Knowledge

Systematic evolution of ligands by exponential enrichment

Source πŸ“

328:
examined and selected. Library capacity for SELEX experiments is practically limited to 10 candidates, whereas, assuming there is a 4-monomeric repertoire from which pools can be created, there are ~1.6 Γ— 10 unique sequences in sequence space limited to a 100-residue matrix, which is clearly beyond experimental capabilities. The library of oligonucleotides must be extremely diverse and not contain linear, incapable of providing a stable spatial arrangement, and double-stranded structures; due to these limitations, oligonucleotide libraries can cover the diversity of only ~10 sequences. This means that existing aptamers may not fully cover the diversity of target molecules or may not have optimal properties due to limitations of the underlying method. To yield the best possible aptamers one must maximize the effectiveness of the discovery process and the library itself.
195:
Ellington and Szostak demonstrated that chemical synthesis is capable of generating ~10 unique sequences for oligonucleotide libraries in their 1990 paper on in vitro selection, they found that amplification of these synthesized oligonucleotides led to significant loss of pool diversity due to PCR bias and defects in synthesized fragments. The oligonucleotide pool is amplified and a sufficient amount of the initial library is added to the reaction so that there are numerous copies of each individual sequence to minimize the loss of potential binding sequences due to stochastic events. Before the library is introduced to target for incubation and selective retention, the sequence library must be converted to single stranded oligonucleotides to achieve structural conformations with target binding properties.
261:
simplicity, one of the most used methods is using biotinylated reverse primers in the amplification step, after which the complementary strands can be bound to a resin followed by elution of the other strand with lye. Another method is asymmetric PCR, where the amplification step is performed with an excess of forward primer and very little reverse primer, which leads to the production of more of the desired strand. A drawback of this method is that the product should be purified from double stranded DNA (dsDNA) and other left-over material from the PCR reaction. Enzymatic degradation of the unwanted strand can be performed by tagging this strand using a phosphate-probed primer, as it is recognized by enzymes such as
265:. These enzymes then selectively degrade the phosphate tagged strand leaving the complementary strand intact. All of these methods recover approximately 50 to 70% of the DNA. For a detailed comparison refer to the article by SvobodovΓ‘ et al. where these, and other, methods are experimentally compared. In classical SELEX, the process of randomized single stranded library generation, target incubation, and binding sequence elution and amplification described above are repeated until the vast majority of the retained pool consists of target binding sequences, though there are modifications and additions to the procedure that are often used, which are discussed below. 226:
concentrations and homeostatic temperatures are more likely to generate aptamers that can bind in vivo. Another consideration in incubation buffer conditions is non-specific competitors. If there is a high likelihood of non-specific oligonucleotide retention in the reaction conditions, non specific competitors, which are small molecules or polymers other than the SELEX library that have similar physical properties to the library oligonucleotides, can be used to occupy these non-specific binding sites. Varying the relative concentration of target and oligonucleotides can also affect properties of the selected aptamers. If a good
335:) and by machine learning models such as SPOT-RNA, MXfold2 provides the opportunity to assess the ability of sequences in the primary library to fold into complex structures, allowing for the selection of only the most promising sequences from the entire pool. However, these algorithms are low-performance, making them poorly suited for this task. For this reason, algorithms like Ufold from the University of California and AliNA from Nanobiorobots Inc. have been developed, which demonstrate a significant increase in computational speed due to their faster architecture, and can be applied for preliminary 324:, and thus weaken the likelihood of successful binding, particularly when working with small molecules. FRELEX follows a similar overall methodology to SELEX; however, instead of immobilizing the target, the researcher introduces a series of random and blocker oligonucleotides to an immobilization field before introduction to the target. This allows the researcher to better target small molecules that may be lost during partitioning. It also can be used in some circumstances to select an aptamer library without knowing the target. 274:
negative selection can be used where the library is incubated with target immobilization matrix components and unbound sequences are retained. Negative selection can also be used to eliminate sequences that bind target-like molecules or cells by incubating the oligonucleotide library with small molecule target analogs, undesired cell types, or non-target proteins and retaining the unbound sequences.
33: 283:
through elution concentration estimations via 260 nm wavelength absorbance or fluorescent labeling of oligonucleotides. As the SELEX reaction approaches completion, the fraction of the oligonucleotide library that binds target approaches 100%, such that the number of eluted molecules approaches the total oligonucleotide input estimate, but may converge at a lower number.
41: 204:
oligonucleotide-target binding. There are several considerations for this target incubation step, including the target immobilization method and strategies for subsequent unbound oligonucleotide separation, incubation time and temperature, incubation buffer conditions, and target versus oligonucleotide concentrations. Examples of target immobilization methods include
244:
sequences are then eluted by creating denaturing conditions that promote oligonucleotide unfolding or loss of binding conformation including flowing in deionized water, using denaturing solutions containing urea and EDTA, or by applying high heat and physical force. Upon elution of bound sequences, the retained oligonucleotides are
391:. Additionally, SELEX has been utilized to obtain highly specific catalytic DNA or DNAzymes. Several metal-specific DNAzymes have been reported including the GR-5 DNAzyme (lead-specific), the CA1-3 DNAzymes (copper-specific), the 39E DNAzyme (uranyl-specific) and the NaA43 DNAzyme (sodium-specific). 304:
Recently, SELEX has expanded to include the use of chemically modified nucleotides. These chemically modified oligonucleotides offer many potential advantages for selected aptamers including greater stability and nuclease resistance, enhanced binding for select targets, expanded physical properties -
243:
Once the oligonucleotide library has been incubated with target for sufficient time, unbound oligonucleotides are washed away from immobilized target, often using the incubation buffer so that specifically bound oligonucleotides are retained. With unbound sequences washed away, the specifically bound
166:
SELEX has been used to develop a number of aptamers that bind targets interesting for both clinical and research purposes. Nucleotides with chemically modified sugars and bases have been incorporated into SELEX reactions to increase the chemical diversity at each base, expanding the possibilities for
185:
Aptamers have emerged as a novel category in the field of bioreceptors due to their wide applications ranging from biosensing to therapeutics. Several variations of their screening process, called SELEX have been reported which can yield sequences with desired properties needed for their final use.
327:
Most modern aptamer selection methods strive to improve the conventional SELEX aptamer search method. Despite the publication of various methods aimed at increasing the affinity and specificity of aptamers, experimental approaches face limitations in the number and variety of sequences that can be
225:
to allow nucleotides to approach the target and increase the chance of a specific binding event. Alternatively, if the desired aptamer function is in vivo protein or whole cell binding for potential therapeutic or diagnostic application, incubation buffer conditions similar to in vivo plasma salt
203:
Immediately prior to target introduction, the single stranded oligonucleotide library is often heated and cooled slowly to renature oligonucleotides into thermodynamically stable secondary and tertiary structures. Once prepared, the randomized library is incubated with immobilized target to allow
273:
In order to increase the specificity of aptamers selected by a given SELEX procedure, a negative selection, or counter selection, step can be added prior to or immediately following target incubation. To eliminate sequences with affinity for target immobilization matrix components from the pool,
260:
One of the most critical steps in the SELEX procedure is obtaining single stranded DNA (ssDNA) after the PCR amplification step. This will serve as input for the next cycle so it is of vital importance that all the DNA is single stranded and as little as possible is lost. Because of the relative
282:
To track the progress of a SELEX reaction, the number of target bound molecules, which is equivalent to the number of oligonucleotides eluted, can be compared to the estimated total input of oligonucleotides following elution at each round. The number of eluted oligonucleotides can be estimated
1688: 291:
Some SELEX reactions can generate probes that are dependent on primer binding regions for secondary structure formation. There are aptamer applications for which a short sequence, and thus primer truncation, is desirable. An advancement on the original method allows an RNA library to omit the
194:
The first step of SELEX involves the synthesis of fully or partially randomized oligonucleotide sequences of some length flanked by defined regions which allow PCR amplification of those randomized regions and, in the case of RNA SELEX, in vitro transcription of the randomized sequence. While
1683: 220:
and incubated with the oligonucleotide library on culture plates. Incubation buffer conditions are altered based on the intended target and desired function of the selected aptamer. For example, in the case of negatively charged small molecules and proteins, high salt buffers are used for
230:
for the selected aptamer is not a concern, then an excess of target can be used to increase the probability that at least some sequences will bind during incubation and be retained. However, this provides no selective pressure for high
158:
to prepare for subsequent rounds of selection in which the stringency of the elution conditions can be increased to identify the tightest-binding sequences. A caution to consider in this method is that the selection of extremely high,
371:(VEGF). Moreover, SELEX has been used to select high-affinity aptamers for complex targets such as tumor cells, tumor exosomes, or tumor tissue. Clinical uses of the technique are suggested by aptamers that bind 308:
The genetic alphabet, and thus possible aptamers, is also expanded using unnatural base pairs the use of these unnatural base pairs was applied to SELEX and high affinity DNA aptamers were generated.
