Knowledge (XXG)

Myosatellite cell

Source đź“ť

363:
numbers of satellite cells to activate. The activation of satellite cells from their dormant state is controlled through signals from the muscle niche. This signaling induces an inflammatory response in the muscle tissue. The behavior of satellite cells is a highly regulated process to accommodate the balance between dormant and active states. In times of injury, satellite cells in myofibers receive signals to proliferate from proteins in the crushed skeletal muscle. Myofibers are fundamental elements in muscle made up of actin and myosin myofibrils. The proteins responsible for signaling the activation of satellite cells are called mitogens. A mitogen is a small protein that induces a cell to enter the cell cycle. When the cells receive signals from the neurons, it causes the myofibers to depolarize and release calcium from the sarcoplasmic reticulum. The release of calcium induces the actin and myosin filaments to move and contract the muscle. Studies found that transplanted satellite cells onto myofibers supported multiple regenerations of new muscle tissue. These findings support the hypothesis that satellite cells are the stem cells in muscles. Dependent on their relative position to daughter cells on myofibers, satellite cells undergo asymmetric and symmetric division. The niche and location determines the behavior of satellite cells in their proliferation and differentiation. In general, mammalian skeletal muscle is relatively stable with little myonuclei turnover. Minor injuries from daily activities can be repaired without inflammation or cell death. Major injuries contribute to myofiber necrosis, inflammation, and cause satellite cells to activate and proliferate. The process of myofiber necrosis to myofiber formation results in muscle regeneration.
350: 367:
sarcolemma leads to an increase in myofiber permeability. The disruption in myofiber integrity is seen in increased plasma levels in muscle proteins. The death of myofibers drives a calcium influx from the sarcoplasmic reticulum to induce tissue degradation. An inflammatory response follows the necrosis of myofibers. During times of muscle growth and regeneration, satellite cells can travel over between myofibers and muscle and over connective tissue barriers. Signals from the damaged environment induce these behavioral changes in satellite cells.
323:(FGF) enhance satellite cell proliferation rate following activation. Studies have demonstrated that intense exercise generally increases IGF-1 production, though individual responses vary significantly. More specifically, IGF-1 exists in two isoforms: mechano growth factor (MGF) and IGF-IEa. While the former induces activation and proliferation, the latter causes differentiation of proliferating satellite cells. 230:. Satellite cells in the head musculature have a unique developmental program, and are Pax3-negative. Moreover, both quiescent and activated human satellite cells can be identified by the membrane-bound neural cell adhesion molecule (N-CAM/CD56/Leu-19), a cell-surface glycoprotein. Myocyte nuclear factor (MNF), and c-met proto-oncogene (receptor for hepatocyte growth factor ( 408:, which effectively cured the disease. However, the sample size used was relatively small and the study has since been criticized for a lack of appropriate controls for the use of immunosuppressive drugs. Recently, it has been reported that Pax7 expressing cells contribute to dermal wound repair by adopting a fibrotic phenotype through a Wnt/β-catenin mediated process. 495:, a device used to grow microorganisms or cells in a media that can be easily controlled. Whatever media chosen will simulate the cells being in prime condition to proliferate within an organism. After proliferation the cells are shaped using a scaffold. These scaffolds can be an organic structure like decellularized plant or animal tissues, inorganic such as 298:
hallmark. One of the first roles described for IGF-1 was its involvement in the proliferation and differentiation of satellite cells. In addition, IGF-1 expression in skeletal muscle extends the capacity to activate satellite cell proliferation (Charkravarthy, et al., 2000), increasing and prolonging the beneficial effects to the aging muscle.
170:
location between sarcolemma and basal lamina, a high nuclear-to-cytoplasmic volume ratio, few organelles (e.g. ribosomes, endoplasmic reticulum, mitochondria, golgi complexes), small nuclear size, and a large quantity of nuclear heterochromatin relative to myonuclei. On the other hand, activated satellite cells have an increased number of
286:. They become activated and re-enter the cell cycle. These dividing cells are known as the "transit amplifying pool" before undergoing myogenic differentiation to form new (post-mitotic) myotubes. There is also evidence suggesting that these cells are capable of fusing with existing myofibers to facilitate growth and repair. 346:, free ribosomes, and mitochondria of the stimulated muscle groups. Additionally, satellite cells have been shown to fuse with muscle fibers, developing new muscle fibers. Other ultrastructural evidence for activated satellite cells include increased concentration of Golgi apparatus and pinocytotic vesicles. 306:
Satellite cell activation is measured by the extent of proliferation and differentiation. Typically, satellite cell content is expressed per muscle fiber or as a percentage of total nuclear content, the sum of satellite cell nuclei and myonuclei. While the adaptive response to exercise largely varies
297:
Satellite cells proliferate following muscle trauma and form new myofibers through a process similar to fetal muscle development. After several cell divisions, the satellite cells begin to fuse with the damaged myotubes and undergo further differentiations and maturation, with peripheral nuclei as in
395:
have all been shown to be able to contribute to muscle repair in a similar manner to the endogenous satellite cell. The advantage of using these cell types for therapy in muscle diseases is that they can be systemically delivered, autonomously migrating to the site of injury. Particularly successful
386:
Unfortunately, it seems that transplanted satellite cells have a limited capacity for migration, and are only able to regenerate muscle in the region of the delivery site. As such, systemic treatments or even the treatment of an entire muscle in this way is not possible. However, other cells in the
362:
Satellite cells have a crucial role in muscle regeneration due to their ability to proliferate, differentiate, and self-renew. Prior to a severe injury to the muscle, satellite cells are in a dormant state. Slight proliferation can occur in times of light injuries but major injuries require greater
326:
Human studies have shown that both high resistance training and endurance training have yielded an increased number of satellite cells. These results suggest that a light, endurance training regimen may be useful to counteract the age-correlated satellite cell decrease. In high-resistance training,
366:
Muscle regeneration occurs in three overlapping stages. The inflammatory response, activation and differentiation of satellite cells, and maturation of the new myofibers are essential for muscle regeneration. This process begins with the death of damaged muscle fibers where dissolution of myofiber
490:
An overview of the culturing process first involves the selection of a cell source. This initial stage is where the selection of a meat type happens, for example if the desired product is beef then cells are taken from a cow. The next part involves isolating and sorting out the myosatellite cells
169:
of muscle fibers, and can lie in grooves either parallel or transversely to the longitudinal axis of the fibre. Their distribution across the fibre can vary significantly. Non-proliferative, quiescent myosatellite cells, which adjoin resting skeletal muscles, can be identified by their distinct
244:
markers specifically define the majority of quiescent satellite cells. Activated satellite cells prove problematic to identify, especially as their markers change with the degree of activation; for example, greater activation results in the progressive loss of Pax7 expression as they enter the
479:, it was theorized that if these cells could be grown in a lab and placed on scaffolds to make fibers, the muscle cells could then be used for food production. This theory has been proven true with many companies sprouting around the globe in the field of cultured meat including 289:
The process of muscle regeneration involves considerable remodeling of extracellular matrix and, where extensive damage occurs, is incomplete. Fibroblasts within the muscle deposit scar tissue, which can impair muscle function, and is a significant part of the pathology of
472:. These satellite cells are the main source of most muscle cell formation postnatally, with embryonic myoblasts being responsible for prenatal muscle generation. A single satellite cell can proliferate and become a larger amount of muscle cells. 268:
and fluorescence activated cell sorting (FACS) analysis, which gives no information about cell lineage or behaviour. As such, the satellite cell niche is relatively ill-defined and it is likely that it consists of multiple sub-populations.
