Knowledge (XXG)

Initial mass function

Source đź“ť

216:(PDMF), which describes the current distribution of masses of stars, such as red giants, white dwarfs, neutron stars, and black holes, after some time of evolution away from the main sequence stars and after a certain amount of mass loss. Since there are not enough young clusters of stars available for the calculation of IMF, PDMF is used instead and the results are extrapolated back to IMF. IMF and PDMF can be linked through the "stellar creation function". Stellar creation function is defined as the number of stars per unit volume of space in a mass range and a time interval. In the case that all the main sequence stars have greater lifetimes than the galaxy, IMF and PDMF are equivalent. Similarly, IMF and PDMF are equivalent in brown dwarfs due to their unlimited lifetimes. 253: 1289:. In particular, the classical assumption of a single IMF covering the whole substellar and stellar mass range is being questioned, in favor of a two-component IMF to account for possible different formation modes for substellar objects—one IMF covering brown dwarfs and very-low-mass stars, and another ranging from the higher-mass brown dwarfs to the most massive stars. This leads to an overlap region approximately between 0.05–0.2  3729: 3741: 1546:. Recent research suggests that the global prestellar CMF in molecular clouds is the result of the integration of CMFs generated by individual thermally supercritical filaments, which indicates a tight connection between the FLMF and the CMF/IMF, supporting the idea that filamentary structures are a critical evolutionary step in establishing a Salpeter-like mass function. 3753: 319:(with a magnitude > 12 in the visual band), it reduces the error of distances for nearby stars, and allows accurate determination of binary star systems. Since the magnitude of a star varies with its age, the determination of mass-luminosity relation should also take into account its age. For stars with masses above 0.7  3680: 42: 1817:; Brown, Thomas M.; Tumlinson, Jason; Kalirai, Jason S.; Simon, Joshua D.; Kirby, Evan N.; VandenBerg, Don A.; Muñoz, Ricardo R.; Avila, Roberto J.; Guhathakurta, Puragra; Ferguson, Henry C. (2013). "The Stellar Initial Mass Function of Ultra-faint Dwarf Galaxies: Evidence for IMF Variations with Galactic Environment". 1332:
Recent studies have suggested that filamentary structures in molecular clouds play a crucial role in the initial conditions of star formation and the origin of the stellar IMF. Herschel observations of the California giant molecular cloud show that both the prestellar core mass function (CMF) and the
1319:
Measurements of the local universe where single stars can be resolved are consistent with an invariant IMF but the conclusion suffers from large measurement uncertainty due to the small number of massive stars and difficulties in distinguishing binary systems from the single stars. Thus IMF variation
1760:
Kalirai, Jason S.; Anderson, Jay; Dotter, Aaron; Richer, Harvey B.; Fahlman, Gregory G.; Hansen, Brad M.S.; Hurley, Jarrod; Reid, I. Neill; Rich, R. Michael; Shara, Michael M. (2013). "Ultra-Deep Hubble Space Telescope Imaging of the Small Magellanic Cloud: The Initial Mass Function of Stars with M
1323:
Systems formed at much earlier times or further from the galactic neighborhood, where star formation activity can be hundreds or even thousands time stronger than the current Milky Way, may give a better understanding. It has been consistently reported both for star clusters and galaxies that there
533:
is the first astrophysicist who attempted to quantify IMF by applying power law into his equations. His work is based upon the sun-like stars that can be easily observed with great accuracy. Salpeter defined the mass function as the number of stars in a volume of space observed at a time as per
2896:
Lee, Janice C.; Gil de Paz, Armando; Tremonti, Christy; Kennicutt, Robert C.; Salim, Samir; Bothwell, Matthew; Calzetti, Daniela; Dalcanton, Julianne; Dale, Daniel; Engelbracht, Chad; José G. Funes, S. J.; Johnson, Benjamin; Sakai, Shoko; Skillman, Evan; van Zee, Liese (2009-11-20).
674: 219:
The properties and evolution of a star are closely related to its mass, so the IMF is an important diagnostic tool for astronomers studying large quantities of stars. For example, the initial mass of a star is the primary factor of determining its
1315:
thus make the accretion of the gas easier, both lead to more massive stars being formed in a star cluster. The galaxy-wide IMF can be different from the star-cluster scale IMF and may systematically change with the galaxy star formation history.
2956:
Gunawardhana, M. L. P.; Hopkins, A. M.; Sharp, R. G.; Brough, S.; Taylor, E.; Bland-Hawthorn, J.; Maraston, C.; Tuffs, R. J.; Popescu, C. C.; Wijesinghe, D.; Jones, D. H.; Croom, S.; Sadler, E.; Wilkins, S.; Driver, S. P. (2011-08-01).
1498: 1063: 2620: 1244: 302:
system. However, the number of binary systems that can be directly observed is low, thus not enough samples to estimate the initial mass function. Therefore, the stellar luminosity function is used to derive a mass function (a
1276:
is often called the slope of the initial mass function. The present-day mass function, for coeval formation, has the same slope except that it rolls off at higher masses which have evolved away from the main sequence.
563: 243:
The IMF is relatively invariant from one group of stars to another, though some observations suggest that the IMF is different in different environments, and potentially dramatically different in early galaxies.
1393: 1320:
effect is not prominent enough to be observed in the local universe. However, recent photometric survey across cosmic time does suggest a potentially systematic variation of the IMF at high redshift.
1544: 735: 1324:
seems to be a systematic variation of the IMF. However, the measurements are less direct. For star clusters the IMF may change over time due to complicated dynamical evolution.
3422:
Different mass of stars have different ages, thus modifying the star formation history would modify the present-day mass function, which mimics the effect of modifying the IMF.
2319:
Kroupa, Pavel; Weidner, Carsten; Pflamm-Altenburg, Jan; Thies, Ingo; Dabringhausen, Jörg; Marks, Michael; Maschberger, Thomas (2013), Oswalt, Terry D.; Gilmore, Gerard (eds.),
377: 534:
logarithmic mass interval. His work enabled a large number of theoretical parameters to be included in the equation while converging all these parameters into an exponent of
463: 412: 1424: 902: 1086: 558: 493: 3000:
Ferreras, Ignacio; Barbera, Francesco La; Rosa, Ignacio G. de la; Vazdekis, Alexandre; Carvalho, Reinaldo R. de; FalcĂłn-Barroso, JesĂşs; Ricciardelli, Elena (2013-02-11).
885: 845: 812: 779: 701: 205:. IMF not only describes the formation and evolution of individual stars, it also serves as an important link that describes the formation and evolution of galaxies. 1304:
The possible variation of the IMF affects our interpretation of the galaxy signals and the estimation of cosmic star formation history thus is important to consider.
513: 3601: 1333:
filament line mass function (FLMF) follow power-law distributions at the high-mass end, consistent with the Salpeter power-law IMF. Specifically, the CMF follows
432: 1429: 1571: 228:, radius, radiation spectrum, and quantity of materials and energy it emitted into interstellar space during its lifetime. At low masses, the IMF sets the 1707:
Conroy, Charlie; van Dokkum, Pieter G. (2012). "The Stellar Initial Mass Function in Early-type Galaxies From Absorption Line Spectroscopy. II. Results".
