Knowledge

Scalar field

Source đź“ť

44: 198: 106:
In a physical context, scalar fields are required to be independent of the choice of reference frame. That is, any two observers using the same units will agree on the value of the scalar field at the same absolute point in space (or
259: 293:
using the same units must agree on the numerical value of a scalar field at any given point of physical space. Scalar fields are contrasted with other physical quantities such as
204: 202: 199: 203: 279: 289:
associated with it. In this context, a scalar field should also be independent of the coordinate system used to describe the physical system—that is, any two
201: 390:
is associated with spin-0 particles. The scalar field may be real or complex valued. Complex scalar fields represent charged particles. These include the
1067: 200: 186:
of order zero, and the term "scalar field" may be used to distinguish a function of this kind with a more general tensor field,
1072: 1062: 445: 136: 473:
Scalar fields like the Higgs field can be found within scalar–tensor theories, using as scalar field the Higgs field of the
281:
increases. Red represents positive values, purple represents negative values, and sky blue represents values close to zero.
681: 657: 430: 290: 47:
A scalar field such as temperature or pressure, where intensity of the field is represented by different hues of colors.
676: 652: 179: 403: 151: 698:, which fail to be invariant under spatial inversion, but are otherwise invariant under Lorentz transformations. 451: 563: 559: 459: 454:
represent the gravitational interaction through both a tensor and a scalar. Such attempts are for example the
492:
fields, breaking the conformal symmetry of the string, though balancing the quantum anomalies of this tensor.
211: 342: 147: 30:
This article is about associating a scalar value with every point in a space. For the set whose members are
463: 610: 571: 64: 836:
Dehnen, H.; Frommert, H.; Ghaboussi, F. (1992). "Higgs field and a new scalar–tensor theory of gravity".
575: 533: 504: 496: 1015: 968: 937: 888: 845: 810: 775: 721: 383: 286: 143: 88: 76: 31: 495:
Scalar fields are hypothesized to have caused the high accelerated expansion of the early universe (
600: 511:. Massive (i.e. short-ranged) scalar fields are proposed, too, using for example Higgs-like fields. 175: 124: 100: 80: 35: 671: 1039: 1005: 927: 904: 861: 695: 551: 478: 426: 346: 1031: 525: 191: 174:, and it is typical in mathematics to impose further conditions on the field, such that it be 264: 1023: 976: 896: 853: 818: 783: 729: 647: 322: 298: 96: 72: 766:
Brans, C.; Dicke, R. (1961). "Mach's Principle and a Relativistic Theory of Gravitation".
555: 500: 434: 167: 163: 111:) regardless of their respective points of origin. Examples used in physics include the 1019: 996:
Cervantes-Cota, J. L.; Dehnen, H. (1995). "Induced gravity inflation in the SU(5) GUT".
972: 941: 892: 849: 814: 779: 725: 474: 455: 422: 410: 395: 350: 187: 84: 1056: 908: 865: 587: 507:
of cosmology. Massless (i.e. long-ranged) scalar fields in this context are known as
387: 92: 1043: 879:
Dehnen, H.; Frommmert, H. (1991). "Higgs-field gravity within the standard model".