499:, or a mix of both. Once the cells have attached themselves to the scaffold and fully matured, they have become a raw meat product. The final step will include any necessary food processes needed for the desired final product. 1238:
Hellsten Y, Hansson HA, Johnson L, Frandsen U, Sjödin B (June 1996). "Increased expression of xanthine oxidase and insulin-like growth factor I (IGF-I) immunoreactivity in skeletal muscle after strenuous exercise in humans".
257:– all responsible for the induction of myocyte-specific genes. HGF testing is also used to identify active satellite cells. Activated satellite cells also begin expressing muscle-specific filament proteins such as 310:
It is suggested that exercise triggers the release of signaling molecules including inflammatory substances, cytokines and growth factors from surrounding connective tissues and active skeletal muscles. Notably,
245:
proliferative stage. However, Pax7 is expressed prominently after satellite cell differentiation. Greater activation also results in increased expression of myogenic basic helix-loop-helix transcription factors
424:
currently form the definitive satellite markers, Pax genes are notoriously poor transcriptional activators. The dynamics of activation and quiesence and the induction of the myogenic program through the
315:, a cytokine, is transferred from the extracellular matrix into muscles through the nitric-oxide dependent pathway. It is thought that HGF activates satellite cells, while insulin-like growth factor-I ( 943:
Crameri R, Aagaard P, Qvortrup K, Kjaer M (2004). "N-CAM and Pax7 immunoreactive cells are expressed differently in the human vastus lateralis after a single bout of exhaustive eccentric exercise".
594:
Kadi F, Charifi N, Denis C, Lexell J, Andersen JL, Schjerling P, et al. (November 2005). "The behaviour of satellite cells in response to exercise: what have we learned from human studies?".
1203:
Bamman MM, Shipp JR, Jiang J, Gower BA, Hunter GR, Goodman A, et al. (March 2001). "Mechanical load increases muscle IGF-I and androgen receptor mRNA concentrations in humans".
508: 513: 491:
from whatever the selected cell source was. After being separated into the cellular components, the myosatellite cells need to be proliferated through the use of a
307:
on an individual basis on factors such as genetics, age, diet, acclimatization to exercise, and exercise volume, human studies have demonstrated general trends.
1363:
Appell HJ, Forsberg S, Hollmann W (August 1988). "Satellite cell activation in human skeletal muscle after training: evidence for muscle fiber neoformation".
349: 2037: 1277:
Yang SY, Goldspink G (July 2002). "Different roles of the IGF-I Ec peptide (MGF) and mature IGF-I in myoblast proliferation and differentiation".
1996: 264:
The field of satellite cell biology suffers from the same technical difficulties as other stem cell fields. Studies rely almost exclusively on
1320:
Charifi N, Kadi F, FĂ©asson L, Denis C (July 2003). "Effects of endurance training on satellite cell frequency in skeletal muscle of old men".
2106: 2423: 2454: 174:, cytoplasmic organelles, and decreased levels of heterochromatin. Satellite cells are able to differentiate and fuse to augment existing 335:
mRNA levels. This is consistent with the fact that cyclin D1 and p21 upregulation correlates to division and differentiation of cells.
2010: 2006: 781:
Relaix F, Rocancourt D, Mansouri A, Buckingham M (June 2005). "A Pax3/Pax7-dependent population of skeletal muscle progenitor cells".
146:
cells, able to give rise to satellite cells or differentiated skeletal muscle cells. They have the potential to provide additional
1055:
Parker MH, Seale P, Rudnicki MA (July 2003). "Looking back to the embryo: defining transcriptional networks in adult myogenesis".
2001: 98: 1917: 1543: 154:
state. More specifically, upon activation, satellite cells can re-enter the cell cycle to proliferate and differentiate into
2124: 1400:"Skeletal muscle satellite cell characteristics in young and older men and women after heavy resistance strength training" 1098:
Mourkioti F, Rosenthal N (October 2005). "IGF-1, inflammation and stem cells: interactions during muscle regeneration".
1168:
Anderson JE, Wozniak AC (May 2004). "Satellite cell activation on fibers: modeling events in vivo--an invited review".