1920:
Nagano M, Toda T, Makino K, Miki H, Sugizaki Y, Tomizawa H, et al. (December 2022). "Discovery of a Highly Specific Anti-methotrexate (MTX) DNA Aptamer for Antibody-Independent MTX Detection".
320:
to allow the selection of aptamers without immobilizing the target or the oligonucleotide library. Immobilization is a necessary component of SELEX; however, it has the potential to inhibit key
2480:
Mercey R, Lantier I, Maurel MC, Grosclaude J, Lantier F, Marc D (November 2006). "Fast, reversible interaction of prion protein with RNA aptamers containing specific sequence patterns".
248:
to DNA in the case of RNA or modified base selections, or simply collected for amplification in the case of DNA SELEX. These DNA templates from eluted sequences are then amplified via
2526:
Ulrich H, Trujillo CA, Nery AA, Alves JM, Majumder P, Resende RR, Martins AH (September 2006). "DNA and RNA aptamers: from tools for basic research towards therapeutic applications".
2964: 1396:
Lubin AA, Hunt BV, White RJ, Plaxco KW (March 2009). "Effects of probe length, probe geometry, and redox-tag placement on the performance of the electrochemical E-DNA sensor".
36:
A schematic of the major phases in a SELEX experiment. This cycle, may be repeated up to 20 times over a period lasting weeks, though some methods require far fewer cycles.
619:
Blackwell TK, Weintraub H (November 1990). "Differences and similarities in DNA-binding preferences of MyoD and E2A protein complexes revealed by binding site selection".
2826:
Ferreira CS, Matthews CS, Missailidis S (2006). "DNA aptamers that bind to MUC1 tumour marker: design and characterization of MUC1-binding single-stranded DNA aptamers".
163:
binding affinity entities may not in fact improve specificity for the target molecule. Off-target binding to related molecules could have significant clinical effects.
1686:, Penner, Gregory & CA, "United States Patent: 10415034 - Method for the selection of aptamers for unbound targets", issued September 17, 2019 122:
The process begins with the synthesis of a very large oligonucleotide library, consisting of randomly generated sequences of fixed length flanked by constant
2929:
Vavvas D, D'Amico DJ (September 2006). "Pegaptanib (Macugen): treating neovascular age-related macular degeneration and current role in clinical practice".
2047:
Hall B, Micheletti JM, Satya P, Ogle K, Pollard J, Ellington AD (October 2009). "Design, synthesis, and amplification of DNA pools for in vitro selection".
1210:
SvobodovΓ‘ M, Pinto A, Nadal P, O' Sullivan CK (August 2012). "Comparison of different methods for generation of single-stranded DNA for SELEX processes".
1480:
Pinheiro VB, Taylor AI, Cozens C, Abramov M, Renders M, Zhang S, Chaput JC, Wengel J, Peak-Chew SY, McLaughlin SH, Herdewijn P, Holliger P (April 2012).
235:, which requires the oligonucleotide library to be in excess so that there is competition between unique sequences for available specific binding sites. 3172:
Umrao S, Jain V, Chakraborty B, Roy R (August 2018). "Protein-induced fluorescence enhancement as aptamer sensing mechanism for thrombin detection".
2620:
Mayer G, Ahmed MS, Dolf A, Endl E, Knolle PA, Famulok M (December 2010). "Fluorescence-activated cell sorting for aptamer SELEX with cell mixtures".
1635:
Kimoto M, Yamashige R, Matsunaga K, Yokoyama S, Hirao I (May 2013). "Generation of high-affinity DNA aptamers using an expanded genetic alphabet".
252:
and converted to single stranded DNA, RNA, or modified base oligonucleotides, which are used as the initial input for the next round of selection.
2433:"RNA aptamers to the adenosine moiety of S-adenosyl methionine: structural inferences from variations on a theme and the reproducibility of SELEX" 2347:
Nasaev SS, Mukanov AR, Kuznetsov II, Veselovsky AV (December 2023). "AliNA - a deep learning program for RNA secondary structure prediction".
142:
positions with four possibilities (A,T,C,G) at each position). The sequences in the library are exposed to the target ligand - which may be a
1163:"Systematic evolution of a DNA aptamer binding to rat brain tumor microvessels. selective targeting of endothelial regulatory protein pigpen" 1877:
Tuerk C, Gold L (August 1990). "Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase".
492:
Tuerk C, Gold L (August 1990). "Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase".
1109:"Short bioactive Spiegelmers to migraine-associated calcitonin gene-related peptide rapidly identified by a novel approach: tailored-SELEX" 134:, while a small number of random regions are expected to bind specifically to the chosen target. For a randomly generated region of length 1253:
Stoltenburg R, Reinemann C, Strehlitz B (October 2007). "SELEX--a (r)evolutionary method to generate high-affinity nucleic acid ligands".
394:
These developed aptamers have seen diverse application in therapies for macular degeneration and various research applications including
368: 115:(cyclic amplification and selection of targets) SELEX was first introduced in 1990. In 2015, a special issue was published in the 1069:
Iwagawa T, Ohuchi SP, Watanabe S, Nakamura Y (January 2012). "Selection of RNA aptamers against mouse embryonic stem cells".
116: 1963:
Gotrik MR, Feagin TA, Csordas AT, Nakamoto MA, Soh HT (September 2016). "Advancements in Aptamer Discovery Technologies".
17: 3453: 107:. Although SELEX has emerged as the most commonly used name for the procedure, some researchers have referred to it as 2000:"Multiparameter Particle Display (MPPD): A Quantitative Screening Method for the Discovery of Highly Specific Aptamers" 425: 48:. The aptamer surface and backbone are shown in yellow. Biotin (spheres) fits snugly into a cavity of the RNA surface. 2171:"RNA secondary structure prediction using an ensemble of two-dimensional deep neural networks and transfer learning" 3458: 131: 1350:
Sefah K, Shangguan D, Xiong X, O'Donoghue MB, Tan W (June 2010). "Development of DNA aptamers using Cell-SELEX".
376: 249: 155: 2722:"ADAPT identifies an ESCRT complex composition that discriminates VCaP from LNCaP prostate cancer cell exosomes" 2563:"A tenascin-C aptamer identified by tumor cell SELEX: systematic evolution of ligands by exponential enrichment" 216:
Recently, SELEX reactions have been developed where the target is whole cells, which are expanded near complete
222: 2771:"Poly-ligand profiling differentiates trastuzumab-treated breast cancer patients according to their outcomes" 292:
constant primer regions, which can be difficult to remove after the selection process because they stabilize
205: 151: 72: 1290:"In vitro selection of a 7-methyl-guanosine binding RNA that inhibits translation of capped mRNA molecules" 568:
Ellington AD, Szostak JW (August 1990). "In vitro selection of RNA molecules that bind specific ligands".