315:
within 20 parsecs from the earth. Although short distances yield a smaller number of samples with greater uncertainty of distances for stars with faint
168: 1675: 3794: 1307:
In theory, the IMF should vary with different star-forming conditions. Higher ambient temperature increases the mass of collapsing gas clouds (
3551: 2745:"A top-heavy stellar initial mass function in starbursts as an explanation for the high mass-to-light ratios of ultra-compact dwarf galaxies" 2358: 3001: 3052: 295: 3594: 3372: 1336: 2855:"Evidence for top-heavy stellar initial mass functions with increasing density and decreasing metallicity: Top-heavy IMFs in GCs" 232:
mass budget and the number of substellar objects that form. At intermediate masses, the IMF controls chemical enrichment of the
2959:"Galaxy and Mass Assembly (GAMA): the star formation rate dependence of the stellar initial mass function: IMF-SFR relationship" 669:{\displaystyle \xi (m)\Delta m=\xi _{0}\left({\frac {m}{M_{\odot }}}\right)^{-2.35}\left({\frac {\Delta m}{M_{\odot }}}\right).} 3784: 3704: 132: 3587: 328:, it takes more than 10 billion years for their magnitude to increase substantially. For low-mass stars with below 0.13  311:. The luminosity function requires accurate determination of distances, and the most straightforward way is by measuring 308: 2676:
Sneppen, Albert; Steinhardt, Charles L.; Hensley, Hagan; Jermyn, Adam S.; Mostafa, Basel; Weaver, John R. (2022-05-01).
1870:
Sneppen, Albert; Steinhardt, Charles L.; Hensley, Hagan; Jermyn, Adam S.; Mostafa, Basel; Weaver, John R. (2022-05-01).
209: 161: 3257:"The evolution of CNO isotopes: a new window on cosmic star formation history and the stellar IMF in the age of ALMA" 1503: 3779: 3756: 212:(PDF) that describes the probability of a star that has a certain mass during its formation. It differs from the 2381:"Impact of metallicity and star formation rate on the time-dependent, galaxy-wide stellar initial mass function" 2036:
Miller, Glenn; Scalo, John (1979). "The initial mass function and stellar birthrate in the solar neighborhood".
2899:"COMPARISON OF Hα AND UV STAR FORMATION RATES IN THE LOCAL VOLUME: SYSTEMATIC DISCREPANCIES FOR DWARF GALAXIES" 117: 2379:
Jeřábková, T.; Zonoozi, A. Hasani; Kroupa, P.; Beccari, G.; Yan, Z.; Vazdekis, A.; Zhang, Z.-Y. (2018-12-01).
895:
Chabrier gave the following expression for the density of individual stars in the Galactic disk, in units of
3732: 252: 154: 3669: 3002:"Systematic variation of the stellar initial mass function with velocity dispersion in early-type galaxies" 2796:"Low-Mass X-Ray Binaries Indicate a Top-Heavy Stellar Initial Mass Function in Ultracompact Dwarf Galaxies" 2380: 101: 3659: 2098:
Kroupa, Pavel; et al. (2013). "The stellar and sub-stellar IMF of simple and composite populations".
714: 221: 198: 86: 1940:
Kroupa, Pavel (2002). "The Initial Mass Function of Stars: Evidence for Uniformity in Variable Systems".
711:
Glenn E. Miller and John M. Scalo extended the work of Salpeter, by suggesting that the IMF "flattened" (
3155:"AGN feedback and the origin of the α enhancement in early-type galaxies – insights from the GAEA model" 2563: 1070: 345: 3644: 3501: 3466: 3445: 3329: 2920: 2817: 2766: 2699: 2642: 2585: 2520: 2461: 2402: 2338: 2280: 2221: 2162: 2113: 2080: 2045: 2010: 1959: 1893: 1836: 1780: 1726: 1682: 1638: 437: 382: 76: 3714: 3624: 1398: 233: 142: 56: 3740: 3436:
Scalo, J. M. (1986). "The initial mass function of massive stars in galaxies Empirical evidence".
537: 468: 3709: 3525: 3491: 3384: 3319: 3268: 3166: 3115: 3064: 3013: 2910: 2866: 2807: 2756: 2725: 2689: 2632: 2575: 2510: 2451: 2392: 2328: 2270: 2211: 2152: 2103: 1983: 1949: 1919: 1883: 1852: 1826: 1796: 1770: 1742: 1716: 1654: 1628: 1312: 864: 824: 791: 758: 316: 137: 2678:"Implications of a Temperature-dependent Initial Mass Function. I. Photometric Template Fitting" 1872:"Implications of a Temperature-dependent Initial Mass Function. I. Photometric Template Fitting" 3308:"Stellar populations dominated by massive stars in dusty starburst galaxies across cosmic time" 3306:
Zhang, Zhi-Yu; Romano, D.; Ivison, R. J.; Papadopoulos, Padelis P.; Matteucci, F. (June 2018).
3699: 3664: 3547: 3517: 3353: 3345: 3288: 3255:
Romano, D.; Matteucci, F.; Zhang, Z.-Y.; Papadopoulos, P. P.; Ivison, R. J. (September 2017).
3237: 3186: 3135: 3084: 3033: 2938: 2835: 2717: 2658: 2601: 2544: 2536: 2479: 2420: 2354: 2298: 2239: 2180: 1975: 1911: 1308: 679: 530: 127: 96: 17: 498: 3541: 3509: 3394: 3337: 3278: 3227: 3217: 3176: 3125: 3074: 3023: 2980: 2970: 2928: 2876: 2825: 2774: 2707: 2650: 2593: 2589: 2528: 2469: 2410: 2406: 2346: 2288: 2229: 2170: 2121: 2053: 2018: 1967: 1901: 1844: 1788: 1734: 1646: 519: 312: 229: 3629: 3373:"Probing the filamentary nature of star formation in the California giant molecular cloud" 3206:"The metal enrichment of passive galaxies in cosmological simulations of galaxy formation" 61: 2794:
Dabringhausen, Jörg; Kroupa, Pavel; Pflamm-Altenburg, Jan; Mieske, Steffen (2012-03-01).
2259:"Implications for the formation of star clusters from extragalactic star formation rates" 1493:{\displaystyle \Delta N/\Delta \log M_{\text{line}}\propto M_{\text{line}}^{-1.5\pm 0.2}} 3505: 3470: 3449: 3333: 3204:
Okamoto, Takashi; Nagashima, Masahiro; Lacey, Cedric G.; Frenk, Carlos S. (2017-02-01).
2924: 2821: 2770: 2703: 2646: 2597: 2524: 2465: 2342: 2325:
Planets, Stars and Stellar Systems: Volume 5: Galactic Structure and Stellar Populations
2284: 2225: 2166: 2117: 2084: 2071:
Massey, Philip (1998). "The Initial Mass Function of Massive Stars in the Local Group".
2049: 2014: 1963: 1897: 1840: 1784: 1730: 1642: 3610: 2853:
Marks, Michael; Kroupa, Pavel; Dabringhausen, Jörg; Pawlowski, Marcel S. (2012-05-21).
2321:"The Stellar and Sub-Stellar Initial Mass Function of Simple and Composite Populations" 417: 202: 33: 2933: 2898: 2498: 1792: 1058:{\displaystyle \xi (m)={\frac {0.158}{m\ln(10)}}\exp \left\quad {\text{ for }}m<1,} 3789: 3773: 2975: 2958: 2881: 2854: 2830: 2795: 2779: 2744: 2729: 2474: 2439: 2293: 2258: 2175: 2140: 1923: 1856: 1848: 1746: 1738: 1239:{\displaystyle \xi (m)={\frac {0.086}{m\ln(10)}}\exp \left\quad {\text{ for }}m<1} 3529: 3307: 1987: 1800: 3744: 3654: 3537: 1658: 752: 91: 3398: 2415: 1619:
Chabrier, Gilles (2003). "Galactic stellar and substellar initial mass function".