2030: 405: 1749:"Culturing characteristics of Hanwoo myosatellite cells and C2C12 cells incubated at 37°C and 39°C for cultured meat" 1602:"Pax7 expressing cells contribute to dermal wound repair, regulating scar size through a β-catenin mediated process" 2459: 468:
Myosatellite cells contribute the most to muscle regeneration and repair. This makes them a prime target for the
193:; they neither differentiate nor undergo cell division. In response to mechanical strain, satellite cells become 2090: 392: 320: 312: 231: 202: 86: 74: 2652: 2526: 2521: 453: 2610: 2439: 2079: 2069: 2023: 31: 343: 38: 1944:"Cell Sources for Cultivated Meat: Applications and Considerations throughout the Production Workflow" 642:"The effects of heavy resistance training and detraining on satellite cells in human skeletal muscles" 91: 2054: 1558: 1542:
Sampaolesi M, Blot S, D'Antona G, Granger N, Tonlorenzi R, Innocenzi A, et al. (November 2006).
893:"Expression of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells" 790: 338:
Satellite cell activation has also been demonstrated on an ultrastructural level following exercise.
291: 691:"Muscle satellite cell proliferation and association: new insights from myofiber time-lapse imaging" 640:
Kadi F, Schjerling P, Andersen LL, Charifi N, Madsen JL, Christensen LR, Andersen JL (August 2004).
448:
There is some research indicating that satellite cells are negatively regulated by a protein called
182:
niche, and are involved in the normal growth of muscle, as well as regeneration following injury or
2239: 842:
Harel I, Nathan E, Tirosh-Finkel L, Zigdon H, GuimarĂŁes-Camboa N, Evans SM, Tzahor E (June 2009).
2677: 1631: 1582: 1345: 1302: 1080: 993: 824: 619: 563: 1893: 1133:
Hawke TJ, Garry DJ (August 2001). "Myogenic satellite cells: physiology to molecular biology".
962:
Marchildon F, Lala N, Li G, St-Louis C, Lamothe D, Keller C, Wiper-Bergeron N (December 2012).
2488: 2395: 2148: 1975: 1817: 1778: 1729: 1680: 1623: 1574: 1524: 1470: 1421: 1380: 1337: 1294: 1256: 1220: 1185: 1150: 1115: 1072: 1034: 985: 922: 873: 816: 763: 722: 671: 611: 555: 538:
Birbrair A, Delbono O (August 2015). "Pericytes are Essential for Skeletal Muscle Formation".
283: 162: 964:"CCAAT/enhancer binding protein beta is expressed in satellite cells and controls myogenesis" 891:
Beauchamp JR, Heslop L, Yu DS, Tajbakhsh S, Kelly RG, Wernig A, et al. (December 2000).
2188: 1965: 1955: 1825: 1809: 1768: 1760: 1719: 1711: 1670: 1662: 1613: 1566: 1514: 1506: 1460: 1452: 1411: 1372: 1329: 1286: 1248: 1212: 1177: 1142: 1107: 1064: 1024: 975: 912: 904: 863: 855: 806: 798: 753: 712: 702: 661: 653: 603: 547: 401: 339: 2516: 2408: 811: 476: 282:
When muscle cells undergo injury, quiescent satellite cells are released from beneath the
219: 143: 1252: 1773: 1748: 1562: 794: 2473: 2449: 1970: 1943: 1830: 1797: 1724: 1699: 1675: 1650: 1519: 1494: 1465: 1440: 917: 892: 868: 843: 717: 690: 666: 641: 496: 397: 265: 1398:
Roth SM, Martel GF, Ivey FM, Lemmer JT, Tracy BL, Metter EJ, et al. (June 2001).
1290: 2671: 2538: 2046: 1635: 469: 175: 1586: 1349: 1306: 1216: 623: 567: 2217: 2170: 1600:
Amini-Nik S, Glancy D, Boimer C, Whetstone H, Keller C, Alman BA (September 2011).
1084: 997: 828: 484: 859: 657: 79: 2567: 2542: 2361: 2332: 2133: 1146: 151: 131: 1510: 1416: 1404:
The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences
1399: 2637: 2598: 2593: 2483: 2444: 2418: 2413: 2383: 2378: 2373: 2301: 2234: 2212: 2064: 1813: 742:"The skeletal muscle satellite cell: the stem cell that came in from the cold" 607: 551: 492: 166: 17: 1821: 1456: 1111: 2642: 2547: 2533: 2493: 2403: 2319: 2271: 2266: 2183: 2101: 758: 741: 480: 449: 388: 328: 179: 147: 135: 1979: 1782: 1733: 1700:"Myostatin negatively regulates satellite cell activation and self-renewal" 1684: 1651:"Myostatin negatively regulates satellite cell activation and self-renewal" 1627: 1578: 1528: 1474: 1425: 1376: 1341: 1298: 1224: 1189: 1154: 1119: 1076: 1038: 989: 926: 908: 877: 820: 767: 726: 675: 615: 559: 327:
activation and proliferation of satellite cells are evidenced by increased
1764: 1715: 1698:
McCroskery S, Thomas M, Maxwell L, Sharma M, Kambadur R (September 2003).
1666: 1649:
McCroskery S, Thomas M, Maxwell L, Sharma M, Kambadur R (September 2003).
1384: 1260: 707: 475:
With the understanding that myosatellite cells are the progenitor of most
2632: 2603: 2563: 2368: 1960: 1544:"Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs" 438: 250: 198: 171: 155: 1570: 802: 104: 2647: 2352: 2276: 1441:"The skeletal muscle satellite cell: still young and fascinating at 50" 1029: 1013:"Adult stem cell specification by Wnt signaling in muscle regeneration" 1012: 183: 1333: 980: 963: 844:"Distinct origins and genetic programs of head muscle satellite cells" 416:
Little is known of the regulation of satellite cells. Whilst together
2588: 2342: 1747:
Oh S, Park S, Park Y, Kim YA, Park G, Cui X, et al. (May 2023).