605: 543: 529: 521: 330: 310: 302: 294: 183: 957:"Inflationary universe: A possible solution to the horizon and flatness problems" 750: 629: 438: 414: 391: 369: 357: 120: 112: 52: 822: 734: 709: 17: 1027: 981: 956: 787: 567: 108: 1035: 43: 1010: 508: 365: 361: 334: 171: 116: 900: 857: 583: 579: 489: 56: 932: 547: 418: 306: 68: 285:
Physically, a scalar field is additionally distinguished by having
119:
distribution in a fluid, and spin-zero quantum fields, such as the
399: 326: 196: 42: 481:-like (short-ranged) with the particles that get mass through it. 537: 353:, are scalar fields which describe the more familiar forces. 448:
scalar fields are used to describe the gravitational field.
922:
Brans, C. H. (2005). "The Roots of scalar–tensor theory".
586:
scalar is also found among the massless bosonic fields in
337:
of the potential energy scalar field. Examples include:
554:
gravitation is associated with the tensor field called
503:
and giving a hypothetical reason for the non-vanishing
488:
Scalar fields are found within superstring theories as
309:. More subtly, scalar fields are often contrasted with 801:
Zee, A. (1979). "Broken-Symmetric Theory of Gravity".
570:
gravitation plus an extra set, which is equivalent to
267: 214: 562:, spacetime is extended to five dimensions and its 710:"Broken Symmetries and the Masses of Gauge Bosons" 273: 253: 321:In physics, scalar fields often describe the 8: 694:Technically, pions are actually examples of 578:, plus an extra scalar field known as the " 477:. This field interacts gravitationally and 333:, which can be obtained as a factor of the 528:to every point in space. Some examples of 1009: 980: 931: 733: 550:to every point in space. For example, in 377:Examples in quantum theory and relativity 266: 213: 341:Potential fields, such as the Newtonian 27:Assignment of numbers to points in space 621: 301:to every point of a region, as well as 254:{\displaystyle \sin(2\pi (xy+\sigma ))} 636:. Vol. II (2nd ed.). Wiley. 425:their mass, via a combination of the 7: 135:Mathematically, a scalar field on a 566:can be separated out into ordinary 441:was first detected at CERN in 2012. 182:to some order. A scalar field is a 123:. These fields are the subject of 115:distribution throughout space, the 458:theory as a generalization of the 413:of elementary particles, a scalar 170:, or more generally a subset of a 87:. The scalar may either be a pure 25: 433:. This mechanism is known as the 446:scalar theories of gravitation 248: 245: 230: 221: 1: 431:spontaneous symmetry breaking 368:field, such as those used in 325:associated with a particular 677:Encyclopedia of Mathematics 653:Encyclopedia of Mathematics 180:continuously differentiable 1089: 1068:Scalar physical quantities 823:10.1103/PhysRevLett.42.417 735:10.1103/PhysRevLett.13.508 404:strong nuclear interaction 29: 398:, as well as the charged 564:Riemann curvature tensor 499:), helping to solve the 97:scalar physical quantity 1028:10.1103/PhysRevD.51.395 982:10.1103/PhysRevD.23.347 788:10.1103/PhysRev.124.925 755:. Braunschweig: Vieweg. 752:Schwerkraft und Weltall 708:P.W. Higgs (Oct 1964). 