Knowledge (XXG)

Schottky group

Source 📝

277: 17: 416:| is summable over the non-identity elements of the group. In fact taking a closed disk in the interior of the fundamental domain, its images under different group elements are disjoint and contained in a fixed disk about 0. So the sums of the areas is finite. By the changes of variables formula, the area is greater than a constant times | 428:
A similar argument implies that the limit set has Lebesgue measure zero. For it is contained in the complement of union of the images of the fundamental region by group elements with word length bounded by
399: 728:
Vorlesungen über die Theorie der automorphen Functionen. Zweiter Band: Die funktionentheoretischen Ausführungen und die Anwendungen. 1. Lieferung: Engere Theorie der automorphen Funktionen.
1092: 433:. This is a finite union of circles so has finite area. That area is bounded above by a constant times the contribution to the Poincaré sum of elements of word length 264:
that all finitely generated classical Schottky groups have limit sets of Hausdorff dimension bounded above strictly by a universal constant less than 2. Conversely,
1046: 968: 736: 708: 990: 1080: 890: 320: 268:
has proved that there exists a universal lower bound on the Hausdorff dimension of limit sets of all non-classical Schottky groups.
312: 184:) in the Riemann sphere is given by the exterior of the Jordan curves defining it. The corresponding quotient space Ω( 248:
if all the disjoint Jordan curves corresponding to some set of generators can be chosen to be circles. Marden (
276: 1072: 1130: 845: 757: 162: 953:
Marden, A. (1977), "Geometrically finite Kleinian groups and their deformation spaces", in Harvey, W. J. (ed.),
1202: 1192: 1067: 170: 112: 581: 771: 700:
Vorlesungen über die Theorie der automorphen Functionen. Erster Band; Die gruppentheoretischen Grundlagen.
473:−3. It contains classical Schottky space as the subset corresponding to classical Schottky groups. 1197: 1172: 901: 621: 824: 481: 256:) gave an indirect and non-constructive proof of the existence of non-classical Schottky groups, and 1207: 311:
The statement on Lebesgue measures follows for classical Schottky groups from the existence of the
769:
Hou, Yong (2010), "Kleinian groups of small Hausdorff dimension are classical Schottky groups I",
1117: 926: 814: 811:
All finitely generated Kleinian groups of small Hausdorff dimension are classical Schottky groups
798: 780: 646: 568: 37: 1147: 1109: 1076: 1042: 1009: 964: 918: 886: 862: 840: 753: 732: 704: 638: 600: 497: 404: 301: 1087: 1139: 1101: 999: 942: 910: 854: 790: 742: 714: 676: 667: 630: 590: 558: 480:
is not simply connected in general, but its universal covering space can be identified with
293: 1159: 1056: 1021: 978: 938: 874: 690: 658: 612: 1155: 1052: 1038: 1017: 974: 946: 934: 870: 746: 718: 686: 654: 608: 193: 828: 1028: 985: 960: 836: 726: 698: 142: 57: 33: 1186: 1121: 1062: 802: 595: 572: 72:
the "exterior" of the curve, and the other piece its "interior". Suppose there are 2
885:, Mathematical Surveys and Monographs, vol. 8, American Mathematical Society, 619:
Chuckrow, Vicki (1968), "On Schottky groups with applications to kleinian groups",
549:
Akaza, Tohru (1964), "Poincaré theta series and singular sets of Schottky groups",
77: 61: 1143: 1037:, Grundlehren der Mathematischen Wissenschaften, vol. 287, Berlin, New York: 858: 465:) that generate a Schottky group, up to equivalence under Möbius transformations ( 1032: 954: 502: 25: 563: 166: 16: 1151: 1113: 1105: 1013: 922: 899:
Marden, Albert (1974), "The geometry of finitely generated kleinian groups",
866: 642: 604: 68:
divides the Riemann sphere into two pieces, and we call the piece containing
308:< 2. It is perfect and nowhere dense with positive logarithmic capacity. 285: 794: 169:, has nonempty domain of discontinuity, and all non-trivial elements are 1128:
Yamamoto, Hiro-o (1991), "An example of a nonclassical Schottky group",
1088:"Ueber die conforme Abbildung mehrfach zusammenhängender ebener Flächen" 956:
Discrete groups and automorphic functions (Proc. Conf., Cambridge, 1975)
1004: 930: 681: 650: 200:. This is the boundary of the 3-manifold given by taking the quotient ( 161:, a finitely generated Kleinian group is Schottky if and only if it is 785: 914: 634: 192:
is given by joining up the Jordan curves in pairs, so is a compact
819: 275: 15: 579:
Bers, Lipman (1975), "Automorphic forms for Schottky groups",
394:{\displaystyle \displaystyle {P(z)=\sum (c_{i}z+d_{i})^{-4}.}} 665:
Doyle, Peter (1988), "On the bass note of a Schottky group",
111:
in the Riemann sphere with disjoint interiors. If there are
149:
is any Kleinian group that can be constructed like this.
