Knowledge (XXG)

Satake diagram

Source 📝

796: 32: 860:
are used to classify semisimple Lie groups or algebras (or algebraic groups) over the reals and both consist of Dynkin diagrams enriched by blackening a subset of the nodes and connecting some pairs of vertices by arrows. Satake diagrams, however, can be generalized to any field (see above) and fall
1167:
The unadorned Dynkin diagram (i.e., that with only white nodes and no arrows), when interpreted as a Satake diagram, represents the split real form of the Lie algebra, whereas it represents the compact form when interpreted as a Vogan diagram.
865:, whereas Vogan diagrams are defined specifically over the reals. Generally speaking, the structure of a real semisimple Lie algebra is encoded in a more transparent way in its Satake diagram, but Vogan diagrams are simpler to classify. 941: 1128: 1019: 1162: 1053: 1077: 976: 890: 1457: 449: 497: 704:
A Satake diagram is obtained from a Dynkin diagram by blackening some vertices, and connecting other vertices in pairs by arrows, according to certain rules.
502: 492: 487: 307: 571: 454: 1352: 1286: 1258: 1216: 902: 602: 783:
is represented by drawing conjugate points of the Dynkin diagram near each other, and the Satake–Tits diagram is called a Satake diagram.
464: 1182: 1238: 1090: 981: 1436: 1242: 459: 439: 1133: 1024: 404: 312: 1370: 444: 595: 79: 683: 656: 644: 399: 362: 330: 317: 1510: 1297: 431: 99: 1392: 1177: 1058: 957: 893: 871: 59: 49: 827: 648: 588: 576: 417: 247: 1295:
Satake, Ichirô (1960), "On representations and compactifications of symmetric Riemannian spaces",
1490: 1382: 1322: 348: 338: 1474: 1420: 1348: 1314: 1282: 1254: 1212: 952: 862: 844: 833: 527: 412: 375: 265: 1452: 1433:
Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965)
836:
correspond to the Satake diagram with only white (i.e., non blackened) and unpaired vertices.
1466: 1410: 1400: 1347:, Lecture Notes in Pure and Applied Mathematics, vol. 3, New York: Marcel Dekker Inc., 1306: 1246: 1204: 636: 547: 227: 219: 211: 203: 195: 174: 164: 154: 144: 128: 109: 69: 1486: 1444: 1362: 1334: 1268: 1226: 1482: 1440: 1358: 1330: 1264: 1222: 1200: 686: 674:
over a field is a generalization of the Satake diagram to arbitrary fields, introduced by
671: 532: 285: 270: 41: 1396: 1415: 779:
is the field of real numbers, the absolute Galois group has order 2, and its action on
632: 552: 537: 370: 275: 1453:"Représentations linéaires irréductibles d'un groupe réductif sur un corps quelconque" 795: 1504: 1494: 868:
The essential difference is that the Satake diagram of a real semisimple Lie algebra
857: 693: 260: 89: 771:, together with the action of the Galois group, with the simple roots vanishing on 675: 557: 542: 343: 325: 255: 1342: 1276: 652: 620: 616: 383: 299: 23: 1470: 1208: 522: 388: 280: 1478: 1318: 682:), that reduces the classification of reductive algebraic groups to that of 624: 19: 1424: 1278:
Lie groups and Lie algebras III: structure of Lie groups and Lie algebras
1405: 1083:), whereas Vogan diagrams are defined starting from a maximally compact 747:) has a Dynkin diagram with respect to some choice of positive roots of 1431:
Tits, Jacques (1966), "Classification of algebraic semisimple groups",
1326: 479: 1250: 936:{\displaystyle {\mathfrak {g}}={\mathfrak {k}}\oplus {\mathfrak {p}}} 1310: 31: 1387: 1199:, Graduate Texts in Mathematics, vol. 225, Berlin, New York: 751:. This Dynkin diagram has a natural action of the Galois group of 659:
of the complex Lie algebra corresponding to the Dynkin diagram.
790: 655:. The Satake diagrams associated to a Dynkin diagram classify 830:
correspond to the Satake diagram with all vertices blackened.
