1342:  1303:  1295:  1260:  1225:  1215:  1176:  1166:  1108:  1098:  1057:  1047:  998:  990:  934:  908:  883:  860:  850:  842:  803:  795:  768:  758:  750:  709:  651:  641:  594:  584:  478:, and 108:neuron 1301:S2CID 996:S2CID 269:SNARE 106:of a 1453:PMID 1404:PMID 1350:PMID 1293:PMID 1258:PMID 1223:PMID 1174:PMID 1106:PMID 1055:PMID 988:PMID 932:ISBN 906:ISBN 881:ISBN 858:PMID 840:ISSN 801:PMID 793:ISSN 766:PMID 748:ISSN 734:2013 707:PMID 649:PMID 592:PMID 440:are 436:and 414:ACh– 407:ACh– 382:GABA 137:and 1443:PMC 1435:doi 1394:PMC 1384:doi 1340:PMC 1332:doi 1328:152 1285:doi 1281:120 1250:doi 1213:PMC 1205:doi 1164:PMC 1156:doi 1096:PMC 1086:doi 1045:PMC 1035:doi 980:doi 976:121 848:PMC 832:doi 756:PMC 738:doi 699:doi 639:PMC 629:doi 582:PMC 574:doi 438:ATP 365:or 170:or 155:or 45:on 1484:: 1451:. 1441:. 1431:19 1429:. 1425:. 1402:. 1392:. 1380:23 1378:. 1374:. 1362:^ 1348:. 1338:. 1326:. 1322:. 1299:. 1291:. 1279:. 1256:. 1244:. 1221:. 1211:. 1201:75 1199:. 1195:. 1172:. 1162:. 1152:10 1150:. 1146:. 1104:. 1094:. 1080:. 1076:. 1053:. 1043:. 1033:. 1021:. 1017:. 994:. 986:. 974:. 856:. 846:. 838:. 828:96 826:. 822:. 799:. 789:40 787:. 764:. 754:. 746:. 732:. 728:. 705:. 695:83 693:. 689:. 655:. 647:. 637:. 623:. 619:. 598:. 590:. 580:. 568:. 564:. 429:). 332:. 186:. 144:. 41:, 1459:. 1437:: 1410:. 1386:: 1356:. 1334:: 1307:. 1287:: 1264:. 1252:: 1246:7 1229:. 1207:: 1180:. 1158:: 1112:. 1088:: 1082:5 1061:. 1037:: 1029:: 1023:6 1002:. 982:: 940:. 914:. 889:. 864:. 834:: 807:. 772:. 740:: 713:. 701:: 631:: 625:7 576:: 570:5 394:– 384:– 241:. 49:. 20:)

Index

Synaptic transmission
latest accepted revision
reviewed

neurotransmitters
axon terminal
neuron
receptors
dendrites
retrograde neurotransmission
endocannabinoids
intracellular
calcium
GABAergic
glutamatergic
synapses
action potential
graded electrical potential
presynaptic
terminal
inhibitory
excitatory
membrane potential
postsynaptic potentials
signaling cascades
electrical synapse
gap junction
membrane potential
threshold potential
sodium channels

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.