Knowledge (XXG)

Synchronizing word

Source đź“ť

24: 48:
is a word in the input alphabet of the DFA that sends any state of the DFA to one and the same state. That is, if an ensemble of copies of the DFA are each started in different states, and all of the copies process the synchronizing word, they will all end up in the same state. Not every DFA has a
61:
using a theorem due to Ján Černý. A simple approach considers the power set of states of the DFA, and builds a directed graph where nodes belong to the power set, and a directed edge describes the action of the transition function. A path from the node of all states to a singleton state shows the
27:
This drawing represents a DFA with eight states and two input symbols, red and blue. The word blue-red-red-blue-red-red-blue-red-red is a synchronizing word that sends all states to the yellow state; the word blue-blue-red-blue-blue-red-blue-blue-red is another synchronizing word that sends all
66:
in the number of states. A polynomial algorithm results however, due to a theorem of ÄŚernĂ˝ that exploits the substructure of the problem, and shows that a synchronizing word exists if and only if every pair of states has a synchronizing word.
221:). This algorithm does not always find the shortest possible synchronizing word for a given automaton; as Eppstein also shows, the problem of finding the shortest synchronizing word is 304:
if it contains an element of rank 1, that is, an element whose image is of cardinality 1. A DFA corresponds to a transformation semigroup with a distinguished generator set.
237: − 1) (the bound given in ÄŚernĂ˝'s conjecture), and exhibits examples of automata with this special form whose shortest synchronizing word has length exactly ( 139: 621: 144: 100: 150:
The problem of estimating the length of synchronizing words has a long history and was posed independently by several authors, but it is commonly known as the
49:
synchronizing word; for instance, a DFA with two states, one for words of even length and one for words of odd length, can never be synchronized.
233:) that always finds the shortest synchronizing word, proves that these automata always have a synchronizing word of length at most ( 492: 37: 174:). If this is true, it would be tight: in his 1964 paper, ÄŚernĂ˝ exhibited a class of automata (indexed by the number 351: 616: 297: 277: 155: 402: 17: 272:
of each vertex) in order to form a synchronizable DFA. It was conjectured in 1970 by Benjamin Weiss and
269: 250: 178:
of states) for which the shortest reset words have this length. The best upper bound known is 0.1654
501: 444: 105: 429: 580: 539: 511: 383: 360: 285: 63: 33: 525: 458: 521: 454: 281: 207: 58: 23: 594: 57:
Given a DFA, the problem of determining if it has a synchronizing word can be solved in
343: 339: 257: 225:. However, for a special class of automata in which all state transitions preserve the 210: 199: 191: 85: 610: 254: 171: 430:"An improvement to a recent upper bound for synchronizing words of finite automata" 284:
regular digraph can be labeled in this way; their conjecture was proven in 2007 by
226: 596:
Proc. 2nd Int'l. Conf. Language and Automata Theory and Applications (LATA 2008)
387: 380:
Proc. 2nd Int'l. Conf. Language and Automata Theory and Applications (LATA 2008)
222: 163: 593:
Volkov, Mikhail V. (2008), "Synchronizing Automata and the ÄŚernĂ˝ Conjecture",
516: 378:
Volkov, Mikhail V. (2008), "Synchronizing Automata and the ÄŚernĂ˝ Conjecture",
585: 471:
Adler, R. L.; Weiss, B. (1970), "Similarity of automorphisms of the torus",
273: 74: 321: 562:
Rystsov, I. C. (2004), "ÄŚernĂ˝'s conjecture: retrospects and prospects",
364: 102:
states has a synchronizing word, must it have one of length at most
449: 506: 22: 16:
For synchronizing words in the theory of synchronized codes, see
229:
of the states, he describes a different algorithm with time O(
403:"Poznámka k homogénnym experimentom s konečnými automatmi" 166:
for the length of the shortest synchronizing word for any
382:, LNCS, vol. 5196, Springer-Verlag, pp. 11–27, 602:, LNCS, vol. 5196, Springer-Verlag, pp. 11–27 564:
Proc. Worksh. Synchronizing Automata, Turku (WSA 2004)
410:
Matematicko-fyzikálny časopis Slovenskej Akadémie Vied
490:
Trahtman, A. N. (2009), "The road coloring problem",
108: 88: 62:
existence of a synchronizing word. This algorithm is
323:
Synchronizing automata, algorithms, Cerny Conjecture