1369:
Spindel, Philippe; Persson, Daniel; Henneaux, Marc (2008),
1371:"Spacelike Singularities and Hidden Symmetries of Gravity" 1123:{\displaystyle \theta ({\mathfrak {h}})={\mathfrak {h}}} 1014:{\displaystyle \theta ({\mathfrak {h}})={\mathfrak {h}}} 1235:
Differential geometry, Lie groups, and symmetric spaces
807: 1079:
appears as the Lie algebra of the maximal split torus
1344:
Classification theory of semi-simple algebraic groups
1275:
Onishchik, A. L.; Vinberg, Ėrnest Borisovich (1994),
1136: 1093: 1061: 1027: 984: 960: 947:) is defined by starting from a maximally noncompact 905: 874: 1055:
is as small as possible (in the presentation above,
1157:{\displaystyle {\mathfrak {h}}\cap {\mathfrak {k}}} 1048:{\displaystyle {\mathfrak {h}}\cap {\mathfrak {k}}} 1156: 1122: 1087:-stable Cartan subalgebra, that is, one for which 1071: 1047: 1013: 970: 935: 884: 840: 450:Representation theory of semisimple Lie algebras 1458:Journal für die reine und angewandte Mathematik 852:Differences between Satake and Vogan diagrams 731:defined over the separable algebraic closure 643:, p.109) whose configurations classify 596: 8: 696:of a Lie group, although they look similar. 711:is an algebraic group defined over a field 759:. Also some of the simple roots vanish on 603: 589: 488:Particle physics and representation theory 133: 30: 15: 1414: 1404: 1386: 1148: 1147: 1138: 1137: 1135: 1114: 1113: 1101: 1100: 1092: 1063: 1062: 1060: 1039: 1038: 1029: 1028: 1026: 1005: 1004: 992: 991: 983: 962: 961: 959: 927: 926: 917: 916: 907: 906: 904: 876: 875: 873: 455:Representations of classical Lie groups 187: 136: 18: 640: 7: 692:Satake diagrams are not the same as 679: 308:Lie group–Lie algebra correspondence 1149: 1139: 1115: 1102: 1064: 1040: 1030: 1006: 993: 963: 928: 918: 908: 877: 1241:, vol. 34, Providence, R.I.: 14: 727:to be a maximal torus containing 1183:List of irreducible Tits indices 794: 775:colored black. In the case when 1239:Graduate Studies in Mathematics 1072:{\displaystyle {\mathfrak {h}}} 971:{\displaystyle {\mathfrak {h}}} 885:{\displaystyle {\mathfrak {g}}} 767:is given by the Dynkin diagram 1107: 1097: 998: 988: 943:(the +1 and −1 eigenspaces of 861:under the general paradigm of 503:Galilean group representations 498:Poincaré group representations 1: 1437:American Mathematical Society 1243:American Mathematical Society 493:Lorentz group representations 460:Theorem of the highest weight 1375:Living Reviews in Relativity 841:Onishchik & Vinberg 1994 719:be a maximal split torus in 715:, such as the reals. We let 1233:Helgason, Sigurdur (2001), 899:and associated Cartan pair 1527: 445:Lie algebra representation 1471:10.1515/crll.1971.247.196 1209:10.1007/978-1-4757-4094-3 1164:is as large as possible. 