1618: 1601: 258: 178:
and to form new fibers. These cells represent the oldest known adult
139: 1181: 1068: 1894:"Bioreactors — Introduction to Chemical and Biological Engineering" 2347: 2337: 2259: 2254: 2249: 2244: 348: 316: 62: 2296: 2227: 2222: 2163: 2158: 2153: 2143: 2138: 2015: 442: 434: 430: 421: 417: 254: 246: 241: 237: 227: 223: 2019: 457: 332: 197:. Activated satellite cells initially proliferate as skeletal 740:
Zammit PS, Partridge TA, Yablonka-Reuveni Z (November 2006).
1205:
American Journal of Physiology. Endocrinology and Metabolism
460:
and thereby inhibit the differentiation of satellite cells.
1869: 1798:"Prospectus of cultured meat—advancing meat alternatives" 189:
In undamaged muscle, the majority of satellite cells are
1845: 353:
Schematic of myosatellite cell transition into myofiber.
222:. Current thinking is that most satellite cells express 689:
Siegel AL, Kuhlmann PK, Cornelison DD (February 2011).
533: 531: 529: 509:
List of human cell types derived from the germ layers
2623: 2581: 2556: 2509: 2502: 2472: 2432: 2394: 2318: 2285: 2201: 2123: 2114: 2100: 2089: 2078: 2053: 514:
List of distinct cell types in the adult human body
85: 73: 61: 56: 51: 46: 342:has been shown to significantly increase granular 383:will undergo a myogenic differentiation program. 358:Satellite cell activation and muscle regeneration 1495:"Satellite cells and the muscle stem cell niche" 218:Satellite cells express a number of distinctive 1918:"Cultivated meat scaffolding | Deep dive | GFI" 1445:The Journal of Histochemistry and Cytochemistry 1170:Canadian Journal of Physiology and Pharmacology 746:The Journal of Histochemistry and Cytochemistry 452:. Increased levels of myostatin up-regulate a 37:"MuSC" redirects here. Not to be confused with 2031: 150:to their parent muscle fiber, or return to a 8: 1942:Reiss J, Robertson S, Suzuki M (July 2021). 1493:Yin H, Price F, Rudnicki MA (January 2013). 1948:International Journal of Molecular Sciences 1488: 1486: 1484: 1050: 1048: 1011:Seale P, Polesskaya A, Rudnicki MA (2003). 161:Myosatellite cells are located between the 2506: 2205: 2120: 2111: 2097: 2086: 2038: 2024: 2016: 375:Upon minimal stimulation, satellite cells 1969: 1959: 1829: 1772: 1723: 1674: 1617: 1518: 1464: 1415: 1028: 979: 938: 936: 916: 867: 810: 757: 716: 706: 665: 1753:Journal of Animal Science and Technology 1365:International Journal of Sports Medicine 1272: 1270: 635: 633: 525: 27:Precursor cell of skeletal muscle cells 1802:Journal of Food Science and Technology 589: 587: 585: 583: 581: 579: 577: 102: 43: 7: 2424:Connective tissue in skeletal muscle 1439:Yablonka-Reuveni Z (December 2011). 1253:10.1046/j.1365-201X.1996.492235000.x 464:Myosatellite cells and cultured meat 142:. Satellite cells are precursors to 30:For the glial progenitor cells, see 234:)) are less commonly used markers. 2011:Neuroscience Information Framework 396:recently has been the delivery of 25: 99:Anatomical terms of microanatomy 2455:Excitation–contraction coupling 1796:Bhat ZF, Fayaz H (2011-04-01). 1217:10.1152/ajpendo.2001.280.3.E383 1241:Acta Physiologica Scandinavica 812:11858/00-001M-0000-0012-E8E0-9 1: 1291:10.1016/s0014-5793(02)02918-6 1135:Journal of Applied Physiology 540:Stem Cell Reviews and Reports 860:10.1016/j.devcel.2009.05.007 658:10.1113/jphysiol.2004.065904 2007:NIF Search - Satellite Cell 1704:The Journal of Cell Biology 1655:The Journal of Cell Biology 1147:10.1152/jappl.2001.91.2.534 897:The Journal of Cell Biology 427:myogenic regulatory factors 406:Duchenne muscular dystrophy 201:before undergoing myogenic 2694: 2460:Sliding filament mechanism 1511:10.1152/physrev.00043.2011 445:remains to be determined. 36: 29: 2208: 2179: 1814:10.1007/s13197-010-0198-7 646:The Journal of Physiology 608:10.1007/s00424-005-1406-6 552:10.1007/s12015-015-9588-6 97: 1997:Image at neuro.wustl.edu 1457:10.1369/0022155411426780 1417:10.1093/gerona/56.6.B240 1112:10.1016/j.it.2005.08.002 1057:Nature Reviews. Genetics 483:in the Netherlands, and 393:hematopoietic stem cells 321:fibroblast growth factor 2653:Fukutin-related protein 759:10.1369/jhc.6r6995.2006 454:cyclin-dependent kinase 261:as they differentiate. 