Knowledge (XXG)

Scalar control

Source πŸ“

480: 128:
sensor. Frequency and flux (voltage or current, depending on the type of the drive) control signals are decoupled, with the flux control driven by the flux estimate, and the frequency control driven by the torque estimate and speed sensor data. The increased performance comes at the cost of
43:
that enables better handling of the transient processes. Low cost and simplicity keeps the scalar control in the majority of low-performance motors, despite inferiority of its dynamic performance; vector control is expected to become universal in the future.
83:
An open-loop V/f control works well in applications with near-constant load torque and gradual changes in rotational speed. The controllers implementing this method are sometimes called
80:
constant thus maintaining the motor performance across the range of speeds. A voltage boost at low frequencies is typically employed to compensate for the resistance of the coils.
517: 429: 399: 370: 416: 293: 104: 31:
orientation inside the motor. Scalar control is based on equations valid for a steady-state operation and is frequently
510: 99:
configuration) for better/faster transitional response, the common approach uses a rotational speed sensor (so called
541: 27:
operation by manipulating the supply voltage or current ("magnitude") and the supply frequency while ignoring the
536: 24: 109: 503: 251: 247: 40: 113:
difference that is combined with the direct reading of the speed sensor into a frequency control signal.
328:
Buja, G.S.; Kazmierkowski, M.P. (2004). "Direct Torque Control of PWM Inverter-Fed AC Motorsβ€”A Survey".
117: 462: 425: 395: 366: 345: 316: 487: 358: 454: 387: 337: 308: 125: 20: 36: 39:). The scalar control has been to a large degree replaced in high-performance motors by 52:
The variants of the scalar control include open-loop control and closed-loop control.
28: 530: 73: 60:
The most common approach makes the voltage V proportional to frequency f (so called
96: 466: 349: 320: 458: 341: 312: 32: 445:
Bose, Bimal (2009). "The past, present, and future of power electronics ".
246:
With the current feedback in place, the motor can be driven using either a
453:(2). Institute of Electrical and Electronics Engineers (IEEE): 7–11, 14. 479: 336:(4). Institute of Electrical and Electronics Engineers (IEEE): 744–757. 307:(2). Institute of Electrical and Electronics Engineers (IEEE): 481–491. 121: 77: 129:
additional complexity and associated potential stability issues.
363:
The Field Orientation Principle in Control of Induction Motors
146: 144: 142: 177: 175: 173: 171: 116:
In a torque-control variant (TC, not to be confused with the
491: 72:, CVH). Advantage of the V/f variant is in keeping the 206: 204: 202: 124:
is held constant in the steady-state, this requires a
392:
Applied Intelligent Control of Induction Motor Drives
365:. Power Electronics and Power Systems. Springer US. 162: 424:. Eastern Economy Edition. Prentice Hall PTR. 511: 181: 150: 8: 330:IEEE Transactions on Industrial Electronics 301:IEEE Transactions on Industrial Electronics 518: 504: 292:Finch, John W.; Giaouris, Damian (2008). 103:). The speed error is passed through the 210: 138: 486:This electricity-related article is a 418:Modern Power Electronics and AC Drives 7: 476: 474: 447:IEEE Industrial Electronics Magazine 359:"Scalar Control of Induction Motors" 275: 263: 234: 222: 193: 490:. You can help Knowledge (XXG) by 14: 294:"Controlled AC Electrical Drives" 478: 105:proportional-integral controller 1: 163:Buja & Kazmierkowski 2004 386:Chan, T.F.; Shi, K. (2011). 