978:, that is, one for which 839:A table can be found at ( 631:is a generalization of a 440:Lie group representation 1341:Satake, Ichiro (1971), 465:Borel–Weil–Bott theorem 1451:Tits, Jacques (1971), 1158: 1124: 1073: 1049: 1015: 972: 937: 886: 647:Lie algebras over the 363:Semisimple Lie algebra 318:Adjoint representation 1298:Annals of Mathematics 1195:Bump, Daniel (2004), 1159: 1125: 1074: 1050: 1016: 973: 938: 887: 432:Representation theory 1435:, Providence, R.I.: 1178:Relative root system 1134: 1091: 1059: 1025: 982: 958: 903: 872: 845:Table 4, pp. 229–230 828:Compact Lie algebras 662:More generally, the 1406:10.12942/lrr-2008-1 1397:2008LRR....11....1H 765:Satake–Tits diagram 668:Satake–Tits diagram 577:Table of Lie groups 418:Compact Lie algebra 1439:, pp. 33–62, 1154: 1120: 1069: 1045: 1011: 968: 933: 882: 834:Split Lie algebras 806:. You can help by 689:algebraic groups. 349:Affine Lie algebra 339:Simple Lie algebra 80:Special orthogonal 1354:978-0-8247-1607-3 1301:, Second Series, 1288:978-3-540-54683-2 1260:978-0-8218-2848-9 1218:978-0-387-21154-1 953:Cartan subalgebra 894:Cartan involution 863:Galois cohomology 824: 823: 613: 612: 413:Split Lie algebra 376:Cartan subalgebra 238: 237: 129:Simple Lie groups 1518: 1497: 1465:(247): 196–220, 1447: 1427: 1418: 1408: 1390: 1365: 1337: 1291: 1271: 1229: 1163: 1161: 1160: 1155: 1153: 1152: 1143: 1142: 1129: 1127: 1126: 1121: 1119: 1118: 1106: 1105: 1078: 1076: 1075: 1070: 1068: 1067: 1054: 1052: 1051: 1046: 1044: 1043: 1034: 1033: 1020: 1018: 1017: 1012: 1010: 1009: 997: 996: 977: 975: 974: 969: 967: 966: 942: 940: 939: 934: 932: 931: 922: 921: 912: 911: 891: 889: 888: 883: 881: 880: 856:Both Satake and 819: 816: 798: 791: 605: 598: 591: 548:Claude Chevalley 405:Complexification 248:Other Lie groups 134: 42:Classical groups 34: 16: 1526: 1525: 1521: 1520: 1519: 1517: 1516: 1515: 1501: 1500: 1450: 1430: 1368: 1355: 1340: 1311:10.2307/1969880 1294: 1289: 1274: 1261: 1251:10.1090/gsm/034 1232: 1219: 1201:Springer-Verlag 1194: 1191: 1174: 1132: 1131: 1089: 1088: 1057: 1056: 1023: 1022: 980: 979: 956: 955: 901: 900: 870: 869: 854: 820: 814: 811: 804:needs expansion 789: 702: 672:algebraic group 670:of a reductive 609: 564: 563: 562: 533:Wilhelm Killing 517: 509: 508: 507: 482: 471: 470: 469: 434: 424: 423: 422: 409: 393: 371:Dynkin diagrams 365: 355: 354: 353: 335: 313:Exponential map 302: 292: 291: 290: 271:Conformal group 250: 240: 239: 231: 223: 215: 207: 199: 180: 170: 160: 150: 131: 121: 120: 119: 100:Special unitary 44: 12: 11: 5: 1524: 1522: 1514: 1513: 1503: 1502: 1499: 1498: 1448: 1428: 1366: 1353: 1338: 1292: 1287: 1272: 1259: 1230: 1217: 1190: 1187: 1186: 1185: 1180: 1173: 1170: 1151: 1146: 1141: 1117: 1112: 1109: 1104: 1099: 1096: 1066: 1042: 1037: 1032: 1008: 1003: 1000: 995: 990: 987: 965: 930: 925: 920: 915: 910: 879: 858:Vogan diagrams 853: 850: 849: 848: 837: 831: 822: 821: 801: 799: 788: 785: 701: 698: 694:Vogan diagrams 635:introduced by 633:Dynkin