3480:"The Initial Mass Function of Stars: Evidence for Uniformity in Variable Systems" 2499:"The Initial Mass Function of Stars: Evidence for Uniformity in Variable Systems" 3639: 3634: 2350: 2125: 1286: 299: 71: 66: 3102:
Urban, O.; Werner, N.; Allen, S. W.; Simionescu, A.; Mantz, A. (October 2017).
2712: 2677: 1906: 1871: 3568: 3371:
Zhang, Guo-Yin; Andre, Philippe; Menshchikov, Alexander; Li, Jin-Zeng (2024).
3341: 2985: 2320: 1814: 1066: 320: 237: 225: 3349: 3292: 3241: 3190: 3139: 3088: 3037: 2942: 2839: 2721: 2662: 2605: 2540: 2483: 2424: 2302: 2243: 2184: 1915: 3649: 3569:"Pavel Kroupa (Prague and Bonn): The stellar initial mass function: the IMF" 3513: 3283: 3256: 3222: 3205: 3181: 3154: 3130: 3103: 3079: 3028: 2532: 1971: 339: 194: 182: 81: 3521: 3357: 3104:"A uniform metallicity in the outskirts of massive, nearby galaxy clusters" 2548: 1979: 1676:"Astronomy 112: Physics of Stars -n Class 19 Notes: The Stellar Life Cycle" 1253:
The initial mass function is typically graphed on a logarithm scale of log(
2564:"A Universal Stellar Initial Mass Function? A Critical Look at Variations" 3496: 3153:
De Lucia, Gabriella; Fontanot, Fabio; Hirschmann, Michaela (2017-03-21).
2654: 2515: 2456: 2275: 2216: 2001:
Salpeter, Edwin (1955). "The luminosity function and stellar evolution".
1954: 1633: 861:, correcting for unresolved binary stars also adds a fourth domain with 3053:"Chemical evolution on the scale of clusters of galaxies: a conundrum?" 1579:. United Kingdom: Gordon and Breach, Science Publishers, Inc. p. 3 3232: 2141:"The evolution of stellar mass and the implied star formation history" 2139:
Wilkins, Stephen M.; Trentham, Neil; Hopkins, Andrew M. (April 2008).
1296:
where both formation modes may account for bodies in this mass range.
896: 3479: 3389: 3324: 3273: 3171: 3120: 2694: 2637: 2397: 2234: 2199: 2057: 2022: 1888: 1650: 3069: 3018: 2915: 2871: 2812: 2761: 2580: 2333: 2157: 2108: 1831: 1775: 1721: 1262: 3579: 2621:"The Dawes Review 8: Measuring the Stellar Initial Mass Function" 2562:
Bastian, Nate; Covey, Kevin R.; Meyer, Michael R. (2010-08-01).
2073:
The Stellar Initial Mass Function (38Th Herstmonceux Conference)
41: 3583: 294:
The mass of a star can only be directly determined by applying
1388:{\displaystyle \Delta N/\Delta \log M\propto M^{-1.4\pm 0.2}} 236:. At high masses, the IMF sets the number of core collapse 2743:
Dabringhausen, J.; Kroupa, P.; Baumgardt, H. (2009-04-11).
256:
Initial mass function. The vertical axis is actually not Îľ(
3457:
Scalo, J. M. (1986). "The Stellar Initial Mass Function".
3159:
Monthly Notices of the Royal Astronomical Society: Letters
3006:
Monthly Notices of the Royal Astronomical Society: Letters
2200:"Galactic-Field Initial Mass Functions of Massive Stars" 1261:). Such plots give approximately straight lines with a 1681:. University of Carlifornia, Santa Cruz. Archived from 1621:
Publications of the Astronomical Society of the Pacific
465:
within a specified volume of space, is proportional to
2314: 2312: 335:, it takes 5 Ă— 10 years to reach main sequence stars. 240:
that occur and therefore the kinetic energy feedback.
2625:
Publications of the Astronomical Society of Australia
2327:, Dordrecht: Springer Netherlands, pp. 115–242, 1506: 1432: 1401: 1339: 1089: 905: 867: 827: 794: 761: 717: 703:
is a constant relating to the local stellar density.
682: 566: 540: 518:
Commonly used forms of the IMF are the Kroupa (2001)
501: 471: 440: 420: 385: 348: 2257:
Weidner, C.; Kroupa, P.; Larsen, S. S. (June 2004).
3687: 3617: 1069:, meaning that the logarithm of the mass follows a 1538: 1492: 1418: 1387: 1238: 1057: 879: 839: 806: 773: 729: 695: 668: 552: 507: 487: 457: 426: 406: 371: 3261:Monthly Notices of the Royal Astronomical Society 3210:Monthly Notices of the Royal Astronomical Society 3108:Monthly Notices of the Royal Astronomical Society 3057:Monthly Notices of the Royal Astronomical Society 2963:Monthly Notices of the Royal Astronomical Society 2859:Monthly Notices of the Royal Astronomical Society 2749:Monthly Notices of the Royal Astronomical Society 2444:Monthly Notices of the Royal Astronomical Society 2263:Monthly Notices of the Royal Astronomical Society 2198:Kroupa, Pavel; Weidner, Carsten (December 2003). 2145:Monthly Notices of the Royal Astronomical Society 1083:For stellar systems (namely binaries), he gave: 414:), the number of stars with masses in the range 338:The IMF is often stated in terms of a series of 3051:Renzini, Alvio; Andreon, Stefano (2014-11-11). 2440:"On the variation of the initial mass function" 2100:Stellar Systems and Galactic Structure, Vol. V 1539:{\displaystyle 10\,M_{\odot }{\text{pc}}^{-1}} 3595: 1614: 1285:There are large uncertainties concerning the 162: 8: 3540:; Gallagher, John S. III (5 February 2007). 1612: 1610: 1608: 1606: 1604: 1602: 1600: 1598: 1596: 1594: 1565: 1563: 1561: 1559: 3546:. Cambridge University Press. pp. 1–. 