133: 94: 18:Self-synchronizing code § Synchronizing word 541:Permutation groups and transformation semigroups 437:Journal of Automata, Languages and Combinatorics 194:finds a synchronizing word of length at most 11 8: 473:Memoirs of the American Mathematical Society 145:(more unsolved problems in computer science) 334: 332: 253:is the problem of labeling the edges of a 584: 571:JĂĽrgensen, H. (2008), "Synchronization", 515: 505: 448: 170:-state complete DFA (a DFA with complete 125: 107: 87: 344:"Reset Sequences for Monotonic Automata" 190:-letter input alphabet, an algorithm by 313: 622:Unsolved problems in computer science 7: 77:Unsolved problem in computer science 36:, more precisely, in the theory of 292:Related: transformation semigroups 14: 182:, far from the lower bound. For 264:-letter input alphabet (where 122: 109: 1: 493:Israel Journal of Mathematics 162: − 1) is the 38:deterministic finite automata 573:Information and Computation 388:10.1007/978-3-540-88282-4_4 638: 28:states to the green state. 15: 517:10.1007/s11856-009-0062-5 428:Shitov, Yaroslav (2019), 391:; see in particular p. 19 352:SIAM Journal on Computing 134:{\displaystyle (n-1)^{2}} 586:10.1016/j.ic.2008.03.005 326:. Accessed May 15, 2010. 298:transformation semigroup 538:Cameron, Peter (2013), 241: − 1). 260:with the symbols of a 172:state transition graph 135: 96: 29: 251:road coloring problem 136: 97: 26: 106: 86: 579:(9–10): 1033–1044, 401:ÄŚernĂ˝, Ján (1964), 320:Avraham Trakhtman: 186:-state DFAs over a 278:strongly connected 158:conjectured that ( 131: 92: 42:synchronizing word 30: 95:{\displaystyle n} 629: 603: 601: 589: 588: 566: 549: 547: 546: 535: 529: 528: 519: 509: 487: 481: 479: 468: 462: 461: 452: 443:(2–4): 367–373, 434: 425: 419: 417: 407: 398: 392: 390: 375: 369: 368: 348: 336: 327: 318: 286:Avraham Trahtman 198:/48 +  152:ÄŚernĂ˝ conjecture 140: 138: 137: 132: 130: 129: 101: 99: 98: 93: 78: 34:computer science 637: 636: 632: 631: 630: 628: 627: 626: 617:Finite automata 607: 606: 599: 592: 570: 561: 558: 556:Further reading 553: 552: 544: 537: 536: 532: 489: 488: 484: 470: 469: 465: 432: 427: 426: 422: 405: 400: 399: 395: 377: 376: 372: 365:10.1137/0219033 346: 340:Eppstein, David 338: 337: 330: 319: 315: 310: 294: 247: 208:time complexity 206:), and runs in 148: 147: 142: 121: 104: 103: 84: 83: 80: 76: 73: 59:polynomial time 55: 21: 12: 11: 5: 635: 633: 625: 624: 619: 609: 608: 605: 604: 590: 568: 557: 554: 551: 550: 530: 482: 463: 420: 393: 370: 359:(3): 500–510, 328: 312: 311: 309: 306: 293: 290: 258:directed graph 246: 243: 192:David Eppstein 143: 128: 124: 120: 117: 114: 111: 91: 82:If a DFA with 81: 75: 72: 69: 54: 51: 46:reset sequence 13: 10: 9: 6: 4: 3: 2: 634: 623: 620: 618: 615: 614: 612: 598: 597: 591: 587: 582: 578: 574: 569: 565: 560: 559: 555: 543: 542: 534: 531: 527: 523: 518: 513: 508: 503: 499: 495: 494: 486: 483: 478: 474: 467: 464: 460: 456: 451: 446: 442: 438: 431: 424: 421: 415: 411: 404: 397: 394: 389: 385: 381: 374: 371: 366: 362: 358: 354: 353: 345: 341: 335: 333: 329: 325: 324: 317: 314: 307: 305: 303: 302:synchronizing 299: 291: 289: 287: 283: 279: 275: 271: 267: 263: 259: 256: 252: 245:Road coloring 244: 242: 240: 236: 232: 228: 224: 220: 216: 212: 209: 205: 201: 197: 193: 189: 185: 181: 177: 173: 169: 165: 161: 157: 153: 146: 126: 118: 115: 112: 89: 70: 68: 65: 60: 52: 50: 47: 43: 39: 35: 25: 19: 595: 576: 572: 563: 540: 533: 497: 491: 485: 476: 472: 466: 440: 436: 423: 418:(in Slovak). 413: 409: 396: 379: 373: 356: 350: 322: 316: 301: 295: 265: 261: 248: 238: 234: 230: 227:cyclic order 218: 214: 203: 195: 187: 183: 179: 175: 167: 159: 151: 149: 56: 45: 41: 31: 223:NP-complete 164:upper bound 154:. In 1969, 64:exponential 611:Categories 450:1901.06542 308:References 507:0709.0099 500:: 51–60, 416:: 208–216 282:aperiodic 276:that any 274:Roy Adler 270:outdegree 156:Ján ÄŚernĂ˝ 116:− 53:Existence 40:(DFA), a 342:(1990), 526:2534238 459:4023068 268:is the 255:regular 524:  457:  71:Length 600:(PDF) 545:(PDF) 502:arXiv 445:arXiv 433:(PDF) 406:(PDF) 347:(PDF) 280:and 249:The 581:doi 577:206 512:doi 498:172 384:doi 361:doi 300:is 44:or 32:In 613:: 575:, 522:MR 520:, 510:, 496:, 477:98 475:, 455:MR 453:, 441:24 439:, 435:, 414:14 412:, 408:, 357:19 355:, 349:, 331:^ 296:A 288:. 231:kn 219:kn 583:: 567:. 548:. 514:: 504:: 480:. 447:: 386:: 367:. 363:: 266:k 262:k 239:n 235:n 217:+ 215:n 213:( 211:O 204:n 202:( 200:O 196:n 188:k 184:n 180:n 176:n 168:n 160:n 141:? 127:2 123:) 119:1 113:n 110:( 90:n 79:: 20:.

Index

Self-synchronizing code § Synchronizing word

computer science
deterministic finite automata
polynomial time
exponential
(more unsolved problems in computer science)
Ján Černý
upper bound
state transition graph
David Eppstein
O
time complexity
O
NP-complete
cyclic order
road coloring problem
regular
directed graph
outdegree
Roy Adler
strongly connected
aperiodic
Avraham Trahtman
transformation semigroup
Synchronizing automata, algorithms, Cerny Conjecture


Eppstein, David
"Reset Sequences for Monotonic Automata"

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