134:cells with very little 2611:Sarcoplasmic reticulum 2440:Neuromuscular junction 2348:elastic filament/titin 2070:Vascular smooth muscle 1898:www.engr.colostate.edu 1377:10.1055/s-2007-1025026 909:10.1083/jcb.151.6.1221 354: 32:Satellite cell (glial) 2343:thick filament/myosin 2002:Overview at brown.edu 1765:10.5187/jast.2023.e10 1716:10.1083/jcb.200207056 1667:10.1083/jcb.200207056 1499:Physiological Reviews 708:10.1186/2044-5040-1-7 477:skeletal muscle cells 352: 344:endoplasmic reticulum 1961:10.3390/ijms22147513 1100:Trends in Immunology 470:meat culturing field 292:muscular dystrophies 2338:thin filament/actin 2324:(a, i, and h bands; 1571:10.1038/nature05282 1563:2006Natur.444..574S 803:10.1038/nature03594 795:2005Natur.435..948R 652:(Pt 3): 1005–1012. 302:Effects of exercise 1322:Muscle & Nerve 1030:10.4161/cc.2.5.498 848:Developmental Cell 355: 116:Myosatellite cells 92:H2.00.05.2.01020 2665: 2664: 2661: 2660: 2619: 2618: 2573:Myosatellite cell 2489:Intercalated disc 2468: 2467: 2396:Connective tissue 2314: 2313: 2310: 2309: 2277:Synemin/desmuslin 2197: 2196: 1557:(7119): 574–579. 1451:(12): 1041–1059. 1334:10.1002/mus.10394 981:10.1002/stem.1248 974:(12): 2619–2630. 789:(7044): 948–953. 752:(11): 1177–1191. 456:inhibitor called 284:basement membrane 163:basement membrane 124:muscle stem cells 113: 112: 108: 68:myosatellitocytus 47:Myosatellite cell 16:(Redirected from 2685: 2507: 2290: 2206: 2189:Laminin, alpha 2 2121: 2112: 2098: 2087: 2040: 2033: 2026: 2017: 1984: 1983: 1973: 1963: 1939: 1933: 1932: 1930: 1929: 1914: 1908: 1907: 1905: 1904: 1890: 1884: 1883: 1881: 1880: 1866: 1860: 1859: 1857: 1856: 1842: 1836: 1835: 1833: 1793: 1787: 1786: 1776: 1744: 1738: 1737: 1727: 1710:(6): 1135–1147. 1695: 1689: 1688: 1678: 1661:(6): 1135–1147. 1646: 1640: 1639: 1621: 1619:10.1002/stem.688 1612:(9): 1371–1379. 1597: 1591: 1590: 1548: 1539: 1533: 1532: 1522: 1490: 1479: 1478: 1468: 1436: 1430: 1429: 1419: 1410:(6): B240–B247. 1395: 1389: 1388: 1360: 1354: 1353: 1317: 1311: 1310: 1285:(1–3): 156–160. 1274: 1265: 1264: 1235: 1229: 1228: 1211:(3): E383–E390. 1200: 1194: 1193: 1165: 1159: 1158: 1130: 1124: 1123: 1095: 1089: 1088: 1052: 1043: 1042: 1032: 1008: 1002: 1001: 983: 959: 953: 952: 940: 931: 930: 920: 903:(6): 1221–1234. 888: 882: 881: 871: 839: 833: 832: 814: 778: 772: 771: 761: 737: 731: 730: 720: 710: 686: 680: 679: 669: 637: 628: 627: 591: 572: 571: 535: 402:Golden Retriever 340:Aerobic exercise 138:found in mature 118:, also known as 105:edit on Wikidata 44: 21: 2693: 2692: 2688: 2687: 2686: 2684: 2683: 2682: 2668: 2667: 2666: 2657: 2625: 2615: 2577: 2552: 2498: 2475: 2464: 2428: 2390: 2325: 2323: 2306: 2286: 2281: 2193: 2175: 2116: 2105: 2092: 2081: 2074: 2056: 2049: 2044: 1993: 1988: 1987: 1941: 1940: 1936: 1927: 1925: 1916: 1915: 1911: 1902: 1900: 1892: 1891: 1887: 1878: 1876: 1868: 1867: 1863: 1854: 1852: 1844: 1843: 1839: 1795: 1794: 1790: 1746: 1745: 1741: 1697: 1696: 1692: 1648: 1647: 1643: 1599: 1598: 1594: 1546: 1541: 1540: 1536: 1492: 1491: 1482: 1438: 1437: 1433: 1397: 1396: 1392: 1362: 1361: 1357: 1319: 1318: 1314: 1276: 1275: 1268: 1237: 1236: 1232: 1202: 1201: 1197: 1182:10.1139/y04-020 1167: 1166: 1162: 1132: 1131: 1127: 1106:(10): 535–542. 1097: 1096: 1092: 1069:10.1038/nrg1109 1054: 1053: 1046: 1010: 1009: 1005: 961: 960: 956: 942: 941: 934: 890: 889: 885: 841: 840: 836: 780: 779: 775: 739: 738: 734: 695:Skeletal Muscle 688: 687: 683: 639: 638: 631: 596:PflĂĽgers Archiv 593: 592: 575: 537: 536: 527: 522: 505: 466: 414: 400:cells into the 373: 360: 304: 280: 275: 220:genetic markers 216: 214:Genetic markers 211: 203:differentiation 144:skeletal muscle 120:satellite cells 109: 42: 35: 28: 23: 22: 15: 12: 11: 5: 2691: 2689: 2681: 2680: 2670: 2669: 2663: 2662: 2659: 2658: 2656: 2655: 2650: 2645: 2640: 2635: 2629: 2627: 2621: 2620: 2617: 2616: 2614: 2613: 2608: 2607: 2606: 2596: 2591: 2585: 2583: 2579: 2578: 2576: 2575: 2570: 2560: 2558: 2554: 