419: 356: 147: 2958: 245: 232: 92: 3056:"A catalytic beacon sensor for uranium with parts-per-trillion sensitivity and millionfold selectivity" 2284: 1539:"An unnatural base pair system for efficient PCR amplification and functionalization of DNA molecules" 3386: 3181: 3126: 3067: 2882: 2782: 2676: 2574: 2299: 2239: 2182: 1886: 1831: 1772: 1493: 1301: 800: 732: 628: 577: 501: 388: 262: 209: 293: 3448: 3376: 3197: 2851: 2645: 2505: 2372: 2078: 1945: 1818:
Lecocq S, Spinella K, Dubois B, Lista S, Hampel H, Penner G (2018-01-05). de Franciscis V (ed.).
1741: 1660: 1375: 1235: 1192: 672:"Cyclic amplification and selection of targets (CASTing) for the myogenin consensus binding site" 652: 601: 3414: 3351: 3297: 3248: 3154: 3115:"In vitro selection of a sodium-specific DNAzyme and its application in intracellular sensing" 3095: 3036: 2995: 2946: 2908: 2843: 2808: 2751: 2702: 2637: 2602: 2543: 2497: 2462: 2413: 2364: 2329: 2265: 2208: 2127: 2070: 2029: 1980: 1937: 1902: 1859: 1800: 1733: 1652: 1617: 1568: 1519: 1462: 1413: 1367: 1329: 1270: 1227: 1184: 1138: 1086: 1042: 1004: 955: 917: 877: 828: 758: 701: 644: 593: 517: 455: 332: 331:
RNA and DNA secondary structure prediction by dynamic programming algorithms such as RNAfold (
76: 3404: 3394: 3341: 3333: 3287: 3279: 3238: 3228: 3189: 3144: 3134: 3085: 3075: 3026: 2987: 2938: 2898: 2890: 2835: 2798: 2790: 2741: 2733: 2692: 2684: 2629: 2592: 2582: 2535: 2489: 2452: 2444: 2403: 2356: 2319: 2309: 2255: 2247: 2198: 2190: 2117: 2109: 2060: 2052: 2019: 2011: 1972: 1929: 1894: 1849: 1839: 1790: 1780: 1723: 1715: 1644: 1607: 1599: 1558: 1550: 1509: 1501: 1452: 1444: 1405: 1359: 1319: 1309: 1262: 1219: 1174: 1128: 1120: 1078: 1034: 994: 986: 947: 909: 867: 859: 818: 808: 748: 740: 691: 683: 636: 585: 509: 227: 2665:"Plasma Exosome Profiling of Cancer Patients by a Next Generation Systems Biology Approach" 848:"Aptamers selected for higher-affinity binding are not more specific for the target ligand" 2769:
Domenyuk V, Gatalica Z, Santhanam R, Wei X, Stark A, Kennedy P, et al. (March 2018).
2720:
Hornung T, O'Neill HA, Logie SC, Fowler KM, Duncan JE, Rosenow M, et al. (May 2020).
80: 3217:"Labelling of live cells using fluorescent aptamers: binding reversal with DNA nucleases" 154:
or target capture on paramagnetic beads. The bound sequences are eluted and amplified by
3390: 3185: 3130: 3071: 2886: 2786: 2680: 2578: 2243: 2186: 1890: 1835: 1820:"Aptamers as biomarkers for neurological disorders. Proof of concept in transgenic mice" 1776: 1588:"Highly specific unnatural base pair systems as a third base pair for PCR amplification" 1497: 1305: 804: 736: 632: 581: 505: 428: β€“ Method for identifying the sequence-specific target site of a DNA-binding domain 3409: 3364: 3346: 3337: 3321: 3292: 3267: 3243: 3216: 3149: 3114: 3090: 3055: 2903: 2870: 2803: 2770: 2746: 2721: 2697: 2664: 2408: 2391: 2324: 2260: 2228:"RNA secondary structure prediction using deep learning with thermodynamic integration" 2227: 2203: 2170: 2122: 2097: 2024: 1999: 1854: 1819: 1795: 1760: 1728: 1703: 1612: 1587: 1586:
Yamashige R, Kimoto M, Takezawa Y, Sato A, Mitsui T, Yokoyama S, Hirao I (March 2012).
1563: 1538: 1514: 1481: 1457: 1432: 999: 974: 872: 847: 823: 788: 753: 720: 352: 3031: 3014: 2663:
Domenyuk V, Zhong Z, Stark A, Xiao N, O'Neill HA, Wei X, et al. (February 2017).
2597: 2562: 2457: 2432: 1704:"SELEX: Critical factors and optimization strategies for successful aptamer selection" 1133: 1108: 1025:
Huizenga DE, Szostak JW (January 1995). "A DNA aptamer that binds adenosine and ATP".
696: 671: 138:, the number of possible sequences in the library using conventional DNA or RNA is 4 ( 3442: 3201: 2991: 2376: 1949: 1745: 1324: 1289: 1239: 413: 168: 67: 61: 2855: 2509: 2082: 1998:
Wang J, Yu J, Yang Q, McDermott J, Scott A, Vukovich M, et al. (January 2017).
1664: 1196: 2649: 1761:"Development of novel aptamers for low-density lipoprotein particle quantification" 1379: 656: 605: 380: 372: 3363:
Spill F, Weinstein ZB, Irani Shemirani A, Ho N, Desai D, Zaman MH (October 2016).
2056: 1976: 1933: 1844: 1785: 1266: 1082: 813: 789:"In vitro Selection and Interaction Studies of a DNA Aptamer Targeting Protein A" 3113:
Torabi SF, Wu P, McGhee CE, Chen L, Hwang K, Zheng N, Cheng J, Lu Y (May 2015).
2285:"UFold: fast and accurate RNA secondary structure prediction with deep learning" 913: 3369:
Proceedings of the National Academy of Sciences of the United States of America
3119:
Proceedings of the National Academy of Sciences of the United States of America
3060:
Proceedings of the National Academy of Sciences of the United States of America
3054:
Liu J, Brown AK, Meng X, Cropek DM, Istok JD, Watson DB, Lu Y (February 2007).
2794: 2567:
Proceedings of the National Academy of Sciences of the United States of America
2539: 2251: 2194: 1294:
Proceedings of the National Academy of Sciences of the United States of America
951: 398:, fluorescent labeling of proteins and cells, and selective enzyme inhibition. 3193: 2942: 2493: 2304: 1433:"In vitro selection using a dual RNA library that allows primerless selection" 1223: 744: 384: 217: 32: 2448: 351:
of extremely high binding affinity to a variety of target ligands, including
3399: 3139: 3080: 2894: 2587: 1898: 1505: 1314: 990: 640: 513: 395: 360: 213: 40: 3418: 3355: 3301: 3252: 3158: 3099: 2950: 2912: 2847: 2812: 2755: 2706: 2641: 2633: 2606: 2547: 2501: 2368: 2360: 2333: 2314: 2269: 2212: 2131: 2074: 2033: 2015: 1984: 1941: 1863: 1804: 1737: 1656: 1621: 1572: 1523: 1466: 1417: 1371: 1274: 1231: 1188: 1179: 1162: 1142: 1090: 1008: 959: 921: 881: 832: 762: 305:
like increased hydrophobicity, and more diverse structural conformations.
127: 123: 27:
Technique for producing oligonucleotides that specifically bind to a target
3233: 3040: 2999: 2737: 2466: 2417: 2065: 1906: 1603: 1363: 1333: 1046: 705: 687: 648: 597: 521: 416: β€“ DNA oligonucleotides that can perform a specific chemical reaction 3283: 1554: 1448: 1124: 459: 1038: 2978:
Breaker RR, Joyce GF (December 1994). "A DNA enzyme that cleaves RNA".
2392:"Solution structure of an ATP-binding RNA aptamer reveals a novel fold" 2113: 422: β€“ Oligonucleotides which recognize the exosites of human thrombin 410: β€“ Oligonucleotide or peptide molecules that bind specific targets 407: 348: 321: 173: 143: 104: 2839: 2688: 1409: 863: 1719: 1648: 938:
Keefe AD, Cload ST (August 2008). "SELEX with modified nucleotides".