141:, then the group generated by these transformations is a 176:
A fundamental domain for the action of a Schottky group
260:
gave an explicit example of one. It has been shown by
449:≥ 2) is the space of marked Schottky groups of genus 324: 323: 469:). It is a complex manifold of complex dimension 3 393: 232:can be obtained from some Schottky group of genus 228:. Conversely any compact Riemann surface of genus 20:Fundamental domain of a 3-generator Schottky group 1173:Three transformations generating a Schottky group 988:(1967), "A characterization of Schottky groups", 1093:Journal für die reine und angewandte Mathematik 883:Discontinuous Groups and Automorphic Functions 8: 280:Schottky (Kleinian) group limit set in plane 1176: 240:Classical and non-classical Schottky groups 841:"The boundary of classical Schottky space" 1068:Indra's Pearls: The Vision of Felix Klein 1003: 818: 784: 680: 594: 562: 377: 367: 351: 325: 322: 288:of a Schottky group, the complement of Ω( 257: 41: 514: 731:(in German), Leipzig: B. G. Teubner., 521: 453:, in other words the space of sets of 253: 249: 158: 1065:, Caroline Series, and David Wright, 725:Fricke, Robert; Klein, Felix (1912), 703:(in German), Leipzig: B. G. Teubner, 697:Fricke, Robert; Klein, Felix (1897), 533: 261: 7: 466: 265: 14: 224:, which is a handlebody of genus 991:Journal d'Analyse Mathématique 445:Schottky space (of some genus 374: 344: 335: 329: 1: 1144:10.1215/S0012-7094-91-06308-8 859:10.1215/s0012-7094-79-04619-2 272:Limit sets of Schottky groups 216:space plus the regular set Ω( 596:10.1016/0001-8708(75)90117-6 296:zero, but can have positive 212:of 3-dimensional hyperbolic 835:Jørgensen, T.; Marden, A.; 759:A Survey of Schottky Groups 244:A Schottky group is called 1224: 1073:Cambridge University Press 1131:Duke Mathematical Journal 846:Duke Mathematical Journal 564:10.1017/S0027763000011338 407:showed that the series | 1106:10.1515/crll.1877.83.300 476:Schottky space of genus 220:) by the Schottky group 180:on its regular points Ω( 1177:Fricke & Klein 1897 881:Lehner, Joseph (1964), 772:Geometry & Topology 582:Advances in Mathematics 795:10.2140/gt.2010.14.473 395: 281: 123:taking the outside of 113:Möbius transformations 38:Friedrich Schottky 21: 1086:Schottky, F. (1877), 902:Annals of Mathematics 622:Annals of Mathematics 437:, so decreases to 0. 396: 279: 32:is a special sort of 19: 963:, pp. 259–293, 321: 64:not passing through 36:, first studied by 829:2013arXiv1307.2677H 132:onto the inside of 1005:10.1007/BF02788719 809:Hou, Yong (2013), 682:10.1007/bf02392277 488:Riemann surfaces. 391: 390: 282: 163:finitely generated 22: 1048:978-3-540-17746-3 970:978-0-12-329950-5 905:, Second Series, 738:978-1-4297-0552-3 710:978-1-4297-0551-6 625:, Second Series, 498:Beltrami equation 484:of compact genus 482:Teichmüller space 302:Hausdorff measure 1215: 1162: 1124: 1059: 1024: 1007: 981: 949: 895: 877: 831: 822: 805: 788: 765: 764: 749: 721: 693: 684: 668:Acta Mathematica 661: 615: 598: 575: 566: 536: 531: 525: 519: 400: 398: 397: 392: 389: 385: 384: 372: 371: 356: 355: 294:Lebesgue measure 1223: 1222: 1218: 1217: 1216: 1214: 1213: 1212: 1203:Discrete groups 1193:Kleinian groups 1183: 1182: 1179:, p. 442). 