2553: 2551: 2550: 2545: 2536: 2531: 2530: 2529: 2524: 2513: 2511: 2504: 2500: 2499: 2497: 2496: 2491: 2486: 2480: 2478: 2470: 2469: 2466: 2465: 2463: 2462: 2457: 2452: 2450:Muscle spindle 2447: 2442: 2436: 2434: 2430: 2429: 2427: 2426: 2421: 2416: 2411: 2406: 2400: 2398: 2392: 2391: 2389: 2388: 2387: 2386: 2381: 2376: 2365: 2364: 2358: 2357: 2356: 2355: 2350: 2345: 2340: 2329: 2327: 2326:z and m lines) 2316: 2315: 2312: 2311: 2308: 2307: 2305: 2304: 2299: 2293: 2291: 2283: 2282: 2280: 2279: 2274: 2269: 2264: 2263: 2262: 2257: 2252: 2247: 2242: 2232: 2231: 2230: 2225: 2215: 2209: 2203: 2199: 2198: 2195: 2194: 2192: 2191: 2186: 2180: 2177: 2176: 2174: 2173: 2168: 2167: 2166: 2161: 2156: 2151: 2146: 2141: 2130: 2128: 2118: 2109: 2095: 2084: 2076: 2075: 2073: 2072: 2067: 2061: 2059: 2051: 2050: 2045: 2043: 2042: 2035: 2028: 2020: 2014: 2013: 2004: 1999: 1992: 1991:External links 1989: 1986: 1985: 1934: 1909: 1885: 1870:"UPSIDE Foods" 1861: 1837: 1808:(2): 125–140. 1788: 1759:(3): 664–678. 1739: 1690: 1641: 1592: 1534: 1480: 1431: 1390: 1371:(4): 297–299. 1355: 1312: 1266: 1247:(2): 191–197. 1230: 1195: 1176:(5): 300–310. 1160: 1141:(2): 534–551. 1125: 1090: 1063:(7): 497–507. 1044: 1023:(5): 418–419. 1003: 954: 932: 883: 854:(6): 822–832. 834: 773: 732: 681: 629: 602:(2): 319–327. 573: 546:(4): 547–548. 524: 523: 521: 518: 517: 516: 511: 504: 501: 497:polyacrylamide 465: 462: 413: 410: 398:mesoangioblast 372: 369: 359: 356: 303: 300: 279: 276: 274: 271: 266:Flow cytometry 215: 212: 210: 207: 111: 110: 101: 95: 94: 89: 83: 82: 77: 71: 70: 65: 59: 58: 54: 53: 49: 48: 26: 24: 18:Satellite cell 14: 13: 10: 9: 6: 4: 3: 2: 2690: 2679: 2676: 2675: 2673: 2654: 2651: 2649: 2646: 2644: 2641: 2639: 2636: 2634: 2631: 2630: 2628: 2622: 2612: 2609: 2605: 2602: 2601: 2600: 2597: 2595: 2592: 2590: 2587: 2586: 2584: 2580: 2574: 2571: 2569: 2565: 2562: 2561: 2559: 2555: 2549: 2546: 2544: 2540: 2539:Microfilament 2537: 2535: 2532: 2528: 2525: 2523: 2520: 2519: 2518: 2515: 2514: 2512: 2508: 2505: 2501: 2495: 2492: 2490: 2487: 2485: 2482: 2481: 2479: 2477: 2471: 2461: 2458: 2456: 2453: 2451: 2448: 2446: 2443: 2441: 2438: 2437: 2435: 2431: 2425: 2422: 2420: 2417: 2415: 2412: 2410: 2407: 2405: 2402: 2401: 2399: 2397: 2393: 2385: 2382: 2380: 2377: 2375: 2372: 2371: 2370: 2367: 2366: 2363: 2360: 2359: 2354: 2351: 2349: 2346: 2344: 2341: 2339: 2336: 2335: 2334: 2331: 2330: 2328: 2321: 2317: 2303: 2300: 2298: 2295: 2294: 2292: 2289: 2284: 2278: 2275: 2273: 2270: 2268: 2265: 2261: 2258: 2256: 2253: 2251: 2248: 2246: 2243: 2241: 2238: 2237: 2236: 2233: 2229: 2226: 2224: 2221: 2220: 2219: 2216: 2214: 2211: 2210: 2207: 2204: 2202:Intracellular 2200: 2190: 2187: 2185: 2182: 2181: 2178: 2172: 2169: 2165: 2162: 2160: 2157: 2155: 2152: 2150: 2147: 2145: 2142: 2140: 2137: 2136: 2135: 2132: 2131: 2129: 2126: 2122: 2119: 2117:extracellular 2113: 2110: 2108: 2103: 2099: 2096: 2094: 2088: 2085: 2083: 2077: 2071: 2068: 2066: 2063: 2062: 2060: 2058: 2052: 2048: 2047:Muscle tissue 2041: 2036: 2034: 2029: 2027: 2022: 2021: 2018: 2012: 2008: 2005: 2003: 2000: 1998: 1995: 1994: 1990: 1981: 1977: 1972: 1967: 1962: 1957: 1953: 1949: 1945: 1938: 1935: 1923: 1919: 1913: 1910: 1899: 1895: 1889: 1886: 1875: 1871: 1865: 1862: 1851: 1847: 1841: 1838: 1832: 1827: 1823: 1819: 1815: 1811: 1807: 1803: 1799: 1792: 1789: 1784: 1780: 1775: 1770: 1766: 1762: 1758: 1754: 1750: 1743: 1740: 1735: 1731: 1726: 1721: 1717: 1713: 1709: 1705: 1701: 1694: 1691: 1686: 1682: 1677: 1672: 1668: 1664: 1660: 1656: 1652: 1645: 1642: 1637: 1633: 1629: 1625: 1620: 1615: 1611: 1607: 1603: 1596: 1593: 1588: 1584: 1580: 1576: 1572: 1568: 1564: 1560: 1556: 1552: 1545: 1538: 1535: 1530: 1526: 1521: 1516: 1512: 1508: 1504: 1500: 1496: 1489: 1487: 1485: 1481: 1476: 1472: 1467: 1462: 1458: 1454: 1450: 1446: 1442: 1435: 1432: 1427: 1423: 1418: 1413: 1409: 1405: 1401: 1394: 1391: 1386: 1382: 1378: 1374: 1370: 1366: 1359: 1356: 1351: 1347: 1343: 1339: 1335: 1331: 1327: 1323: 1316: 1313: 1308: 1304: 1300: 1296: 1292: 1288: 1284: 1280: 1273: 1271: 1267: 1262: 1258: 1254: 1250: 1246: 