589: 45: 900:
Wu YX, Kwon YJ (August 2016). "Aptamers: The "evolution" of SELEX".
3381: 2561:
Daniels DA, Chen H, Hicke BJ, Swiderek KM, Gold L (December 2003).
2098:"Large-scale de novo DNA synthesis: technologies and applications" 1759:
Klapak D, Broadfoot S, Penner G, Singh A, Inapuri E (2018-10-11).
1537:
Kimoto M, Kawai R, Mitsui T, Yokoyama S, Hirao I (February 2009).
364: 160: 31: 150:- and those that do not bind the target are removed, usually by 2145: 3433: 1482:"Synthetic genetic polymers capable of heredity and evolution" 100: 96: 88: 84: 1161:
Blank M, Weinschenk T, Priemer M, Schluesener H (May 2001).
1107:
Vater A, Jarosch F, Buchner K, Klussmann S (November 2003).
317: 167:
specific and sensitive binding, or increasing stability in
119:
in the honor of quarter century of the discovery of SELEX.
2390:
Dieckmann T, Suzuki E, Nakamura GK, Feigon J (July 1996).
296:
that are unstable when formed by the random region alone.
2283:
Fu L, Cao Y, Wu J, Peng Q, Nie Q, Xie X (February 2022).
53:
Systematic evolution of ligands by exponential enrichment
18:
Systematic Evolution of Ligands by Exponential Enrichment
3215:
Terazono H, Anzai Y, Soloviev M, Yasuda K (April 2010).
312:
SELEX variants and alternative aptamer selection methods
2528:
Combinatorial Chemistry & High Throughput Screening
3268:"RNA aptamer inhibitors of a restriction endonuclease" 2169:
Singh J, Hanson J, Paliwal K, Zhou Y (November 2019).
787:
Stoltenburg R, Schubert T, Strehlitz B (2015-07-29).
846:
Carothers JM, Oestreich SC, Szostak JW (June 2006).
782: 780: 778: 776: 774: 772: 190:Generating single stranded oligonucleotide library 2963:: CS1 maint: DOI inactive as of September 2024 ( 2226:Sato K, Akiyama M, Sakakibara Y (February 2021). 563: 561: 559: 557: 555: 553: 551: 3013:Carmi N, Shultz LA, Breaker RR (December 1996). 549: 547: 545: 543: 541: 539: 537: 535: 533: 531: 1431:Jarosch F, Buchner K, Klussmann S (July 2006). 1064: 1062: 1060: 1058: 1056: 3365:"Controlling uncertainty in aptamer selection" 3320:Levine HA, Nilsen-Hamilton M (February 2007). 387:has been approved by the FDA for treatment of 1391: 1389: 1345: 1343: 1156: 1154: 1152: 1102: 1100: 933: 931: 721:"SELEX: How It Happened and Where It will Go" 8: 1020: 1018: 487: 485: 483: 481: 479: 477: 475: 473: 471: 469: 670:Wright WE, Binder M, Funk W (August 1991). 3015:"In vitro selection of self-cleaving DNAs" 1702:Kohlberger M, Gadermaier G (August 2021). 1678: 1676: 1674: 975:"Microtitre Plate Based Cell-SELEX Method" 239:Binding sequence elution and amplification 111:(selected and amplified binding site) and 3408: 3398: 3380: 3345: 3291: 3242: 3232: 3148: 3138: 3089: 3079: 3030: 2924: 2922: 2902: 2871:"RNA mimics of green fluorescent protein" 2869:Paige JS, Wu KY, Jaffrey SR (July 2011). 2802: 2745: 2696: 2596: 2586: 2521: 2519: 2456: 2407: 2323: 2313: 2303: 2259: 2202: 2121: 2064: 2023: 1853: 1843: 1794: 1784: 1727: 1611: 1562: 1513: 1456: 1323: 1313: 1178: 1132: 998: 895: 893: 891: 871: 822: 812: 752: 695: 383:, and a VEGF-binding aptamer trade-named 44:Structure of an RNA aptamer specific for 3266:MondragΓ³n E, Maher LJ (September 2015). 852:Journal of the American Chemical Society 448:Zeitschrift fΓΌr Urologie und Nephrologie 39: 438: 2956: 2931:Ophthalmology Clinics of North America 2049:Current Protocols in Molecular Biology 1708:Biotechnology and Applied Biochemistry 1212:Analytical and Bioanalytical Chemistry 347:The technique has been used to evolve 7: 3326:Computational Biology and Chemistry 1288:Haller AA, Sarnow P (August 1997). 1167:The Journal of Biological Chemistry 940:Current Opinion in Chemical Biology 91:that specifically bind to a target 3338:10.1016/j.compbiolchem.2006.10.002 3322:"A mathematical analysis of SELEX" 369:vascular endothelial growth factor 95:or ligands. These single-stranded 25: 3174:Sensors and Actuators B: Chemical 973:Shorie M, Kaur H (October 2018). 130:ends. The constant ends serve as 2096:Kosuri S, Church GM (May 2014). 316:FRELEX was developed in 2016 by 300:Chemically modified nucleotides 725:Journal of Molecular Evolution 676:Molecular and Cellular Biology 278:Tracking selection progression 117:Journal of Molecular Evolution 1: 3032:10.1016/s1074-5521(96)90170-2 2431:Burke DH, Gold L (May 1997). 2051:. Chapter 24 (1): Unit 24.2. 1965:Accounts of Chemical Research 339:analysis of these libraries. 318:NeoVentures Biotechnology Inc 269:Negative or counter selection 3221:Journal of Nanobiotechnology 2992:10.1016/1074-5521(94)90014-0 2057:10.1002/0471142727.mb2402s88 1977:10.1021/acs.accounts.6b00283 1934:10.1021/acs.analchem.2c04182 1845:10.1371/journal.pone.0190212 1786:10.1371/journal.pone.0205460 1267:10.1016/j.bioeng.2007.06.001 1083:10.1016/j.biochi.2011.10.017 814:10.1371/journal.pone.0134403 103:are commonly referred to as 914:10.1016/j.ymeth.2016.04.020 426:Bacterial one-hybrid system 3475: 2795:10.1038/s41467-018-03631-z 2540:10.2174/138620706778249695 2298:(3). Bioinformatics: e14. 2252:10.1038/s41467-021-21194-4 2195:10.1038/s41467-019-13395-9 952:10.1016/j.cbpa.2008.06.028 287:Caveats and considerations 83:of either single-stranded 3194:10.1016/j.snb.2018.04.039 2943:10.1016/j.ohc.2006.05.008 2494:10.1007/s00705-006-0790-3 2305:10.1101/2020.08.17.254896 1224:10.1007/s00216-012-6183-4 745:10.1007/s00239-015-9705-9 2146:"ViennaRNA Web Services" 1255:Biomolecular Engineering 719:Gold L (December 2015). 