3438:Luminous Stars and Associations in Galaxies 2568:Annual Review of Astronomy and Astrophysics 201:of masses for a population of stars during 3602: 3588: 3580: 1935: 1933: 169: 155: 29: 3543:Galaxies in the Universe: An Introduction 3495: 3388: 3323: 3282: 3272: 3231: 3221: 3180: 3170: 3129: 3119: 3078: 3068: 3027: 3017: 2984: 2974: 2932: 2914: 2880: 2870: 2829: 2811: 2778: 2760: 2711: 2693: 2636: 2579: 2514: 2473: 2455: 2414: 2396: 2332: 2292: 2274: 2233: 2215: 2174: 2156: 2107: 1953: 1905: 1887: 1830: 1774: 1720: 1632: 1527: 1522: 1515: 1510: 1505: 1475: 1470: 1457: 1439: 1431: 1410: 1405: 1400: 1370: 1346: 1338: 1222: 1207: 1189: 1146: 1105: 1088: 1038: 1023: 1005: 962: 921: 904: 866: 826: 793: 760: 716: 687: 681: 651: 637: 624: 612: 603: 592: 565: 539: 500: 476: 470: 447: 439: 419: 384: 361: 347: 737:) when stellar masses fell below 1  251: 3415: 2038:Astrophysical Journal Supplement Series 1555: 109: 48: 32: 1670: 1668: 1500:for filament line masses greater than 1311:); lower gas metallicity reduces the 7: 3752: 730:{\displaystyle \alpha \rightarrow 0} 522:and the Chabrier (2003) log-normal. 197:function that describes the initial 2598:10.1146/annurev-astro-082708-101642 1444: 1433: 1351: 1340: 640: 579: 448: 398: 362: 25: 372:{\displaystyle N(m)\mathrm {d} m} 3751: 3739: 3728: 3727: 3678: 2976:10.1111/j.1365-2966.2011.18800.x 2882:10.1111/j.1365-2966.2012.20767.x 2780:10.1111/j.1365-2966.2009.14425.x 2475:10.1046/j.1365-8711.2001.04022.x 2294:10.1111/j.1365-2966.2004.07758.x 2176:10.1111/j.1365-2966.2008.12885.x 40: 2619:Hopkins, A. M. (January 2018). 1221: 1037: 458:{\displaystyle m+\mathrm {d} m} 407:{\displaystyle \xi (m)\Delta m} 379:(sometimes also represented as 27:Empirical function in astronomy 3459:Fundamentals of Cosmic Physics 1573:Fundamentals of Cosmic Physics 1186: 1182: 1176: 1164: 1158: 1149: 1126: 1120: 1099: 1093: 1002: 998: 992: 980: 974: 965: 942: 936: 915: 909: 721: 576: 570: 395: 389: 358: 352: 18:Salpeter initial mass function 1: 3795:Stellar astrophysics concepts 1419:{\displaystyle 1\,M_{\odot }} 515:is a dimensionless exponent. 3377:Astronomy & Astrophysics 2497:Kroupa, Pavel (2002-01-04). 2385:Astronomy & Astrophysics 553:{\displaystyle \alpha =2.35} 488:{\displaystyle m^{-\alpha }} 264:, but a scaled version of Îľ( 210:probability density function 208:The IMF is often given as a 3399:10.1051/0004-6361/202449853 2934:10.1088/0004-637X/706/1/599 2416:10.1051/0004-6361/201833055 2351:10.1007/978-94-007-5612-0_4 2126:10.1007/978-94-007-5612-0_4 1793:10.1088/0004-637X/763/2/110 880:{\displaystyle \alpha =2.7} 840:{\displaystyle \alpha =0.3} 807:{\displaystyle \alpha =1.3} 774:{\displaystyle \alpha =2.3} 3811: 3705:Kelvin–Helmholtz mechanism 2831:10.1088/0004-637X/747/1/72 1849:10.1088/0004-637X/771/1/29 1739:10.1088/0004-637X/760/1/71 133:Kelvin–Helmholtz mechanism 3723: 3676: 3342:10.1038/s41586-018-0196-x 2903:The Astrophysical Journal 2800:The Astrophysical Journal 2682:The Astrophysical Journal 2438:Kroupa, P. (2001-04-01). 2204:The Astrophysical Journal 1876:The Astrophysical Journal 1819:The Astrophysical Journal 1763:The Astrophysical Journal 1709:The Astrophysical Journal 1328:Origin of the Stellar IMF 305:present-day mass function 214:present-day mass function 3486:(Submitted manuscript). 2713:10.3847/1538-4357/ac695e 1907:10.3847/1538-4357/ac695e 1395:for masses greater than 696:{\displaystyle \xi _{0}} 309:mass–luminosity relation 3514:10.1126/science.1067524 2590:2010ARA&A..48..339B 2533:10.1126/science.1067524 2407:2018A&A...620A..39J 1972:10.1126/science.1067524 1426:, and the FLMF follows 560:. The Salpeter IMF is 508:{\displaystyle \alpha } 3785:Equations of astronomy 3660:Pre-main-sequence star 3478:Kroupa, Pavel (2002). 1540: 1494: 1420: 1389: 1240: 1059: 881: 841: 814:between 0.08–0.5  808: 775: 731: 697: 670: 554: 509: 489: 459: 428: 408: 373: 291: 87:Pre-main-sequence star 3695:Initial mass function 3284:10.1093/mnras/stx1197 3223:10.1093/mnras/stw2729 3182:10.1093/mnrasl/slw242 3131:10.1093/mnras/stx1542 3080:10.1093/mnras/stu1689 3029:10.1093/mnrasl/sls014 2003:Astrophysical Journal 1541: 1495: 1421: 1390: 1241: 1071:Gaussian distribution 1060: 882: 842: 809: 781:between 0.5–1.0  776: 732: 698: 671: 555: 510: 490: 460: 429: 409: 374: 255: 187:initial mass function 123:Initial mass function 3688:Theoretical concepts 3645:Young stellar object 2655:10.1017/pasa.2018.29 1504: 1430: 1399: 1337: 1087: 903: 865: 825: 792: 759: 715: 680: 564: 538: 499: 469: 438: 418: 383: 346: 307:, PDMF) by applying 110:Theoretical concepts 77:Young stellar object 3715:Planetary migration 3625:Interstellar medium 3506:2002Sci...295...82K 3471:1986FCPh...11....1S 3450:1986IAUS..116..451S 3334:2018Natur.558..260Z 2925:2009ApJ...706..599L 2822:2012ApJ...747...72D 2771:2009MNRAS.394.1529D 2704:2022ApJ...931...57S 2647:2018PASA...35...39H 2525:2002Sci...295...82K 2466:2001MNRAS.322..231K 2343:2013pss5.book..115K 2285:2004MNRAS.350.1503W 2226:2003ApJ...598.1076K 2167:2008MNRAS.385..687W 2118:2013pss5.book..115K 2085:1998ASPC..142...17M 2050:1979ApJS...41..513M 2015:1955ApJ...121..161S 1964:2002Sci...295...82K 1898:2022ApJ...931...57S 1841:2013ApJ...771...29G 1785:2013ApJ...763..110K 1731:2012ApJ...760...71C 1643:2003PASP..115..763C 1489: 1065:This expression is 707:Miller–Scalo (1979) 234:interstellar medium 143:Planetary migration 57:Interstellar medium 3710:Nebular hypothesis 3670:Herbig–Haro object 2986:20.500.11850/38507 1570:Scalo, JM (1986). 