diagram 629:Satake diagram 611: 610: 608: 607: 600: 593: 585: 582: 581: 580: 579: 574: 566: 565: 561: 560: 555: 553:Harish-Chandra 550: 545: 540: 535: 530: 528:Henri Poincaré 525: 519: 518: 515: 514: 511: 510: 506: 505: 500: 495: 490: 484: 483: 478:Lie groups in 477: 476: 473: 472: 468: 467: 462: 457: 452: 447: 442: 436: 435: 430: 429: 426: 425: 421: 420: 415: 410: 408: 407: 402: 396: 394: 392: 391: 386: 380: 378: 373: 367: 366: 361: 360: 357: 356: 352: 351: 346: 341: 336: 334: 333: 328: 322: 320: 315: 310: 304: 303: 298: 297: 294: 293: 289: 288: 283: 278: 276:Diffeomorphism 273: 268: 263: 258: 252: 251: 246: 245: 242: 241: 236: 235: 234: 233: 229: 225: 221: 217: 213: 209: 205: 201: 197: 190: 189: 185: 184: 183: 182: 176: 172: 166: 162: 156: 152: 146: 139: 138: 132: 127: 126: 123: 122: 118: 117: 107: 97: 87: 77: 67: 60:Special linear 57: 50:General linear 46: 45: 40: 39: 36: 35: 27: 26: 13: 10: 9: 6: 4: 3: 2: 1523: 1512: 1509: 1508: 1506: 1496: 1492: 1488: 1484: 1480: 1476: 1472: 1468: 1464: 1460: 1459: 1454: 1449: 1446: 1442: 1438: 1434: 1429: 1426: 1422: 1417: 1412: 1407: 1402: 1398: 1394: 1389: 1384: 1380: 1376: 1372: 1367: 1364: 1360: 1356: 1350: 1346: 1345: 1339: 1336: 1332: 1328: 1324: 1320: 1316: 1312: 1308: 1305:(1): 77–110, 1304: 1300: 1299: 1293: 1290: 1284: 1280: 1279: 1273: 1270: 1266: 1262: 1256: 1252: 1248: 1244: 1240: 1236: 1231: 1228: 1224: 1220: 1214: 1210: 1206: 1202: 1198: 1193: 1192: 1188: 1184: 1181: 1179: 1176: 1175: 1171: 1169: 1165: 1144: 1110: 1094: 1086: 1082: 1035: 1001: 985: 954: 950: 946: 923: 913: 898: 895: 866: 864: 859: 851: 846: 842: 838: 835: 832: 829: 826: 825: 818: 815:December 2009 809: 805: 802:This section 800: 797: 793: 792: 786: 784: 782: 778: 774: 770: 766: 762: 758: 754: 750: 746: 742: 738: 734: 730: 726: 722: 718: 714: 710: 707:Suppose that 705: 699: 697: 695: 690: 688: 685: 681: 677: 673: 669: 665: 660: 658: 654: 650: 646: 642: 638: 634: 630: 626: 622: 618: 606: 601: 599: 594: 592: 587: 586: 584: 583: 578: 575: 573: 570: 569: 568: 567: 559: 556: 554: 551: 549: 546: 544: 541: 539: 536: 534: 531: 529: 526: 524: 521: 520: 513: 512: 504: 501: 499: 496: 494: 491: 489: 486: 485: 481: 475: 474: 466: 463: 461: 458: 456: 453: 451: 448: 446: 443: 441: 438: 437: 433: 428: 427: 419: 416: 414: 411: 406: 403: 401: 398: 397: 395: 390: 387: 385: 382: 381: 379: 377: 374: 372: 369: 368: 364: 359: 358: 350: 347: 345: 342: 340: 337: 332: 329: 327: 324: 323: 321: 319: 316: 314: 311: 309: 306: 305: 301: 296: 295: 287: 284: 282: 279: 277: 274: 272: 269: 267: 264: 262: 259: 257: 254: 253: 249: 244: 243: 232: 226: 224: 218: 216: 210: 208: 202: 200: 194: 193: 192: 191: 186: 181: 179: 173: 171: 169: 163: 161: 159: 153: 151: 149: 143: 142: 141: 140: 135: 130: 125: 124: 115: 111: 108: 105: 101: 98: 95: 91: 88: 85: 81: 78: 75: 71: 68: 65: 61: 58: 55: 51: 48: 47: 43: 38: 37: 33: 29: 28: 25: 21: 17: 