446:Hak-Hagir A (1978). "". 208:columns, nitrocellulose 3400:10.1073/pnas.1605086113 3140:10.1073/pnas.1420361112 3081:10.1073/pnas.0607875104 3019:Chemistry & Biology 2980:Chemistry & Biology 2945:(inactive 2024-09-12). 2895:10.1126/science.1207339 2588:10.1073/pnas.2136683100 1899:10.1126/science.2200121 1506:10.1126/science.1217622 1315:10.1073/pnas.94.16.8521 991:10.21769/BioProtoc.3051 641:10.1126/science.2174572 514:10.1126/science.2200121 206:affinity chromatography 152:affinity chromatography 73:combinatorial chemistry 59:), also referred to as 3272:Nucleic Acids Research 2726:Nucleic Acids Research 2634:10.1038/nprot.2010.163 2449:10.1093/nar/25.10.2020 2437:Nucleic Acids Research 2361:10.1002/minf.202300113 2292:Nucleic Acids Research 2016:10.1002/anie.201608880 1592:Nucleic Acids Research 1543:Nucleic Acids Research 1437:Nucleic Acids Research 1180:10.1074/jbc.M100347200 1113:Nucleic Acids Research 420:Anti-thrombin aptamers 148:small organic compound 49: 37: 3234:10.1186/1477-3155-8-8 2775:Nature Communications 2349:Molecular Informatics 2232:Nature Communications 2175:Nature Communications 1364:10.1038/nprot.2010.66 688:10.1128/mcb.11.8.4104 363:and proteins such as 210:binding assay filters 43: 35: 2482:Archives of Virology 2315:10.1093/nar/gkab1074 2150:rna.tbi.univie.ac.at 1922:Analytical Chemistry 1637:Nature Biotechnology 1398:Analytical Chemistry 389:macular degeneration 294:secondary structures 3454:Genetics techniques 3391:2016PNAS..11312076S 3375:(43): 12076–12081. 3186:2018SeAcB.267..294U 3131:2015PNAS..112.5903T 3072:2007PNAS..104.2056L 2887:2011Sci...333..642P 2787:2018NatCo...9.1219D 2738:10.1093/nar/gkaa034 2681:2017NatSR...742741D 2579:2003PNAS..10015416D 2244:2021NatCo..12..941S 2187:2019NatCo..10.5407S 1928:(49): 17255–17262. 1891:1990Sci...249..505T 1836:2018PLoSO..1390212L 1777:2018PLoSO..1305460K 1604:10.1093/nar/gkr1068 1498:2012Sci...336..341P 1306:1997PNAS...94.8521H 1039:10.1021/bi00002a033 805:2015PLoSO..1034403S 737:2015JMolE..81..140G 633:1990Sci...250.1104B 582:1990Natur.346..818E 506:1990Sci...249..505T 246:reverse-transcribed 214:paramagnetic beads. 3284:10.1093/nar/gkv702 2669:Scientific Reports 2355:(12): e202300113. 2114:10.1038/nmeth.2918 1555:10.1093/nar/gkn956 1449:10.1093/nar/gkl463 1125:10.1093/nar/gng130 263:Lambda exonuclease 68:in vitro evolution 62:in vitro selection 50: 38: 3459:Molecular biology 2840:10.1159/000096085 2689:10.1038/srep42741 2628:(12): 1993–2004. 2004:Angewandte Chemie 1885:(4968): 505–510. 1410:10.1021/ac802317k 864:10.1021/ja060952q 627:(4984): 1104–10. 199:Target incubation 77:molecular biology 16:(Redirected from 3466: 3422: 3412: 3402: 3384: 3359: 3349: 3306: 3305: 3295: 3263: 3257: 3256: 3246: 3236: 3212: 3206: 3205: 3169: 3163: 3162: 3152: 3142: 3110: 3104: 3103: 3093: 3083: 3051: 3045: 3044: 3034: 3010: 3004: 3003: 2975: 2969: 2968: 2962: 2954: 2926: 2917: 2916: 2906: 2866: 2860: 2859: 2823: 2817: 2816: 2806: 2766: 2760: 2759: 2749: 2732:(8): 4013–4027. 2717: 2711: 2710: 2700: 2660: 2654: 2653: 2622:Nature Protocols 2617: 2611: 2610: 2600: 2590: 2573:(26): 15416–21. 2558: 2552: 2551: 2523: 2514: 2513: 2488:(11): 2197–214. 2477: 2471: 2470: 2460: 2428: 2422: 2421: 2411: 2387: 2381: 2380: 2344: 2338: 2337: 2327: 2317: 2307: 2289: 2280: 2274: 2273: 2263: 2223: 2217: 2216: 2206: 2166: 2160: 2159: 2157: 2156: 2142: 2136: 2135: 2125: 2093: 2087: 2086: 2068: 2044: 2038: 2037: 2027: 1995: 1989: 1988: 1971:(9): 1903–1910. 1960: 1954: 1953: 1917: 1911: 1910: 1874: 1868: 1867: 1857: 1847: 1815: 1809: 1808: 1798: 1788: 1771:(10): e0205460. 1756: 1750: 1749: 1731: 1720:10.1002/bab.2244 1714:(5): 1771–1792. 1699: 1693: 1692: 1691: 1687: 1680: 1669: 1668: 1649:10.1038/nbt.2556 1632: 1626: 1625: 1615: 1583: 1577: 1576: 1566: 1534: 1528: 1527: 1517: 1477: 1471: 1470: 1460: 1428: 1422: 1421: 1393: 1384: 1383: 1352:Nature Protocols 1347: 1338: 1337: 1327: 1317: 1285: 1279: 1278: 1250: 1244: 1243: 1207: 1201: 1200: 1182: 1158: 1147: 1146: 1136: 1119:(21): 130e–130. 1104: 1095: 1094: 1066: 1051: 1050: 1022: 1013: 1012: 1002: 970: 964: 963: 935: 926: 925: 897: 886: 885: 875: 843: 837: 836: 826: 816: 784: 767: 766: 756: 731:(5–6): 140–143. 716: 710: 709: 699: 667: 661: 660: 616: 610: 609: 590:10.1038/346818a0 576:(6287): 818–22. 565: 526: 525: 500:(4968): 505–10. 489: 464: 463: 443: 233:binding affinity 228:binding affinity 223:charge screening 81:oligonucleotides 21: 3474: 3473: 3469: 3468: 3467: 3465: 3464: 3463: 3439: 3438: 3430: 3425: 3362: 3319: 3315: 3313:Further reading 3310: 3309: 3278:(15): 7544–55. 3265: 3264: 3260: 3214: 3213: 3209: 3171: 3170: 3166: 3112: 3111: 3107: 3053: 3052: 3048: 3025:(12): 1039–46. 3012: 3011: 3007: 2977: 2976: 2972: 2955: 2928: 2927: 2920: 2881:(6042): 642–6. 2868: 2867: 2863: 2825: 2824: 2820: 2768: 2767: 2763: 2719: 2718: 2714: 2662: 2661: 2657: 2619: 2618: 2614: 2560: 2559: 2555: 2525: 2524: 2517: 2479: 2478: 2474: 2430: 2429: 2425: 2389: 2388: 2384: 2346: 2345: 2341: 2287: 2282: 2281: 2277: 2225: 2224: 2220: 2168: 2167: 2163: 2154: 2152: 2144: 2143: 2139: 2095: 2094: 2090: 2046: 2045: 2041: 1997: 1996: 1992: 1962: 1961: 1957: 1919: 1918: 1914: 1876: 1875: 1871: 1830:(1): e0190212. 1817: 1816: 1812: 1758: 1757: 1753: 1701: 1700: 1696: 1689: 1682: 1681: 1672: 1634: 1633: 1629: 1598:(6): 2793–806. 