1536: 1490: 1466: 1416: 1385: 1313:radiation pressure 1236: 1055: 877: 837: 804: 771: 727: 693: 666: 550: 505: 485: 455: 424: 404: 369: 296:Kepler's third law 292: 138:Nebular hypothesis 102:Herbig–Haro object 3780:Stellar astronomy 3767: 3766: 3700:Jeans instability 3665:Herbig Ae/Be star 3553:978-1-139-46238-9 3318:(7709): 260–263. 2360:978-94-007-5612-0 1525: 1473: 1460: 1287:substellar region 1225: 1214: 1130: 1041: 1030: 946: 788:, but introduced 657: 618: 531:Edwin E. Salpeter 427:{\displaystyle m} 179: 178: 128:Jeans instability 97:Herbig Ae/Be star 16:(Redirected from 3802: 3755: 3754: 3743: 3731: 3730: 3682: 3681: 3604: 3597: 3590: 3581: 3576: 3575:. April 8, 2022. 3557: 3538:Sparke, Linda S. 3533: 3499: 3497:astro-ph/0201098 3474: 3453: 3423: 3420: 3403: 3402: 3392: 3368: 3362: 3361: 3327: 3303: 3297: 3296: 3286: 3276: 3252: 3246: 3245: 3235: 3225: 3216:(4): 4866–4874. 3201: 3195: 3194: 3184: 3174: 3150: 3144: 3143: 3133: 3123: 3114:(4): 4583–4599. 3099: 3093: 3092: 3082: 3072: 3063:(4): 3581–3591. 3048: 3042: 3041: 3031: 3021: 2997: 2991: 2990: 2988: 2978: 2969:(2): 1647–1662. 2953: 2947: 2946: 2936: 2918: 2893: 2887: 2886: 2884: 2874: 2865:(3): 2246–2254. 2850: 2844: 2843: 2833: 2815: 2791: 2785: 2784: 2782: 2764: 2755:(3): 1529–1543. 2740: 2734: 2733: 2715: 2697: 2673: 2667: 2666: 2640: 2616: 2610: 2609: 2583: 2559: 2553: 2552: 2518: 2516:astro-ph/0201098 2494: 2488: 2487: 2477: 2459: 2457:astro-ph/0009005 2435: 2429: 2428: 2418: 2400: 2376: 2370: 2369: 2368: 2367: 2336: 2316: 2307: 2306: 2296: 2278: 2276:astro-ph/0402631 2269:(4): 1503–1510. 2254: 2248: 2247: 2237: 2219: 2217:astro-ph/0308356 2210:(2): 1076–1078. 2195: 2189: 2188: 2178: 2160: 2136: 2130: 2129: 2111: 2095: 2089: 2088: 2068: 2062: 2061: 2033: 2027: 2026: 1998: 1992: 1991: 1957: 1955:astro-ph/0201098 1937: 1928: 1927: 1909: 1891: 1867: 1861: 1860: 1834: 1811: 1805: 1804: 1778: 1757: 1751: 1750: 1724: 1704: 1698: 1697: 1695: 1693: 1687: 1680: 1672: 1663: 1662: 1636: 1634:astro-ph/0304382 1627:(809): 763–795. 1616: 1589: 1588: 1586: 1584: 1578: 1567: 1545: 1543: 1542: 1537: 1535: 1534: 1526: 1523: 1520: 1519: 1499: 1497: 1496: 1491: 1488: 1474: 1471: 1462: 1461: 1458: 1443: 1425: 1423: 1422: 1417: 1415: 1414: 1394: 1392: 1391: 1386: 1384: 1383: 1350: 1245: 1243: 1242: 1237: 1226: 1223: 1220: 1216: 1215: 1213: 1212: 1211: 1195: 1194: 1193: 1147: 1131: 1129: 1106: 1064: 1062: 1061: 1056: 1042: 1039: 1036: 1032: 1031: 1029: 1028: 1027: 1011: 1010: 1009: 963: 947: 945: 922: 886: 884: 883: 878: 847:below 0.08  846: 844: 843: 838: 813: 811: 810: 805: 780: 778: 777: 772: 736: 734: 733: 728: 702: 700: 699: 694: 692: 691: 675: 673: 672: 667: 662: 658: 656: 655: 646: 638: 632: 631: 623: 619: 617: 616: 604: 597: 596: 559: 557: 556: 551: 520:broken power law 514: 512: 511: 506: 494: 492: 491: 486: 484: 483: 464: 462: 461: 456: 451: 433: 431: 430: 425: 413: 411: 410: 405: 378: 376: 375: 370: 365: 313:stellar parallax 230:Milky Way Galaxy 171: 164: 157: 44: 30: 21: 3810: 3809: 3805: 3804: 3803: 3801: 3800: 3799: 3770: 3769: 3768: 3763: 3719: 3683: 3679: 3674: 3630:Molecular cloud 3613: 3608: 3567: 3564: 3554: 3536: 3490:(5552): 82–91. 3477: 3456: 3435: 3432: 3430:Further reading 3427: 3426: 3421: 3417: 3412: 3407: 3406: 3370: 3369: 3365: 3305: 3304: 3300: 3254: 3253: 3249: 3203: 3202: 3198: 3152: 3151: 3147: 3101: 3100: 3096: 3050: 3049: 3045: 2999: 2998: 2994: 2955: 2954: 2950: 2895: 2894: 2890: 2852: 2851: 2847: 2793: 2792: 2788: 2742: 2741: 2737: 2675: 2674: 2670: 2618: 2617: 2613: 2561: 2560: 2556: 2509:(5552): 82–91. 2496: 2495: 2491: 2437: 2436: 2432: 2378: 2377: 2373: 2365: 2363: 2361: 2318: 2317: 2310: 2256: 2255: 2251: 2197: 2196: 2192: 2138: 2137: 2133: 2097: 2096: 2092: 2070: 2069: 2065: 2035: 2034: 2030: 2000: 1999: 1995: 1948:(5552): 82–91. 1939: 1938: 1931: 1869: 1868: 1864: 1813: 1812: 1808: 1759: 1758: 1754: 1706: 1705: 1701: 1691: 1689: 1688:on 6 April 2023 1685: 1678: 1674: 1673: 1666: 1618: 1617: 1592: 1582: 1580: 1576: 1569: 1568: 1557: 1552: 1521: 1511: 1502: 1501: 1453: 1428: 1427: 1406: 1397: 1396: 1366: 1335: 1334: 1330: 1302: 1295: 1292: 1283: 1251: 1224: for  1203: 1196: 1185: 1148: 1142: 1138: 1110: 1085: 1084: 1079: 1076: 1040: for  1019: 1012: 1001: 964: 958: 954: 926: 901: 900: 893: 891:Chabrier (2003) 863: 862: 860: 857: 854:. Above 1  853: 850: 823: 822: 820: 817: 790: 789: 787: 784: 757: 756: 750: 743: 740: 713: 712: 709: 683: 678: 677: 647: 639: 633: 608: 599: 598: 588: 562: 561: 536: 535: 528: 526:Salpeter (1955) 497: 496: 472: 467: 466: 436: 435: 416: 415: 381: 380: 344: 343: 334: 331: 326: 323: 289: 286: 278: 275: 250: 175: 62:Molecular cloud 28: 23: 22: 15: 12: 11: 5: 3808: 3806: 3798: 3797: 3792: 3787: 3782: 3772: 3771: 3765: 3764: 3762: 3761: 3749: 3737: 3724: 3721: 3720: 3718: 3717: 3712: 3707: 3702: 3697: 3691: 3689: 3685: 3684: 3677: 3675: 3673: 3672: 3667: 3662: 3657: 3652: 3647: 3642: 3637: 3632: 3627: 3621: 3619: 3618:Object classes 3615: 3614: 3611:Star formation 3609: 3607: 3606: 3599: 3592: 3584: 3578: 3577: 3563: 3562:External links 3560: 3559: 3558: 3552: 3534: 3475: 3454: 3431: 3428: 3425: 3424: 3414: 3413: 3411: 3408: 3405: 3404: 3363: 3298: 3267:(1): 401–415. 