1511:Lie algebras 1462: 1456: 1432: 1378: 1374: 1343: 1302: 1296: 1281:, Springer, 1277: 1234: 1196: 1166: 1084: 1080: 948: 944: 896: 867: 855: 812: 808:adding to it 803: 780: 776: 772: 768: 764: 760: 756: 752: 748: 744: 740: 736: 732: 728: 724: 720: 716: 712: 708: 706: 703: 691: 667: 663: 661: 653:real numbers 628: 621:Lie algebras 617:mathematical 614: 558:Armand Borel 543:Hermann Weyl 344:Loop algebra 326:Killing form 300:Lie algebras 177: 167: 157: 147: 113: 103: 93: 83: 73: 63: 53: 24:Lie algebras 723:, and take 684:anisotropic 538:Élie Cartan 384:Root system 188:Exceptional 1197:Lie groups 1189:References 700:Definition 664:Tits index 657:real forms 625:Lie groups 523:Sophus Lie 516:Scientists 389:Weyl group 110:Symplectic 70:Orthogonal 20:Lie groups 1495:116999784 1479:0075-4102 1388:0710.1818 1319:0003-486X 1145:∩ 1095:θ 1036:∩ 986:θ 924:⊕ 687:reductive 619:study of 400:Real form 286:Euclidean 137:Classical 1505:Category 1425:28179821 1381:(1): 1, 1172:See also 951:-stable 787:Examples 572:Glossary 266:Poincaré 1487:0277536 1445:0224710 1416:5255974 1393:Bibcode 1363:0316588 1335:0118775 1327:1969880 1269:1834454 1227:2062813 739:. Then 678: ( 639: ( 615:In the 480:physics 261:Lorentz 90:Unitary 1493:  1485:  1477:  1443:  1423:  1413:  1361:  1351:  1333:  1325:  1317:  1285:  1267:  1257:  1225:  1215:  763:. The 645:simple 637:Satake 256:Circle 1491:S2CID 1383:arXiv 1323:JSTOR 892:with 649:field 331:Index 1475:ISSN 1463:1971 1421:PMID 1349:ISBN 1315:ISSN 1283:ISBN 1255:ISBN 1213:ISBN 1130:and 1021:and 680:1966 676:Tits 641:1960 627:, a 623:and 281:Loop 22:and 1467:doi 1411:PMC 1401:doi 1307:doi 1247:doi 1205:doi 810:. 735:of 666:or 651:of 112:Sp( 102:SU( 82:SO( 62:SL( 52:GL( 1507:: 1489:, 1483:MR 1481:, 1473:, 1461:, 1455:, 1441:MR 1419:, 1409:, 1399:, 1391:, 1379:11 1377:, 1373:, 1359:MR 1357:, 1331:MR 1329:, 1321:, 1313:, 1303:71 1265:MR 1263:, 1253:, 1245:, 1237:, 1223:MR 1221:, 1211:, 1203:, 847:). 843:, 92:U( 72:O( 1469:: 1403:: 1395:: 1385:: 1309:: 1249:: 1207:: 1150:k 1140:h 1116:h 1111:= 1108:) 1103:h 1098:( 1085:θ 1081:S 1065:h 1041:k 1031:h 1007:h 1002:= 999:) 994:h 989:( 964:h 949:θ 945:θ 929:p 919:k 914:= 909:g 897:θ 878:g 817:) 813:( 781:D 777:k 773:S 769:D 761:S 757:k 755:/ 753:K 749:T 745:K 743:( 741:G 737:k 733:K 729:S 725:T 721:G 717:S 713:k 709:G 604:e 597:t 590:v 230:8 228:E 222:7 220:E 214:6 212:E 206:4 204:F 198:2 196:G 178:n 175:D 168:n 165:C 158:n 155:B 148:n 145:A 116:) 114:n 106:) 104:n 96:) 94:n 86:) 84:n 76:) 74:n 66:) 64:n 56:) 54:n

Index

Lie groups
Lie algebras

Classical groups
General linear
Special linear
Orthogonal
Special orthogonal
Unitary
Special unitary
Symplectic
Simple Lie groups
An
Bn
Cn
Dn
G2
F4
E6
E7
E8
Other Lie groups
Circle
Lorentz
Poincaré
Conformal group
Diffeomorphism
Loop
Euclidean
Lie algebras

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.