1585: 1584: 1580: 1536: 1535: 1531: 1492:(6079): 341–4. 1479: 1478: 1474: 1430: 1429: 1425: 1395: 1394: 1387: 1349: 1348: 1341: 1287: 1286: 1282: 1252: 1251: 1247: 1209: 1208: 1204: 1173:(19): 16464–8. 1160: 1159: 1150: 1106: 1105: 1098: 1068: 1067: 1054: 1024: 1023: 1016: 972: 971: 967: 937: 936: 929: 899: 898: 889: 858:(24): 7929–37. 845: 844: 840: 799:(7): e0134403. 786: 785: 770: 718: 717: 713: 669: 668: 664: 618: 617: 613: 567: 566: 529: 491: 490: 467: 445: 444: 440: 435: 404: 353:small molecules 345: 314: 302: 289: 280: 271: 258: 256:Obtaining ssDNA 241: 201: 192: 183: 28: 23: 22: 15: 12: 11: 5: 3472: 3470: 3462: 3461: 3456: 3451: 3441: 3440: 3437: 3436: 3429: 3428:External links 3426: 3424: 3423: 3360: 3316: 3314: 3311: 3308: 3307: 3258: 3207: 3164: 3125:(19): 5903–8. 3105: 3066:(7): 2056–61. 3046: 3005: 2970: 2918: 2861: 2834:(6): 289–301. 2828:Tumour Biology 2818: 2761: 2712: 2655: 2612: 2553: 2515: 2472: 2443:(10): 2020–4. 2423: 2382: 2339: 2275: 2218: 2161: 2137: 2108:(5): 499–507. 2102:Nature Methods 2088: 2066:2027.42/143624 2039: 2010:(3): 744–747. 1990: 1955: 1912: 1869: 1810: 1751: 1694: 1670: 1627: 1578: 1529: 1472: 1423: 1385: 1358:(6): 1169–85. 1339: 1300:(16): 8521–6. 1280: 1261:(4): 381–403. 1245: 1202: 1148: 1096: 1052: 1014: 965: 927: 887: 838: 768: 711: 682:(8): 4104–10. 662: 611: 527: 465: 454:(9): 639–642. 437: 436: 434: 431: 430: 429: 423: 417: 411: 403: 400: 344: 341: 313: 310: 301: 298: 288: 285: 279: 276: 270: 267: 257: 254: 240: 237: 200: 197: 191: 188: 182: 179: 79:for producing 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 3471: 3460: 3457: 3455: 3452: 3450: 3447: 3446: 3444: 3435: 3432: 3431: 3427: 3420: 3416: 3411: 3406: 3401: 3396: 3392: 3388: 3383: 3378: 3374: 3370: 3366: 3361: 3357: 3353: 3348: 3343: 3339: 3335: 3331: 3327: 3323: 3318: 3317: 3312: 3303: 3299: 3294: 3289: 3285: 3281: 3277: 3273: 3269: 3262: 3259: 3254: 3250: 3245: 3240: 3235: 3230: 3226: 3222: 3218: 3211: 3208: 3203: 3199: 3195: 3191: 3187: 3183: 3179: 3175: 3168: 3165: 3160: 3156: 3151: 3146: 3141: 3136: 3132: 3128: 3124: 3120: 3116: 3109: 3106: 3101: 3097: 3092: 3087: 3082: 3077: 3073: 3069: 3065: 3061: 3057: 3050: 3047: 3042: 3038: 3033: 3028: 3024: 3020: 3016: 3009: 3006: 3001: 2997: 2993: 2989: 2985: 2981: 2974: 2971: 2966: 2960: 2952: 2948: 2944: 2940: 2937:(3): 353–60. 2936: 2932: 2925: 2923: 2919: 2914: 2910: 2905: 2900: 2896: 2892: 2888: 2884: 2880: 2876: 2872: 2865: 2862: 2857: 2853: 2849: 2845: 2841: 2837: 2833: 2829: 2822: 2819: 2814: 2810: 2805: 2800: 2796: 2792: 2788: 2784: 2780: 2776: 2772: 2765: 2762: 2757: 2753: 2748: 2743: 2739: 2735: 2731: 2727: 2723: 2716: 2713: 2708: 2704: 2699: 2694: 2690: 2686: 2682: 2678: 2674: 2670: 2666: 2659: 2656: 2651: 2647: 2643: 2639: 2635: 2631: 2627: 2623: 2616: 2613: 2608: 2604: 2599: 2594: 2589: 2584: 2580: 2576: 2572: 2568: 2564: 2557: 2554: 2549: 2545: 2541: 2537: 2534:(8): 619–32. 2533: 2529: 2522: 2520: 2516: 2511: 2507: 2503: 2499: 2495: 2491: 2487: 2483: 2476: 2473: 2468: 2464: 2459: 2454: 2450: 2446: 2442: 2438: 2434: 2427: 2424: 2419: 2415: 2410: 2405: 2402:(7): 628–40. 2401: 2397: 2393: 2386: 2383: 2378: 2374: 2370: 2366: 2362: 2358: 2354: 2350: 2343: 2340: 2335: 2331: 2326: 2321: 2316: 2311: 2306: 2301: 2297: 2293: 2286: 2279: 2276: 2271: 2267: 2262: 2257: 2253: 2249: 2245: 2241: 2237: 2233: 2229: 2222: 2219: 2214: 2210: 2205: 2200: 2196: 2192: 2188: 2184: 2180: 2176: 2172: 2165: 2162: 2151: 2147: 2141: 2138: 2133: 2129: 2124: 2119: 2115: 2111: 2107: 2103: 2099: 2092: 2089: 2084: 2080: 2076: 2072: 2067: 2062: 2058: 2054: 2050: 2043: 2040: 2035: 2031: 2026: 2021: 2017: 2013: 2009: 2005: 2001: 1994: 1991: 1986: 1982: 1978: 1974: 1970: 1966: 1959: 1956: 1951: 1947: 1943: 1939: 1935: 1931: 1927: 1923: 1916: 1913: 1908: 1904: 1900: 1896: 1892: 1888: 1884: 1880: 1873: 1870: 1865: 1861: 1856: 1851: 1846: 1841: 1837: 1833: 1829: 1825: 1821: 1814: 1811: 1806: 1802: 1797: 1792: 1787: 1782: 1778: 1774: 1770: 1766: 1762: 1755: 1752: 1747: 1743: 1739: 1735: 1730: 1725: 1721: 1717: 1713: 1709: 1705: 1698: 1695: 1685: 1679: 1677: 1675: 1671: 1666: 1662: 1658: 1654: 1650: 1646: 1642: 1638: 1631: 1628: 1623: 1619: 1614: 1609: 1605: 1601: 1597: 1593: 1589: 1582: 1579: 1574: 1570: 1565: 1560: 1556: 1552: 1548: 1544: 1540: 1533: 1530: 1525: 1521: 1516: 1511: 1507: 1503: 1499: 1495: 1491: 1487: 1483: 1476: 1473: 1468: 1464: 1459: 1454: 1450: 1446: 1442: 1438: 1434: 1427: 1424: 1419: 1415: 1411: 1407: 1404:(6): 2150–8. 1403: 1399: 1392: 1390: 1386: 1381: 1377: 1373: 1369: 1365: 1361: 1357: 1353: 1346: 1344: 1340: 1335: 1331: 1326: 1321: 1316: 1311: 1307: 1303: 1299: 1295: 1291: 1284: 1281: 1276: 1272: 1268: 1264: 1260: 1256: 1249: 1246: 1241: 1237: 1233: 1229: 1225: 1221: 1218:(3): 835–42. 1217: 1213: 1206: 1203: 1198: 1194: 1190: 1186: 1181: 1176: 1172: 1168: 1164: 1157: 1155: 1153: 1149: 1144: 1140: 1135: 1130: 1126: 1122: 1118: 1114: 1110: 1103: 1101: 1097: 1092: 1088: 1084: 1080: 1076: 1072: 1065: 1063: 1061: 1059: 1057: 1053: 1048: 1044: 1040: 1036: 1033:(2): 656–65. 1032: 1028: 1021: 1019: 1015: 1010: 1006: 1001: 996: 992: 988: 985:(20): e3051. 984: 980: 976: 969: 966: 961: 957: 953: 949: 946:(4): 448–56. 