3247: 3196: 3165:(1): L88–L92. 3145: 3094: 3043: 3012:(1): L15–L19. 2992: 2948: 2909:(1): 599–613. 2888: 2845: 2786: 2735: 2668: 2611: 2574:(1): 339–389. 2554: 2489: 2450:(2): 231–246. 2430: 2371: 2359: 2308: 2249: 2235:10.1086/379105 2190: 2151:(2): 687–694. 2131: 2090: 2063: 2058:10.1086/190629 2028: 2023:10.1086/145971 1993: 1929: 1862: 1806: 1761:< 1 Msun". 1752: 1699: 1664: 1651:10.1086/376392 1590: 1554: 1553: 1551: 1548: 1533: 1530: 1518: 1514: 1509: 1487: 1484: 1481: 1478: 1469: 1465: 1456: 1452: 1449: 1446: 1442: 1438: 1435: 1413: 1409: 1404: 1382: 1379: 1376: 1373: 1369: 1365: 1362: 1359: 1356: 1353: 1349: 1345: 1342: 1329: 1326: 1301: 1298: 1293: 1290: 1282: 1279: 1250: 1247: 1235: 1232: 1229: 1219: 1210: 1206: 1202: 1199: 1192: 1188: 1184: 1181: 1178: 1175: 1172: 1169: 1166: 1163: 1160: 1157: 1154: 1151: 1145: 1141: 1137: 1134: 1128: 1125: 1122: 1119: 1116: 1113: 1109: 1104: 1101: 1098: 1095: 1092: 1077: 1074: 1054: 1051: 1048: 1045: 1035: 1026: 1022: 1018: 1015: 1008: 1004: 1000: 997: 994: 991: 988: 985: 982: 979: 976: 973: 970: 967: 961: 957: 953: 950: 944: 941: 938: 935: 932: 929: 925: 920: 917: 914: 911: 908: 892: 889: 876: 873: 870: 858: 855: 851: 848: 836: 833: 830: 818: 815: 803: 800: 797: 785: 782: 770: 767: 764: 749: 746: 741: 738: 726: 723: 720: 708: 705: 690: 686: 665: 661: 654: 650: 645: 642: 636: 630: 627: 622: 615: 611: 607: 602: 595: 591: 587: 584: 581: 578: 575: 572: 569: 549: 546: 543: 527: 524: 504: 482: 479: 475: 454: 450: 446: 443: 423: 403: 400: 397: 394: 391: 388: 368: 364: 360: 357: 354: 351: 332: 329: 324: 321: 287: 284: 276: 273: 249: 246: 203:star formation 177: 176: 174: 173: 166: 159: 151: 148: 147: 146: 145: 140: 135: 130: 125: 120: 112: 111: 107: 106: 105: 104: 99: 94: 89: 84: 79: 74: 69: 64: 59: 51: 50: 49:Object classes 46: 45: 37: 36: 34:Star formation 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 3807: 3796: 3793: 3791: 3788: 3786: 3783: 3781: 3778: 3777: 3775: 3760: 3759: 3750: 3748: 3747: 3742: 3738: 3736: 3735: 3726: 3725: 3722: 3716: 3713: 3711: 3708: 3706: 3703: 3701: 3698: 3696: 3693: 3692: 3690: 3686: 3671: 3668: 3666: 3663: 3661: 3658: 3656: 3653: 3651: 3648: 3646: 3643: 3641: 3638: 3636: 3633: 3631: 3628: 3626: 3623: 3622: 3620: 3616: 3612: 3605: 3600: 3598: 3593: 3591: 3586: 3585: 3582: 3574: 3570: 3566: 3565: 3561: 3555: 3549: 3545: 3544: 3539: 3535: 3531: 3527: 3523: 3519: 3515: 3511: 3507: 3503: 3498: 3493: 3489: 3485: 3481: 3476: 3472: 3468: 3464: 3460: 3455: 3451: 3447: 3443: 3439: 3434: 3433: 3429: 3419: 3416: 3409: 3400: 3396: 3391: 3386: 3382: 3378: 3374: 3367: 3364: 3359: 3355: 3351: 3347: 3343: 3339: 3335: 3331: 3326: 3321: 3317: 3313: 3309: 3302: 3299: 3294: 3290: 3285: 3280: 3275: 3270: 3266: 3262: 3258: 3251: 3248: 3243: 3239: 3234: 3229: 3224: 3219: 3215: 3211: 3207: 3200: 3197: 3192: 3188: 3183: 3178: 3173: 3168: 3164: 3160: 3156: 3149: 3146: 3141: 3137: 3132: 3127: 3122: 3117: 3113: 3109: 3105: 3098: 3095: 3090: 3086: 3081: 3076: 3071: 3066: 3062: 3058: 3054: 3047: 3044: 3039: 3035: 3030: 3025: 3020: 3015: 3011: 3007: 3003: 2996: 2993: 2987: 2982: 2977: 2972: 2968: 2964: 2960: 2952: 2949: 2944: 2940: 2935: 2930: 2926: 2922: 2917: 2912: 2908: 2904: 2900: 2892: 2889: 2883: 2878: 2873: 2868: 2864: 2860: 2856: 2849: 2846: 2841: 2837: 2832: 2827: 2823: 2819: 2814: 2809: 2805: 2801: 2797: 2790: 2787: 2781: 2776: 2772: 2768: 2763: 2758: 2754: 2750: 2746: 2739: 2736: 2731: 2727: 2723: 2719: 2714: 2709: 2705: 2701: 2696: 2691: 2687: 2683: 2679: 2672: 2669: 2664: 2660: 2656: 2652: 2648: 2644: 2639: 2634: 2630: 2626: 2622: 2615: 2612: 2607: 2603: 2599: 2595: 2591: 2587: 2582: 2577: 2573: 2569: 2565: 2558: 2555: 2550: 2546: 2542: 2538: 2534: 2530: 2526: 2522: 2517: 2512: 2508: 2504: 2500: 2493: 2490: 2485: 2481: 2476: 2471: 2467: 2463: 2458: 2453: 2449: 2445: 2441: 2434: 2431: 2426: 2422: 2417: 2412: 2408: 2404: 2399: 2394: 2390: 2386: 2382: 2375: 2372: 2362: 2356: 2352: 2348: 2344: 2340: 2335: 2330: 2326: 2322: 2315: 2313: 2309: 2304: 2300: 2295: 2290: 2286: 2282: 2277: 2272: 2268: 2264: 2260: 2253: 2250: 2245: 2241: 2236: 2231: 2227: 2223: 2218: 2213: 2209: 2205: 2201: 2194: 2191: 2186: 2182: 2177: 2172: 2168: 2164: 2159: 2154: 2150: 2146: 2142: 2135: 2132: 2127: 2123: 2119: 2115: 2110: 2105: 2101: 2094: 2091: 2086: 2082: 2078: 2074: 2067: 2064: 2059: 2055: 2051: 2047: 2043: 2039: 2032: 2029: 2024: 2020: 2016: 2012: 2008: 2004: 1997: 1994: 1989: 1985: 1981: 1977: 1973: 1969: 1965: 1961: 1956: 1951: 1947: 1943: 1936: 1934: 1930: 1925: 1921: 1917: 1913: 1908: 1903: 1899: 1895: 1890: 1885: 1881: 1877: 1873: 1866: 1863: 1858: 1854: 1850: 1846: 1842: 1838: 1833: 1828: 1824: 1820: 1816: 1810: 1807: 1802: 1798: 1794: 1790: 1786: 1782: 1777: 1772: 1768: 1764: 1756: 1753: 1748: 1744: 1740: 1736: 1732: 1728: 1723: 1718: 1714: 1710: 1703: 1700: 1684: 1677: 1671: 1669: 1665: 1660: 1656: 