1242: 1234: 1231: 1226: 1222: 1218: 1214: 1210: 1206: 1199: 1196: 1191: 1187: 1183: 1179: 1175: 1171: 1164: 1161: 1156: 1152: 1148: 1144: 1140: 1136: 1129: 1126: 1121: 1117: 1113: 1109: 1105: 1101: 1094: 1091: 1086: 1082: 1078: 1074: 1070: 1066: 1062: 1058: 1051: 1049: 1045: 1040: 1036: 1031: 1026: 1022: 1018: 1014: 1007: 1004: 999: 995: 991: 987: 982: 977: 973: 969: 965: 958: 955: 950: 946: 939: 937: 933: 928: 924: 919: 914: 910: 906: 902: 898: 894: 887: 884: 879: 875: 870: 865: 861: 857: 853: 849: 845: 838: 835: 830: 826: 822: 818: 813: 808: 804: 800: 796: 792: 788: 784: 777: 774: 769: 765: 760: 755: 751: 747: 743: 736: 733: 728: 724: 719: 714: 709: 704: 700: 696: 692: 685: 682: 677: 673: 668: 663: 659: 655: 651: 647: 643: 636: 634: 630: 625: 621: 617: 613: 609: 605: 601: 597: 590: 588: 586: 584: 582: 580: 578: 574: 569: 565: 561: 557: 553: 549: 545: 541: 534: 532: 530: 526: 519: 515: 512: 510: 507: 506: 502: 500: 498: 494: 488: 486: 482: 478: 473: 471: 463: 461: 459: 455: 451: 446: 444: 440: 436: 432: 428: 423: 419: 411: 409: 407: 404:dog model of 403: 399: 394: 390: 387:body such as 384: 382: 378: 370: 368: 364: 357: 351: 347: 345: 341: 336: 334: 330: 324: 322: 318: 314: 308: 301: 299: 295: 293: 287: 285: 278:Muscle repair 277: 272: 270: 267: 262: 260: 256: 252: 248: 243: 239: 235: 233: 229: 225: 221: 213: 208: 206: 204: 200: 196: 192: 187: 185: 181: 177: 176:muscle fibers 173: 168: 164: 159: 157: 153: 149: 145: 141: 137: 133: 129: 125: 121: 117: 106: 100: 96: 93: 90: 88: 84: 81: 78: 76: 72: 69: 66: 64: 60: 55: 50: 45: 40: 33: 19: 2572: 2517:Muscle fiber 2287: 2218:Dystrobrevin 2171:Dystroglycan 1954:(14): 7513. 1951: 1947: 1937: 1926:. Retrieved 1924:. 2021-01-29 1921: 1912: 1901:. Retrieved 1897: 1888: 1877:. Retrieved 1874:UPSIDE Foods 1873: 1864: 1853:. Retrieved 1849: 1840: 1805: 1801: 1791: 1756: 1752: 1742: 1707: 1703: 1693: 1658: 1654: 1644: 1609: 1605: 1595: 1554: 1550: 1537: 1505:(1): 23–67. 1502: 1498: 1448: 1444: 1434: 1407: 1403: 1393: 1368: 1364: 1358: 1328:(1): 87–92. 1325: 1321: 1315: 1282: 1279:FEBS Letters 1278: 1244: 1240: 1233: 1208: 1204: 1198: 1173: 1169: 1163: 1138: 1134: 1128: 1103: 1099: 1093: 1060: 1056: 1020: 1016: 1006: 971: 967: 957: 948: 944: 900: 896: 886: 851: 847: 837: 786: 782: 776: 749: 745: 735: 698: 694: 684: 649: 645: 599: 595: 543: 539: 489: 487:in the USA. 485:Upside Foods 474: 467: 447: 426: 415: 385: 380: 376: 374: 365: 361: 337: 325: 309: 305: 296: 288: 281: 263: 236: 217: 194: 190: 188: 160: 130:, are small 127: 123: 119: 115: 114: 67: 2568:Muscle cell 2543:Myofilament 2362:Tropomyosin 2333:Myofilament 2134:Sarcoglycan 1846:"Mosa Meat" 132:multipotent 57:Identifiers 2638:Telethonin 2599:Sarcolemma 2594:Sarcoplasm 2527:extrafusal 2522:intrafusal 2484:Myocardium 2445:Motor unit 2419:Endomysium 2414:Perimysium 2302:Caveolin 3 2235:Syntrophin 2213:Dystrophin 2065:Calmodulin 1928:2023-11-17 1903:2023-11-17 1879:2023-11-17 1855:2023-11-17 1606:Stem Cells 1017:Cell Cycle 968:Stem Cells 520:References 493:bioreactor 412:Regulation 331:mRNA, and 167:sarcolemma 2678:Myoblasts 2643:Dysferlin 2626:ungrouped 2548:Sarcomere 2534:Myofibril 2494:Nebulette 2404:Epimysium 2320:Sarcomere 2272:Dysbindin 2267:Syncoilin 2184:Sarcospan 2115:Membrane/ 2102:Costamere 1850:Mosa Meat 1822:0975-8402 1636:206518139 945:J Physiol 481:Mosa Meat 450:myostatin 389:pericytes 329:cyclin D1 209:Structure 199:myoblasts 195:activated 191:quiescent 180:stem cell 156:myoblasts 152:quiescent 148:myonuclei 136:cytoplasm 2672:Category 2633:Myotilin 2604:T-tubule 2564:Myoblast 2409:Fascicle 2369:Troponin 2288:related: 2091:Skeletal 2080:Striated 2009:via the 1980:34299132 1783:37332290 1774:10271921 1734:12963705 1685:12963705 1628:21739529 1587:62808421 1579:17108972 1529:23303905 1475:22147605 1426:11382785 1350:20002383 1342:12811778 1307:46646257 1299:12095637 1225:11171591 1190:15213729 1155:11457764 1120:16109502 1077:12838342 1039:12963830 990:23034923 927:11121437 878:19531353 821:15843801 768:16899758 727:21798086 701:(1): 7. 