945: 941: 934: 932: 928: 923: 919: 915: 911: 907: 903: 896: 894: 892: 888: 883: 879: 874: 869: 865: 861: 857: 853: 849: 842: 839: 834: 830: 825: 820: 815: 810: 806: 802: 798: 794: 790: 783: 781: 779: 777: 775: 773: 769: 764: 760: 755: 750: 746: 742: 738: 734: 730: 726: 722: 715: 712: 707: 703: 698: 693: 689: 685: 681: 677: 673: 666: 663: 658: 654: 650: 646: 642: 638: 634: 630: 626: 622: 615: 612: 607: 603: 599: 595: 591: 587: 583: 579: 575: 571: 564: 562: 560: 558: 556: 554: 552: 550: 548: 546: 544: 542: 540: 538: 536: 534: 532: 528: 523: 519: 515: 511: 507: 503: 499: 495: 488: 486: 484: 482: 480: 478: 476: 474: 472: 470: 466: 461: 457: 453: 449: 442: 439: 432: 427: 424: 421: 418: 415: 414:Deoxyribozyme 412: 409: 406: 405: 401: 399: 397: 392: 390: 386: 382: 378: 374: 373:tumor markers 370: 366: 362: 358: 354: 350: 343:Prior targets 342: 340: 338: 334: 329: 325: 323: 319: 311: 309: 306: 299: 297: 295: 286: 284: 277: 275: 268: 266: 264: 255: 253: 251: 247: 238: 236: 234: 229: 224: 219: 215: 211: 207: 198: 196: 189: 187: 180: 178: 176: 175: 170: 164: 162: 157: 153: 149: 145: 141: 137: 133: 129: 125: 120: 118: 114: 110: 106: 102: 98: 94: 90: 86: 82: 78: 75:technique in 74: 70: 69: 64: 63: 58: 54: 47: 42: 34: 30: 19: 3434:Aptamer Base 3372: 3368: 3332:(1): 11–35. 3329: 3325: 3275: 3271: 3261: 3224: 3220: 3210: 3177: 3173: 3167: 3122: 3118: 3108: 3063: 3059: 3049: 3022: 3018: 3008: 2986:(4): 223–9. 2983: 2979: 2973: 2959:cite journal 2934: 2930: 2878: 2874: 2864: 2831: 2827: 2821: 2778: 2774: 2764: 2729: 2725: 2715: 2675:(1): 42741. 2672: 2668: 2658: 2625: 2621: 2615: 2570: 2566: 2556: 2531: 2527: 2485: 2481: 2475: 2440: 2436: 2426: 2399: 2395: 2385: 2352: 2348: 2342: 2295: 2291: 2278: 2235: 2231: 2221: 2178: 2174: 2164: 2153:. Retrieved 2149: 2140: 2105: 2101: 2091: 2048: 2042: 2007: 2003: 1993: 1968: 1964: 1958: 1925: 1921: 1915: 1882: 1878: 1872: 1827: 1823: 1813: 1768: 1764: 1754: 1711: 1707: 1697: 1643:(5): 453–7. 1640: 1636: 1630: 1595: 1591: 1581: 1546: 1542: 1532: 1489: 1485: 1475: 1440: 1436: 1426: 1401: 1397: 1355: 1351: 1297: 1293: 1283: 1258: 1254: 1248: 1215: 1211: 1205: 1170: 1166: 1116: 1112: 1077:(1): 250–7. 1074: 1070: 1030: 1027:Biochemistry 1026: 982: 979:Bio-Protocol 978: 968: 943: 939: 905: 901: 855: 851: 841: 796: 792: 728: 724: 714: 679: 675: 665: 624: 620: 614: 573: 569: 497: 493: 451: 447: 441: 393: 381:fluorophores 346: 336: 330: 326: 315: 307: 303: 290: 281: 272: 259: 242: 202: 193: 184: 172: 165: 139: 135: 121: 112: 108: 66: 60: 56: 52: 51: 29: 3180:: 294–301. 2781:(1): 1219. 2181:(1): 5407. 1443:(12): e86. 3443:Categories 3382:1612.08995 2238:(1): 941. 2155:2024-02-14 1549:(2): e14. 433:References 396:biosensors 218:confluence 3449:Evolution 3202:103202899 2377:261885112 1950:254095717 1746:237280042 1240:206910212 1071:Biochimie 379:-related 361:adenosine 337:in silico 333:ViennaRNA 181:Procedure 161:nanomolar 3419:27790993 3356:17218151 3302:26184872 3253:20388214 3227:(1): 8. 3159:25918425 3100:17284609 2951:16935210 2913:21798953 2856:41664944 2848:17033199 2813:29572535 2756:31989173 2707:28218293 2642:21127492 2607:14676325 2548:17017882 2510:32195593 2502:16799875 2369:37710142 2334:34792173 2270:33574226 2213:31776342 2132:24781323 2083:38063074 2075:19816932 2034:27933702 1985:27526193 1942:36449359 1864:29304088 1824:PLOS ONE 1805:30307996 1765:PLOS ONE 1738:34427974 1684:10415034 1665:23329867 1657:23563318 1622:22121213 1573:19073696 1524:22517858 1467:16855281 1418:19215066 1372:20539292 1275:17627883 1232:22733247 1197:39002909 1189:11279054 1143:14576330 1091:22085640 1009:34532522 960:18644461 922:27109056 908:: 21–8. 882:16771507 833:26221730 793:PLOS ONE 763:26480964 402:See also 355:such as 349:aptamers 322:epitopes 105:aptamers 3410:5087011 3387:Bibcode 3347:2374838 3293:4551934 3244:2861636 3182:Bibcode 3150:4434688 3127:Bibcode 3091:1892917 3068:Bibcode 3041:9000012 3000:9383394 2904:3314379 2883:Bibcode 2875:Science 2804:5865185 2783:Bibcode 2747:7192620 2698:5316983 2677:Bibcode 2650:4984082 2575:Bibcode 2467:9115371 2418:8756406 2409:1369402 2325:8860580 2300:bioRxiv 2261:7878809 2240:Bibcode 2204:6881452 2183:Bibcode 2123:7098426 2025:5225111 1907:2200121 1887:Bibcode 1879:Science 1855:5755763 1832:Bibcode 1796:6181373 1773:Bibcode 1729:9788027 1613:3315302 1564:2632903 1515:3362463 1494:Bibcode 1486:Science 1458:1524915 1380:4953042 1334:9238009 1302:Bibcode 1047:7819261 1000:8342047 902:Methods 873:4287982 824:4519192 801:Bibcode 754:4661202 733:Bibcode 706:1649388 657:1995608 649:2174572 629:Bibcode 621:Science 606:4273647 598:1697402 578:Bibcode 522:2200121 502:Bibcode 494:Science 408:Aptamer 385:Macugen 174:in vivo 144:protein 132:primers 113:CASTing 71:, is a 3417:  3407:  3354:  3344:  3300:  3290:  3251:  3241:  3200:  3157:  3147:  3098:  3088:  3039:  2998:  2949:  2911:  2901:  2854:  2846:  2811:  2801:  2754:  2744:  2705:  2695:  2648:  2640:  2605:  2598:307582 2595:  2546:  2508:  2500:  2465:  2458:146680 2455:  2416:  2406:  2375:  2367:  2332:  2322:  2302:  2268:  2258:  2211:  2201:  2130:  2120:  2081:  2073:  2032:  2022:  1983:  1948:  1940:  1905:  1862:  1852:  1803:  1793:  1744:  1736:  1726:  1690:  1663:  1655:  1620:  1610:  1571:  1561:  1522:  1512:  1465:  1455:  1416:  1378:  1370:  1332:  1322:  1273:  1238:  1230:  1195:  1187:  1141:  1134:275487 1131:  1089:  1045:  1007:  997:  958:  920:  880:  870:  831:  821:  761:  751:  704:  697:361222 694:  655:  647:  604:  596:  