1652: 1648: 1644: 1640: 1635: 1630: 1626: 1622: 1615: 1613: 1611: 1609: 1607: 1605: 1603: 1601: 1599: 1597: 1595: 1591: 1575: 1574: 1566: 1564: 1562: 1560: 1556: 1549: 1547: 1531: 1528: 1516: 1512: 1507: 1485: 1482: 1479: 1476: 1467: 1463: 1454: 1450: 1447: 1440: 1436: 1411: 1407: 1402: 1380: 1377: 1374: 1371: 1367: 1363: 1360: 1357: 1354: 1347: 1343: 1327: 1325: 1321: 1317: 1314: 1310: 1305: 1299: 1297: 1288: 1281:Uncertainties 1280: 1278: 1275: 1271: 1267: 1264: 1260: 1256: 1248: 1246: 1233: 1230: 1227: 1217: 1208: 1204: 1200: 1197: 1190: 1179: 1173: 1170: 1167: 1161: 1155: 1152: 1143: 1139: 1135: 1132: 1123: 1117: 1114: 1111: 1107: 1102: 1096: 1090: 1081: 1073:up to 1  1072: 1068: 1052: 1049: 1046: 1043: 1033: 1024: 1020: 1016: 1013: 1006: 995: 989: 986: 983: 977: 971: 968: 959: 955: 951: 948: 939: 933: 930: 927: 923: 918: 912: 906: 898: 890: 888: 874: 871: 868: 834: 831: 828: 801: 798: 795: 768: 765: 762: 754: 748:Kroupa (2002) 747: 745: 724: 718: 706: 704: 688: 684: 663: 659: 652: 648: 643: 634: 628: 625: 620: 613: 609: 605: 600: 593: 589: 585: 582: 573: 567: 547: 544: 541: 532: 525: 523: 521: 516: 502: 480: 477: 473: 452: 444: 441: 421: 401: 392: 386: 366: 355: 349: 341: 336: 327: 318: 314: 310: 306: 301: 297: 282: 271: 267: 263: 259: 254: 247: 245: 241: 239: 235: 231: 227: 223: 217: 215: 211: 206: 204: 200: 196: 192: 188: 184: 172: 167: 165: 160: 158: 153: 152: 150: 149: 144: 141: 139: 136: 134: 131: 129: 126: 124: 121: 119: 116: 115: 114: 113: 108: 103: 100: 98: 95: 93: 90: 88: 85: 83: 80: 78: 75: 73: 70: 68: 65: 63: 60: 58: 55: 54: 53: 52: 47: 43: 39: 38: 35: 31: 19: 3757: 3746:Stars portal 3745: 3733: 3694: 3655:T Tauri star 3572: 3542: 3487: 3483: 3462: 3458: 3441: 3437: 3418: 3380: 3376: 3366: 3315: 3311: 3301: 3264: 3260: 3250: 3213: 3209: 3199: 3162: 3158: 3148: 3111: 3107: 3097: 3060: 3056: 3046: 3009: 3005: 2995: 2966: 2962: 2951: 2906: 2902: 2891: 2862: 2858: 2848: 2803: 2799: 2789: 2752: 2748: 2738: 2685: 2681: 2671: 2628: 2624: 2614: 2571: 2567: 2557: 2506: 2502: 2492: 2447: 2443: 2433: 2388: 2384: 2374: 2364:, retrieved 2324: 2266: 2262: 2252: 2207: 2203: 2193: 2148: 2144: 2134: 2099: 2093: 2076: 2072: 2066: 2041: 2037: 2031: 2006: 2002: 1996: 1945: 1941: 1879: 1875: 1865: 1822: 1818: 1809: 1766: 1762: 1755: 1712: 1708: 1702: 1690:. Retrieved 1683:the original 1624: 1620: 1581:. Retrieved 1572: 1331: 1322: 1318: 1306: 1303: 1284: 1273: 1269: 1265: 1258: 1254: 1252: 1082: 894: 753:Pavel Kroupa 751: 710: 529: 517: 337: 304: 293: 280: 272:> 1  269: 265: 261: 257: 242: 218: 213: 207: 199:distribution 190: 186: 180: 122: 92:T Tauri star 3640:Dark nebula 3635:Bok globule 1815:Geha, Marla 1692:23 December 1583:28 February 1268:equal to 1– 300:binary star 248:Development 72:Dark nebula 67:Bok globule 3774:Categories 3390:2406.08004 3325:1806.01280 3274:1704.06701 3233:2115/65505 3172:1611.04597 3121:1706.01567 2695:2205.11536 2638:1807.09949 2398:1809.04603 2366:2023-11-02 1889:2205.11536 1769:(2): 110. 1550:References 1309:Jeans mass 1067:log-normal 340:power laws 317:magnitudes 238:supernovae 226:luminosity 3650:Protostar 3350:1476-4687 3293:0035-8711 3242:0035-8711 3191:1745-3925 3140:0035-8711 3089:1365-2966 3070:1409.0307 3038:1745-3933 3019:1206.1594 2943:0004-637X 2916:0909.5205 2872:1202.4755 2840:0004-637X 2813:1110.2779 2806:(1): 72. 2762:0901.0915 2730:249017733 2722:0004-637X 2688:(1): 57. 2663:1323-3580 2606:0066-4146 2581:1001.2965 2541:0036-8075 2484:0035-8711 2425:0004-6361 2334:1112.3340 2303:0035-8711 2244:0004-637X 2185:0035-8711 2158:0801.1594 2109:1112.3340 1924:249017733 1916:0004-637X 1882:(1): 57. 1857:119290783 1832:1304.7769 1825:(1): 29. 1776:1212.1159 1747:119109509 1722:1205.6473 1715:(1): 71. 1529:− 1517:⊙ 1483:± 1477:− 1464:∝ 1451:⁡ 1445:Δ 1434:Δ 1412:⊙ 1378:± 1372:− 1364:∝ 1358:⁡ 1352:Δ 1341:Δ 1300:Variation 1272:. Hence 1257:) vs log( 1201:× 1174:⁡ 1168:− 1156:⁡ 1144:− 1136:⁡ 1118:⁡ 1091:ξ 1017:× 990:⁡ 984:− 972:⁡ 960:− 952:⁡ 934:⁡ 907:ξ 869:α 829:α 796:α 763:α 722:→ 719:α 685:ξ 653:⊙ 641:Δ 626:− 614:⊙ 590:ξ 580:Δ 568:ξ 542:α 503:α 481:α 478:− 399:Δ 387:ξ 279:, it is ( 195:empirical 183:astronomy 118:Accretion 82:Protostar 3734:Category 3530:14084249 3522:11778039 3358:29867162 2631:: e039. 2549:11778039 1988:15276163 1980:11778039 1801:54724031 1294:☉ 1078:☉ 859:☉ 852:☉ 819:☉ 786:☉ 742:☉ 495:, where 342:, where 333:☉ 325:☉ 288:☉ 277:☉ 193:) is an 3758:Commons 3573:YouTube 3502:Bibcode 3484:Science 3467:Bibcode 3446:Bibcode 3444:: 451. 3330:Bibcode 2921:Bibcode 2818:Bibcode 2767:Bibcode 2700:Bibcode 2643:Bibcode 2586:Bibcode 2521:Bibcode 2503:Science 2462:Bibcode 2403:Bibcode 2391:: A39. 2339:Bibcode 2281:Bibcode 2222:Bibcode 2163:Bibcode 2114:Bibcode 2081:Bibcode 2046:Bibcode 2044:: 513. 2011:Bibcode 2009:: 161. 1960:Bibcode 1942:Science 1894:Bibcode 1837:Bibcode 1781:Bibcode 1727:Bibcode 1659:4676258 1639:Bibcode 268:). For 3550:  3528:  3520:  3383:: A3. 3356:  3348:  3312:Nature 3291:  3240:  3189:  3138:  3087:  3036:  2941:  2838:  2728:  2720:  2661:  2604:  2547:  2539:  2482:  2423:  2357:  2301:  2242:  2183:  2079:: 17. 