343:gravitational potential 274:{\displaystyle \sigma } 148:complex-valued function 1073:Functions and mappings 1063:Multivariable calculus 611:Vector-valued function 452:Scalar–tensor theories 437:. A candidate for the 282: 275: 255: 48: 576:electromagnetic field 534:electromagnetic field 516:Other kinds of fields 505:cosmological constant 423:massive vector bosons 276: 256: 207: 162:may be a set in some 67:associating a single 46: 546:, which associate a 524:, which associate a 417:is used to give the 384:quantum field theory 297:, which associate a 287:units of measurement 265: 212: 208:The scalar field of 1020:1995PhRvD..51..395C 973:1981PhRvD..23..347G 942:2005gr.qc.....6063B 893:1991IJTP...30..985D 881:Int. J. Theor. Phys 850:1992IJTP...31..109D 838:Int. J. Theor. Phys 815:1979PhRvL..42..417Z 780:1961PhRv..124..925B 749:Jordan, P. (1955). 726:1964PhRvL..13..508H 696:pseudoscalar mesons 601:Scalar field theory 572:Maxwell's equations 560:Kaluza–Klein theory 460:Kaluza–Klein theory 125:scalar field theory 89:mathematical number 901:10.1007/BF00673991 858:10.1007/BF00674344 552:general relativity 464:Brans–Dicke theory 427:Yukawa interaction 347:electric potential 329:. The force is a 283: 271: 251: 49: 955:Guth, A. (1981). 540:) in meteorology. 205: 192:differential form 16:(Redirected from 1080: 1048: 1047: 1013: 1011:astro-ph/9412032 993: 987: 986: 984: 952: 946: 945: 935: 919: 913: 912: 876: 870: 869: 833: 827: 826: 798: 792: 791: 763: 757: 756: 746: 740: 739: 737: 705: 699: 692: 686: 685: 668: 662: 661: 644: 638: 637: 626: 568:four-dimensional 323:potential energy 280: 278: 277: 272: 260: 258: 257: 252: 206: 21: 1088: 1087: 1083: 1082: 1081: 1079: 1078: 1077: 1053: 1052: 1051: 995: 994: 990: 954: 953: 949: 921: 920: 916: 887:(7): 985–998 . 878: 877: 873: 835: 834: 830: 803:Phys. Rev. Lett 800: 799: 795: 765: 764: 760: 748: 747: 743: 720:(16): 508–509. 714:Phys. Rev. Lett 707: 706: 702: 693: 689: 670: 669: 665: 646: 645: 641: 628: 627: 623: 619: 597: 556:Einstein tensor 518: 501:horizon problem 435:Higgs mechanism 379: 319: 317:Uses in physics 263: 262: 261:oscillating as 210: 209: 197: 168:Minkowski space 164:Euclidean space 133: 39: 28: 23: 22: 15: 12: 11: 5: 1086: 1084: 1076: 1075: 1070: 1065: 1055: 1054: 1050: 1049: 1004:(2): 395–404. 988: 967:(2): 347–356. 947: 914: 871: 828: 809:(7): 417–421. 793: 758: 741: 700: 687: 672:"Scalar field" 663: 639: 620: 618: 615: 614: 613: 608: 603: 596: 593: 592: 591: 541: 536:and air flow ( 517: 514: 513: 512: 493: 485: 484: 483: 482: 475:Standard Model 468: 467: 449: 442: 411:Standard Model 407: 402:mediating the 396:Standard Model 378: 375: 374: 373: 354: 351:electrostatics 318: 315: 270: 250: 247: 244: 241: 238: 235: 232: 229: 226: 223: 220: 217: 132: 129: 85:physical space 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1085: 1074: 1071: 1069: 1066: 1064: 1061: 1060: 1058: 1045: 1041: 1037: 1033: 1029: 1025: 1021: 1017: 1012: 1007: 1003: 999: 992: 989: 983: 978: 974: 970: 966: 962: 958: 951: 948: 943: 939: 934: 933:gr-qc/0506063 929: 925: 918: 915: 910: 906: 902: 898: 894: 890: 886: 882: 875: 872: 867: 863: 859: 855: 851: 847: 843: 839: 832: 829: 824: 820: 816: 812: 808: 804: 797: 794: 789: 785: 781: 777: 773: 769: 762: 759: 754: 753: 745: 742: 736: 731: 727: 723: 719: 715: 711: 704: 701: 697: 691: 688: 683: 679: 678: 673: 667: 664: 659: 655: 654: 649: 643: 640: 635: 631: 625: 622: 616: 612: 609: 607: 604: 602: 599: 598: 594: 589: 588:string theory 585: 581: 577: 573: 569: 565: 561: 557: 553: 549: 545: 544:Tensor fields 542: 539: 535: 531: 530:vector fields 527: 523: 522:Vector fields 520: 519: 515: 510: 506: 502: 