570:Nature 520:  460:362762 458:  365:prions 212:, and 93:ligand 46:biotin 3377:arXiv 3198:S2CID 2852:S2CID 2646:S2CID 2506:S2CID 2373:S2CID 2288:(PDF) 2079:S2CID 1946:S2CID 1742:S2CID 1661:S2CID 1376:S2CID 1325:22984 1236:S2CID 1193:S2CID 653:S2CID 602:S2CID 169:serum 146:or a 57:SELEX 3415:PMID 3352:PMID 3298:PMID 3249:PMID 3155:PMID 3096:PMID 3037:PMID 2996:PMID 2965:link 2947:PMID 2909:PMID 2844:PMID 2809:PMID 2752:PMID 2703:PMID 2638:PMID 2603:PMID 2544:PMID 2498:PMID 2463:PMID 2414:PMID 2365:PMID 2330:PMID 2266:PMID 2209:PMID 2128:PMID 2071:PMID 2030:PMID 1981:PMID 1938:PMID 1903:PMID 1860:PMID 1801:PMID 1734:PMID 1653:PMID 1618:PMID 1569:PMID 1520:PMID 1463:PMID 1414:PMID 1368:PMID 1330:PMID 1271:PMID 1228:PMID 1185:PMID 1139:PMID 1087:PMID 1043:PMID 1005:PMID 956:PMID 918:PMID 878:PMID 829:PMID 759:PMID 702:PMID 645:PMID 594:PMID 518:PMID 456:PMID 367:and 359:and 159:sub- 126:and 109:SAAB 3405:PMC 3395:doi 3373:113 3342:PMC 3334:doi 3288:PMC 3280:doi 3239:PMC 3229:doi 3190:doi 3178:267 3145:PMC 3135:doi 3123:112 3086:PMC 3076:doi 3064:104 3027:doi 2988:doi 2939:doi 2899:PMC 2891:doi 2879:333 2836:doi 2799:PMC 2791:doi 2742:PMC 2734:doi 2693:PMC 2685:doi 2630:doi 2593:PMC 2583:doi 2571:100 2536:doi 2490:doi 2486:151 2453:PMC 2445:doi 2404:PMC 2396:RNA 2357:doi 2320:PMC 2310:doi 2256:PMC 2248:doi 2199:PMC 2191:doi 2118:PMC 2110:doi 2061:hdl 2053:doi 2020:PMC 2012:doi 1973:doi 1930:doi 1895:doi 1883:249 1850:PMC 1840:doi 1791:PMC 1781:doi 1724:PMC 1716:doi 1645:doi 1608:PMC 1600:doi 1559:PMC 1551:doi 1510:PMC 1502:doi 1490:336 1453:PMC 1445:doi 1406:doi 1360:doi 1320:PMC 1310:doi 1263:doi 1220:doi 1216:404 1175:doi 1171:276 1129:PMC 1121:doi 1079:doi 1035:doi 995:PMC 987:doi 948:doi 910:doi 906:106 868:PMC 860:doi 856:128 819:PMC 809:doi 749:PMC 741:doi 692:PMC 684:doi 637:doi 625:250 586:doi 574:346 510:doi 498:249 377:GFP 357:ATP 250:PCR 171:or 156:PCR 101:RNA 99:or 97:DNA 89:RNA 87:or 85:DNA 65:or 3445:: 3413:. 3403:. 3393:. 3385:. 3371:. 3367:. 3350:. 3340:. 3330:31 3328:. 3324:. 3296:. 3286:. 3276:43 3274:. 3270:. 3247:. 3237:. 3223:. 3219:. 3196:. 3188:. 3176:. 3153:. 3143:. 3133:. 3121:. 3117:. 3094:. 3084:. 3074:. 3062:. 3058:. 3035:. 3021:. 3017:. 2994:. 2982:. 2961:}} 2957:{{ 2935:19 2933:. 2921:^ 2907:. 2897:. 2889:. 2877:. 2873:. 2850:. 2842:. 2832:27 2830:. 2807:. 2797:. 2789:. 2777:. 2773:. 2750:. 2740:. 2730:48 2728:. 2724:. 2701:. 2691:. 2683:. 2671:. 2667:. 2644:. 2636:. 2624:. 2601:. 2591:. 2581:. 2569:. 2565:. 2542:. 2530:. 2518:^ 2504:. 2496:. 2484:. 2461:. 2451:. 2441:25 2439:. 2435:. 2412:. 2398:. 2394:. 2371:. 2363:. 2353:42 2351:. 2328:. 2318:. 2308:. 2296:50 2294:. 2290:. 2264:. 2254:. 2246:. 2236:12 2234:. 2230:. 2207:. 2197:. 2189:. 2179:10 2177:. 2173:. 2148:. 2126:. 2116:. 2106:11 2104:. 2100:. 2077:. 2069:. 2059:. 2028:. 2018:. 2008:56 2006:. 2002:. 1979:. 1969:49 1967:. 1944:. 1936:. 1926:94 1924:. 1901:. 1893:. 1881:. 1858:. 1848:. 1838:. 1828:13 1826:. 1822:. 1799:. 1789:. 1779:. 1769:13 1767:. 1763:. 1740:. 1732:. 1722:. 1712:69 1710:. 1706:. 1673:^ 1659:. 1651:. 1641:31 1639:. 1616:. 1606:. 1596:40 1594:. 1590:. 1567:. 1557:. 1547:37 1545:. 1541:. 1518:. 1508:. 1500:. 1488:. 1484:. 1461:. 1451:. 1441:34 1439:. 1435:. 1412:. 1402:81 1400:. 1388:^ 1374:. 1366:. 1354:. 1342:^ 1328:. 1318:. 1308:. 1298:94 1296:. 1292:. 1269:. 1259:24 1257:. 1234:. 1226:. 1214:. 1191:. 1183:. 1169:. 1165:. 1151:^ 1137:. 1127:. 1117:31 1115:. 1111:. 1099:^ 1085:. 1075:94 1073:. 1055:^ 1041:. 1031:34 1029:. 1017:^ 1003:. 993:. 981:. 977:. 954:. 944:12 942:. 930:^ 916:. 904:. 890:^ 876:. 866:. 854:. 850:. 827:. 817:. 807:. 797:10 795:. 791:. 771:^ 757:. 747:. 739:. 729:81 727:. 723:. 700:. 690:. 680:11 678:. 674:. 651:. 643:. 635:. 623:. 600:. 592:. 584:. 572:. 530:^ 516:. 508:. 496:. 468:^ 452:71 450:. 375:, 177:. 128:3' 124:5' 3421:. 3397:: 3389:: 3379:: 3358:. 3336:: 3304:. 3282:: 3255:. 3231:: 3225:8 3204:. 3192:: 3184:: 3161:. 3137:: 3129:: 3102:. 3078:: 3070:: 3043:. 3029:: 3023:3 3002:. 2990:: 2984:1 2967:) 2953:. 2941:: 2915:. 2893:: 2885:: 2858:. 2838:: 2815:. 2793:: 2785:: 2779:9 2758:. 2736:: 2709:. 2687:: 2679:: 2673:7 2652:. 2632:: 2626:5 2609:. 2585:: 2577:: 2550:. 2538:: 2532:9 2512:. 2492:: 2469:. 2447:: 2420:. 2400:2 2379:. 2359:: 2336:. 2312:: 2272:. 2250:: 2242:: 2215:. 2193:: 2185:: 2158:. 2134:. 2112:: 2085:. 2063:: 2055:: 2036:. 2014:: 1987:. 1975:: 1952:. 1932:: 1909:. 1897:: 1889:: 1866:. 1842:: 1834:: 1807:. 1783:: 1775:: 1748:. 1718:: 1667:. 1647:: 1624:. 1602:: 1575:. 1553:: 1526:. 1504:: 1496:: 1469:. 1447:: 1420:. 1408:: 1382:. 1362:: 1356:5 1336:. 1312:: 1304:: 1277:. 1265:: 1242:. 1222:: 1199:. 1177:: 1145:. 1123:: 1093:. 1081:: 1049:. 1037:: 1011:. 989:: 983:8 962:. 950:: 924:. 912:: 884:. 862:: 835:. 811:: 803:: 765:. 743:: 735:: 708:. 686:: 659:. 639:: 631:: 608:. 588:: 580:: 524:. 512:: 504:: 462:. 140:n 136:n 55:( 20:)

Index

Systematic Evolution of Ligands by Exponential Enrichment


biotin
in vitro selection
in vitro evolution
combinatorial chemistry
molecular biology
oligonucleotides
DNA
RNA
ligand
DNA
RNA
aptamers
Journal of Molecular Evolution
5'
3'
primers
protein
small organic compound
affinity chromatography
PCR
nanomolar
serum
in vivo
affinity chromatography
binding assay filters
paramagnetic beads.
confluence

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