1986:  1978:  1922:  1914:  1855:  1799:  1745:  1657:  676:where 222:colour 185:, the 3526:S2CID 3492:arXiv 3465:: 1. 3410:Notes 3385:arXiv 3320:arXiv 3269:arXiv 3167:arXiv 3116:arXiv 3065:arXiv 3014:arXiv 2911:arXiv 2867:arXiv 2808:arXiv 2757:arXiv 2726:S2CID 2690:arXiv 2633:arXiv 2576:arXiv 2511:arXiv 2452:arXiv 2393:arXiv 2329:arXiv 2271:arXiv 2212:arXiv 2153:arXiv 2104:arXiv 1984:S2CID 1950:arXiv 1920:S2CID 1884:arXiv 1853:S2CID 1827:arXiv 1797:S2CID 1771:arXiv 1743:S2CID 1717:arXiv 1686:(PDF) 1679:(PDF) 1655:S2CID 1629:arXiv 1577:(PDF) 1263:slope 1249:Slope 1108:0.086 924:0.158 755:kept 298:to a 3790:Mass 3548:ISBN 3518:PMID 3354:PMID 3346:ISSN 3289:ISSN 3238:ISSN 3187:ISSN 3136:ISSN 3085:ISSN 3034:ISSN 2939:ISSN 2836:ISSN 2718:ISSN 2659:ISSN 2602:ISSN 2545:PMID 2537:ISSN 2480:ISSN 2421:ISSN 2355:ISBN 2299:ISSN 2240:ISSN 2181:ISSN 1976:PMID 1912:ISSN 1694:2023 1585:2023 1472:line 1459:line 1231:< 1205:0.57 1180:0.22 1047:< 1021:0.69 996:0.08 821:and 629:2.35 548:2.35 3510:doi 3488:295 3442:116 3395:doi 3381:689 3338:doi 3316:558 3279:doi 3265:470 3228:hdl 3218:doi 3214:464 3177:doi 3163:466 3126:doi 3112:470 3075:doi 3061:444 3024:doi 3010:429 2981:hdl 2971:doi 2967:415 2929:doi 2907:706 2877:doi 2863:422 2826:doi 2804:747 2775:doi 2753:394 2708:doi 2686:931 2651:doi 2594:doi 2529:doi 2507:295 2470:doi 2448:322 2411:doi 2389:620 2347:doi 2289:doi 2267:350 2230:doi 2208:598 2171:doi 2149:385 2122:doi 2077:142 2054:doi 2019:doi 2007:121 1968:doi 1946:295 1902:doi 1880:931 1845:doi 1823:771 1789:doi 1767:763 1735:doi 1713:760 1647:doi 1625:115 1486:0.2 1480:1.5 1448:log 1381:0.2 1375:1.4 1355:log 1171:log 1153:log 1133:exp 987:log 969:log 949:exp 875:2.7 835:0.3 802:1.3 769:2.3 434:to 191:IMF 181:In 3776:: 3571:. 3524:. 3516:. 3508:. 3500:. 3482:. 3463:11 3461:. 3440:. 3393:. 3379:. 3375:. 3352:. 3344:. 3336:. 3328:. 3314:. 3310:. 3287:. 3277:. 3263:. 3259:. 3236:. 3226:. 3212:. 3208:. 3185:. 3175:. 3161:. 3157:. 3134:. 3124:. 3110:. 3106:. 3083:. 3073:. 3059:. 3055:. 3032:. 3022:. 3008:. 3004:. 2979:. 2965:. 2961:. 2937:. 2927:. 2919:. 2905:. 2901:. 2875:. 2861:. 2857:. 2834:. 2824:. 2816:. 2802:. 2798:. 2773:. 2765:. 2751:. 2747:. 2724:. 2716:. 2706:. 2698:. 2684:. 2680:. 2657:. 2649:. 2641:. 2629:35 2627:. 2623:. 2600:. 2592:. 2584:. 2572:48 2570:. 2566:. 2543:. 2535:. 2527:. 2519:. 2505:. 2501:. 2478:. 2468:. 2460:. 2446:. 2442:. 2419:. 2409:. 2401:. 2387:. 2383:. 2353:, 2345:, 2337:, 2323:, 2311:^ 2297:. 2287:. 2279:. 2265:. 2261:. 2238:. 2228:. 2220:. 2206:. 2202:. 2179:. 2169:. 2161:. 2147:. 2143:. 2120:. 2112:. 2102:. 2075:. 2052:. 2042:41 2040:. 2017:. 2005:. 1982:. 1974:. 1966:. 1958:. 1944:. 1932:^ 1918:. 1910:. 1900:. 1892:. 1878:. 1874:. 1851:. 1843:. 1835:. 1821:. 1795:. 1787:. 1779:. 1765:. 1741:. 1733:. 1725:. 1711:. 1667:^ 1653:. 1645:. 1637:. 1623:. 1593:^ 1558:^ 1524:pc 1508:10 1124:10 1115:ln 1080:. 940:10 931:ln 899:: 897:pc 887:. 744:. 290:). 260:)Δ 224:, 3603:e 3596:t 3589:v 3556:. 3532:. 3512:: 3504:: 3494:: 3473:. 3469:: 3452:. 3448:: 3401:. 3397:: 3387:: 3360:. 3340:: 3332:: 3322:: 3295:. 3281:: 3271:: 3244:. 3230:: 3220:: 3193:. 3179:: 3169:: 3142:. 3128:: 3118:: 3091:. 3077:: 3067:: 3040:. 3026:: 3016:: 2989:. 2983:: 2973:: 2945:. 2931:: 2923:: 2913:: 2885:. 2879:: 2869:: 2842:. 2828:: 2820:: 2810:: 2783:. 2777:: 2769:: 2759:: 2732:. 2710:: 2702:: 2692:: 2665:. 2653:: 2645:: 2635:: 2608:. 2596:: 2588:: 2578:: 2551:. 2531:: 2523:: 2513:: 2486:. 2472:: 2464:: 2454:: 2427:. 2413:: 2405:: 2395:: 2349:: 2341:: 2331:: 2305:. 2291:: 2283:: 2273:: 2246:. 2232:: 2224:: 2214:: 2187:. 2173:: 2165:: 2155:: 2128:. 2124:: 2116:: 2106:: 2087:. 2083:: 2060:. 2056:: 2048:: 2025:. 2021:: 2013:: 1990:. 1970:: 1962:: 1952:: 1926:. 1904:: 1896:: 1886:: 1859:. 1847:: 1839:: 1829:: 1803:. 1791:: 1783:: 1773:: 1749:. 1737:: 1729:: 1719:: 1696:. 1661:. 1649:: 1641:: 1631:: 1587:. 1532:1 1513:M 1468:M 1455:M 1441:/ 1437:N 1408:M 1403:1 1368:M 1361:M 1348:/ 1344:N 1291:M 1274:Γ 1270:α 1266:Γ 1259:m 1255:N 1234:1 1228:m 1218:] 1209:2 1198:2 1191:2 1187:) 1183:) 1177:( 1165:) 1162:m 1159:( 1150:( 1140:[ 1127:) 1121:( 1112:m 1103:= 1100:) 1097:m 1094:( 1075:M 1053:, 1050:1 1044:m 1034:] 1025:2 1014:2 1007:2 1003:) 999:) 993:( 981:) 978:m 975:( 966:( 956:[ 943:) 937:( 928:m 919:= 916:) 913:m 910:( 872:= 856:M 849:M 832:= 816:M 799:= 783:M 766:= 739:M 725:0 689:0 664:. 660:) 649:M 644:m 635:( 621:) 610:M 606:m 601:( 594:0 586:= 583:m 577:) 574:m 571:( 545:= 474:m 453:m 449:d 445:+ 442:m 422:m 402:m 396:) 393:m 390:( 367:m 363:d 359:) 356:m 353:( 350:N 330:M 322:M 285:M 283:/ 281:m 274:M 270:m 266:m 262:m 258:m 189:( 170:e 163:t 156:v 20:)

Index

Salpeter initial mass function
Star formation

Interstellar medium
Molecular cloud
Bok globule
Dark nebula
Young stellar object
Protostar
Pre-main-sequence star
T Tauri star
Herbig Ae/Be star
Herbig–Haro object
Accretion
Initial mass function
Jeans instability
Kelvin–Helmholtz mechanism
Nebular hypothesis
Planetary migration
v
t
e
astronomy
empirical
distribution
star formation
probability density function
colour
luminosity
Milky Way Galaxy

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