676:15218062 624:21822010 616:16091958 568:12812499 560:25896402 503:See also 439:myogenin 377:in vitro 371:Research 273:Function 251:myogenin 172:caveolae 165:and the 2648:Fukutin 2474:Cardiac 2433:General 2353:nebulin 1971:8307620 1922:gfi.org 1831:3551074 1725:2172861 1676:2172861 1559:Bibcode 1520:4073943 1466:3283088 1385:3182162 1261:8800359 1085:1800309 998:1219256 918:2190588 869:3684422 829:4415583 791:Bibcode 718:3157006 667:1665027 381:in vivo 184:disease 80:D032496 52:Details 2624:Other/ 2589:Desmin 2476:muscle 2093:muscle 2082:muscle 2057:muscle 2055:Smooth 1978:  1968:  1828:  1820:  1781:  1771:  1732:  1722:  1683:  1673:  1634:  1626:  1585:  1577:  1551:Nature 1527:  1517:  1473:  1463:  1424:  1383:  1348:  1340:  1305:  1297:  1259:  1223:  1188:  1153:  1118:  1083:  1075:  1037:  996:  988:  951:: 165. 925:  915:  876:  866:  827:  819:  783:Nature 766:  725:  715:  674:  664:  622:  614:  566:  558:  441:, and 319:) and 259:desmin 253:, and 140:muscle 2582:Other 2557:Cells 2510:Fiber 1632:S2CID 1583:S2CID 1547:(PDF) 1346:S2CID 1303:S2CID 1081:S2CID 994:S2CID 825:S2CID 620:S2CID 564:S2CID 317:IGF-1 128:MuSCs 103:[ 63:Latin 2503:Both 2297:NOS1 2164:SGCZ 2159:SGCG 2154:SGCE 2149:SGCD 2144:SGCB 2139:SGCA 2107:DAPC 1976:PMID 1818:ISSN 1779:PMID 1730:PMID 1681:PMID 1624:PMID 1575:PMID 1525:PMID 1471:PMID 1422:PMID 1381:PMID 1338:PMID 1295:PMID 1257:PMID 1221:PMID 1186:PMID 1151:PMID 1116:PMID 1073:PMID 1035:PMID 986:PMID 923:PMID 874:PMID 817:PMID 764:PMID 723:PMID 672:PMID 612:PMID 556:PMID 443:MRF4 435:MyoD 431:Myf5 422:PAX7 420:and 418:PAX3 391:and 255:MRF4 247:MyoD 242:Myf5 240:and 238:CD34 228:PAX3 226:and 224:PAX7 75:MeSH 39:MUSC 2125:DAP 1966:PMC 1956:doi 1826:PMC 1810:doi 1769:PMC 1761:doi 1720:PMC 1712:doi 1708:162 1671:PMC 1663:doi 1659:162 1614:doi 1567:doi 1555:444 1515:PMC 1507:doi 1461:PMC 1453:doi 1412:doi 1373:doi 1330:doi 1287:doi 1283:522 1249:doi 1245:157 1213:doi 1209:280 1178:doi 1143:doi 1108:doi 1065:doi 1025:doi 976:doi 949:565 913:PMC 905:doi 901:151 864:PMC 856:doi 807:hdl 799:doi 787:435 754:doi 713:PMC 703:doi 662:PMC 654:doi 650:558 604:doi 600:451 548:doi 458:p21 379:or 333:p21 313:HGF 232:HGF 126:or 2674:: 2260:G2 2255:G1 2250:B2 2245:B1 1974:. 1964:. 1952:22 1950:. 1946:. 1920:. 1896:. 1872:. 1848:. 1824:. 1816:. 1806:48 1804:. 1800:. 1777:. 1767:. 1757:65 1755:. 1751:. 1728:. 1718:. 1706:. 1702:. 1679:. 1669:. 1657:. 1653:. 1630:. 1622:. 1610:29 1608:. 1604:. 1581:. 1573:. 1565:. 1553:. 1549:. 1523:. 1513:. 1503:93 1501:. 1497:. 1483:^ 1469:. 1459:. 1449:59 1447:. 1443:. 1420:. 1408:56 1406:. 1402:. 1379:. 1367:. 1344:. 1336:. 1326:28 1324:. 1301:. 1293:. 1281:. 1269:^ 1255:. 1243:. 1219:. 1207:. 1184:. 1174:82 1172:. 1149:. 1139:91 1137:. 1114:. 1104:26 1102:. 1079:. 1071:. 1059:. 1047:^ 1033:. 1019:. 1015:. 992:. 984:. 972:30 970:. 966:. 947:. 935:^ 921:. 911:. 899:. 895:. 872:. 862:. 852:16 850:. 846:. 823:. 815:. 805:. 797:. 785:. 762:. 750:54 748:. 744:. 721:. 711:. 697:. 693:. 670:. 660:. 648:. 644:. 632:^ 618:. 610:. 598:. 576:^ 562:. 554:. 544:11 542:. 528:^ 437:, 433:, 429:, 294:. 249:, 205:. 186:. 158:. 122:, 87:TH 2566:/ 2541:/ 2384:I 2379:C 2374:T 2322:/ 2240:A 2228:B 2223:A 2127:: 2104:/ 2039:e 2032:t 2025:v 1982:. 1958:: 1931:. 1906:. 1882:. 1858:. 1834:. 1812:: 1785:. 1763:: 1736:. 1714:: 1687:. 1665:: 1638:. 1616:: 1589:. 1569:: 1561:: 1531:. 1509:: 1477:. 1455:: 1428:. 1414:: 1387:. 1375:: 1369:9 1352:. 1332:: 1309:. 1289:: 1263:. 1251:: 1227:. 1215:: 1192:. 1180:: 1157:. 1145:: 1122:. 1110:: 1087:. 1067:: 1061:4 1041:. 1027:: 1021:2 1000:. 978:: 929:. 907:: 880:. 858:: 831:. 809:: 801:: 793:: 770:. 756:: 729:. 705:: 699:1 678:. 656:: 626:. 606:: 570:. 550:: 107:] 41:. 34:. 20:)

Index

Satellite cell
Satellite cell (glial)
MUSC
Latin
MeSH
D032496
TH
H2.00.05.2.01020
Anatomical terms of microanatomy
edit on Wikidata
multipotent
cytoplasm
muscle
skeletal muscle
myonuclei
quiescent
myoblasts
basement membrane
sarcolemma
caveolae
muscle fibers
stem cell
disease
myoblasts
differentiation
genetic markers
PAX7
PAX3
HGF
CD34

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