357:Trzynadlowski, A.M. (2013). 107:to create the accumulated 35:(no sensing except for the 558: 473: 151:Finch & Giaouris 2008 95:If sensors are utilized ( 85:general purpose AC drives 101:closed-loop V/Hz control 23:is a way to achieve the 459:10.1109/mie.2009.932709 342:10.1109/tie.2004.831717 313:10.1109/tie.2007.911209 120:a.k.a. DTC), the motor 394:. IEEE Press. Wiley. 118:direct torque control 252:current-fed inverter 248:voltage-fed inverter 70:Constant Volts/Hertz 415:Bose, B.K. (2002). 266:, pp. 345–346. 237:, pp. 342–344. 211:Chan & Shi 2011 182:Trzynadlowski 2013 542:Electricity stubs 499: 498: 431:978-0-13-016743-9 401:978-0-470-82828-1 372:978-1-4615-2730-5 549: 520: 513: 506: 482: 475: 470: 441: 439: 438: 423: 411: 409: 408: 388:"Scalar Control" 382: 380: 379: 353: 324: 298: 279: 273: 267: 261: 255: 244: 238: 232: 226: 220: 214: 208: 197: 191: 185: 179: 166: 160: 154: 148: 21:electrical motor 557: 556: 552: 551: 550: 548: 547: 546: 537:Electric motors 527: 526: 525: 524: 444: 436: 434: 432: 421: 414: 406: 404: 402: 385: 377: 375: 373: 356: 327: 296: 291: 288: 283: 282: 274: 270: 262: 258: 245: 241: 233: 229: 221: 217: 209: 200: 192: 188: 180: 169: 161: 157: 149: 140: 135: 93: 58: 50: 37:current limiter 12: 11: 5: 555: 553: 545: 544: 539: 529: 528: 523: 522: 515: 508: 500: 497: 496: 483: 472: 471: 442: 430: 412: 400: 383: 371: 354: 325: 287: 284: 281: 280: 278:, p. 345. 268: 256: 239: 227: 225:, p. 340. 215: 198: 186: 167: 165:, p. 744. 155: 153:, p. 483. 137: 136: 134: 131: 92: 89: 57: 54: 49: 46: 41:vector control 29:magnetic field 25:variable speed 17:Scalar control 13: 10: 9: 6: 4: 3: 2: 554: 543: 540: 538: 535: 534: 532: 521: 516: 514: 509: 507: 502: 501: 495: 493: 489: 484: 481: 477: 468: 464: 460: 456: 452: 448: 443: 433: 427: 420: 419: 413: 403: 397: 393: 389: 384: 374: 368: 364: 360: 355: 351: 347: 343: 339: 335: 331: 326: 322: 318: 314: 310: 306: 302: 295: 290: 289: 285: 277: 272: 269: 265: 260: 257: 253: 249: 243: 240: 236: 231: 228: 224: 219: 216: 212: 207: 205: 203: 199: 196:, p. 11. 195: 190: 187: 184:, p. 43. 183: 178: 176: 174: 172: 168: 164: 159: 156: 152: 147: 145: 143: 139: 132: 130: 127: 123: 119: 114: 112: 111: 106: 102: 98: 90: 88: 86: 81: 79: 75: 74:magnetic flux 71: 67: 63: 55: 53: 47: 45: 42: 38: 34: 30: 26: 22: 18: 492:expanding it 485: 450: 446: 435:. Retrieved 417: 405:. Retrieved 391: 376:. Retrieved 362: 333: 329: 304: 300: 271: 259: 242: 230: 218: 213:, p. 3. 189: 158: 115: 108: 100: 94: 84: 82: 69: 66:V/Hz control 65: 61: 59: 51: 16: 15: 97:closed-loop 91:Closed-loop 76:inside the 62:V/f control 531:Categories 437:2023-10-31 407:2023-10-31 378:2023-10-29 133:References 467:1932-4529 350:0278-0046 321:0278-0046 276:Bose 2002 264:Bose 2002 235:Bose 2002 223:Bose 2002 194:Bose 2009 56:Open-loop 33:open-loop 19:of an AC 286:Sources 126:current 465:  428:  398:  369:  348:  319:  122:torque 78:stator 422:(PDF) 297:(PDF) 250:or a 48:Types 488:stub 463:ISSN 426:ISBN 396:ISBN 367:ISBN 346:ISSN 317:ISSN 110:slip 455:doi 338:doi 309:doi 533:: 461:. 449:. 390:. 361:. 344:. 334:51 332:. 315:. 305:55 303:. 299:. 201:^ 170:^ 141:^ 87:. 68:, 64:, 519:e 512:t 505:v 494:. 469:. 457:: 451:3 440:. 410:. 381:. 352:. 340:: 323:. 311:: 254:.

Index

electrical motor
variable speed
magnetic field
open-loop
current limiter
vector control
magnetic flux
stator
closed-loop
proportional-integral controller
slip
direct torque control
torque
current



Finch & Giaouris 2008
Buja & Kazmierkowski 2004




Trzynadlowski 2013
Bose 2009



Chan & Shi 2011
Bose 2002

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