498: 494: 491: 487: 486: 480: 476: 472: 471: 470: 469: 465: 461: 457: 453: 450: 447: 443: 440: 436: 432: 428: 424: 420: 416: 412: 408: 405: 401: 397: 393: 389: 385: 381: 380: 376: 371: 367: 363: 359: 355: 352: 348: 344: 340: 339: 338: 336: 332: 328: 324: 316: 314: 312: 308: 307:spinor fields 304: 303:tensor fields 300: 296: 295:vector fields 292: 288: 268: 242: 239: 236: 233: 227: 224: 218: 215: 195: 193: 189: 185: 181: 177: 173: 169: 165: 161: 158:. The region 157: 153: 149: 145: 141: 138: 130: 128: 126: 122: 118: 114: 110: 104: 102: 98: 94: 93:dimensionless 90: 86: 82: 78: 74: 70: 66: 62: 58: 54: 45: 41: 37: 33: 19: 18:Scalar fields 1001: 998:Phys. Rev. D 997: 991: 964: 961:Phys. Rev. D 960: 950: 923: 917: 884: 880: 874: 841: 837: 831: 806: 802: 796: 771: 767: 761: 751: 744: 717: 713: 703: 690: 675: 666: 651: 642: 633: 630:Apostol, Tom 624: 606:Vector boson 532:include the 388:scalar field 331:vector field 320: 311:pseudoscalar 284: 184:tensor field 159: 155: 152:distribution 139: 134: 105: 61:scalar field 60: 50: 40: 439:Higgs boson 415:Higgs field 392:Higgs field 370:meteorology 358:temperature 121:Higgs field 113:temperature 83:– possibly 53:mathematics 1057:Categories 844:(1): 109. 774:(3): 925. 617:References 176:continuous 131:Definition 909:120164928 866:121308053 768:Phys. Rev 682:EMS Press 658:EMS Press 509:inflatons 497:inflation 345:, or the 291:observers 269:σ 243:σ 228:π 219:⁡ 178:or often 109:spacetime 1044:11077875 1036:10018493 648:"Scalar" 634:Calculus 632:(1969). 595:See also 582:". (The 574:for the 462:and the 429:and the 366:pressure 362:humidity 335:gradient 313:fields. 172:manifold 117:pressure 71:to each 65:function 1016:Bibcode 969:Bibcode 938:Bibcode 889:Bibcode 846:Bibcode 811:Bibcode 776:Bibcode 722:Bibcode 684:, 2001 660:, 2001 584:dilaton 580:dilaton 490:dilaton 419:leptons 409:In the 394:of the 188:density 95:) or a 57:physics 32:scalars 1042:  1034:  907:  864:  548:tensor 526:vector 479:Yukawa 456:Jordan 299:vector 137:region 99:(with 77:region 69:number 34:, see 1040:S2CID 1006:arXiv 928:arXiv 924:arXiv 905:S2CID 862:S2CID 558:. In 400:pions 364:, or 327:force 190:, or 142:is a 101:units 81:space 75:in a 73:point 63:is a 36:field 1032:PMID 538:wind 421:and 386:, a 305:and 144:real 59:, a 55:and 1024:doi 977:doi 897:doi 854:doi 819:doi 784:doi 772:124 730:doi 444:In 382:In 349:in 216:sin 154:on 150:or 146:or 103:). 79:of 51:In 1059:: 1038:. 1030:. 1022:. 1014:. 1002:51 1000:. 975:. 965:23 963:. 959:. 936:. 926:. 903:. 895:. 885:30 883:. 860:. 852:. 842:31 840:. 817:. 807:42 805:. 782:. 770:. 728:. 718:13 716:. 712:. 680:, 674:, 656:, 650:, 590:.) 360:, 356:A 194:. 166:, 127:. 1046:. 1026:: 1018:: 1008:: 985:. 979:: 971:: 944:. 940:: 930:: 911:. 899:: 891:: 868:. 856:: 848:: 825:. 821:: 813:: 790:. 786:: 778:: 738:. 732:: 724:: 466:. 406:. 372:. 249:) 246:) 240:+ 237:y 234:x 231:( 225:2 222:( 160:U 156:U 140:U 91:( 38:. 20:)

Index

Scalar fields
scalars
field

mathematics
physics
function
number
point
region
space
physical space
mathematical number
dimensionless
scalar physical quantity
units
spacetime
temperature
pressure
Higgs field
scalar field theory
region
real
complex-valued function
distribution
Euclidean space
Minkowski space
manifold
continuous
continuously differentiable

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