1169: 1127: 1085: 1049: 1039:Springer-Verlag 1034:Kleinian groups 1029:Maskit, Bernard 1027: 986:Maskit, Bernard 984: 971: 952: 915:10.2307/1971059 898: 893: 880: 837:Maskit, Bernard 834: 808: 768: 762: 752: 739: 724: 711: 696: 664: 635:10.2307/1970555 618: 578: 551:Nagoya Math. J. 548: 545: 540: 539: 532: 528: 520: 516: 511: 494: 460: 457:elements of PSL 443: 424: 415: 373: 363: 347: 319: 318: 313:Poincaré series 274: 258:Yamamoto (1991) 242: 194:Riemann surface 155: 140: 131: 122: 110: 101: 92: 85: 52:Fix some point 50: 12: 11: 5: 1221: 1219: 1211: 1210: 1205: 1200: 1195: 1185: 1184: 1181: 1180: 1168: 1167:External links 1165: 1164: 1163: 1138:(1): 193–197, 1125: 1083: 1060: 1047: 1025: 982: 969: 961:Academic Press 959:, Boston, MA: 950: 909:(3): 383–462, 896: 891: 878: 853:(2): 441–446, 832: 806: 766: 750: 737: 722: 709: 694: 662: 616: 589:(3): 332–361, 576: 544: 541: 538: 537: 526: 513: 512: 510: 507: 506: 505: 500: 493: 490: 458: 442: 441:Schottky space 439: 420: 411: 402: 401: 388: 383: 380: 376: 370: 366: 362: 359: 354: 350: 346: 343: 340: 337: 334: 331: 328: 292:), always has 273: 270: 241: 238: 154: 151: 147:Schottky group 143:Kleinian group 136: 127: 118: 106: 97: 90: 83: 58:Riemann sphere 49: 46: 34:Kleinian group 30:Schottky group 13: 10: 9: 6: 4: 3: 2: 1220: 1209: 1206: 1204: 1201: 1199: 1196: 1194: 1191: 1190: 1188: 1178: 1174: 1171: 1170: 1166: 1161: 1157: 1153: 1149: 1145: 1141: 1137: 1133: 1132: 1126: 1123: 1119: 1115: 1111: 1107: 1103: 1099: 1095: 1094: 1089: 1084: 1082: 1081:0-521-35253-3 1078: 1074: 1070: 1069: 1064: 1063:David Mumford 1061: 1058: 1054: 1050: 1044: 1040: 1036: 1035: 1030: 1026: 1023: 1019: 1015: 1011: 1006: 1001: 997: 993: 992: 987: 983: 980: 976: 972: 966: 962: 958: 957: 951: 948: 944: 940: 936: 932: 928: 924: 920: 916: 912: 908: 904: 903: 897: 894: 892:0-8218-1508-3 888: 884: 879: 876: 872: 868: 864: 860: 856: 852: 848: 847: 842: 838: 833: 830: 826: 821: 816: 812: 807: 804: 800: 796: 792: 787: 782: 778: 774: 773: 767: 761: 760: 755: 751: 748: 744: 740: 734: 730: 729: 723: 720: 716: 712: 706: 702: 701: 695: 692: 688: 683: 678: 674: 670: 669: 663: 660: 656: 652: 648: 644: 640: 636: 632: 628: 624: 623: 617: 614: 610: 606: 602: 597: 592: 588: 584: 583: 577: 574: 570: 565: 560: 556: 552: 547: 546: 542: 535: 530: 527: 524:, p. 159 523: 518: 515: 508: 504: 501: 499: 496: 495: 491: 489: 487: 483: 479: 474: 472: 468: 464: 456: 452: 448: 440: 438: 436: 432: 426: 423: 419: 414: 410: 406: 386: 381: 378: 368: 364: 360: 357: 352: 348: 341: 338: 332: 326: 317: 316: 315: 314: 309: 307: 303: 300:-dimensional 299: 295: 291: 287: 278: 271: 269: 267: 263: 259: 255: 251: 247: 239: 237: 235: 231: 227: 223: 219: 215: 211: 207: 203: 199: 195: 191: 187: 183: 179: 174: 172: 168: 164: 160: 159:Maskit (1967) 152: 150: 148: 144: 139: 135: 130: 126: 121: 117: 114: 109: 105: 100: 96: 89: 82: 79: 78:Jordan curves 75: 71: 67: 63: 59: 55: 47: 45: 43: 39: 35: 31: 27: 18: 1198:Group theory 1135: 1129: 1097: 1091: 1066: 1033: 995: 989: 955: 906: 900: 882: 850: 844: 810: 786:math/0610458 776: 770: 758: 754:Gilman, Jane 727: 699: 672: 666: 629:(1): 47–61, 626: 620: 586: 580: 554: 550: 529: 517: 485: 477: 475: 470: 462: 454: 450: 446: 444: 434: 430: 427: 421: 417: 412: 408: 403: 310: 305: 297: 289: 283: 262:Doyle (1988) 245: 243: 233: 229: 225: 221: 217: 213: 209: 205: 201: 197: 189: 185: 181: 177: 175: 156: 146: 137: 133: 128: 124: 119: 115: 107: 103: 98: 94: 87: 80: 73: 69: 65: 62:Jordan curve 53: 51: 29: 23: 1100:: 300–351, 998:: 227–230, 779:: 473–519, 675:: 249–284, 522:Lehner 1964 503:Riley slice 157:By work of 26:mathematics 1208:Lie groups 1187:Categories 947:0282.30014 747:32.0430.01 719:28.0334.01 543:References 534:Akaza 1964 266:Hou (2010) 171:loxodromic 153:Properties 48:Definition 1152:0012-7094 1122:118718425 1114:0075-4102 1014:0021-7670 923:0003-486X 867:0012-7094 820:1307.2677 803:119144655 643:0003-486X 605:0001-8708 573:118640111 557:: 43–65, 467:Bers 1975 379:− 342:∑ 286:limit set 246:classical 196:of genus 76:disjoint 1031:(1988), 839:(1979), 492:See also 405:Poincaré 1160:1106942 1075:, 2002 1057:0959135 1022:0220929 979:0494117 939:0349992 931:1971059 875:0534060 825:Bibcode 691:0945013 659:0227403 651:1970555 613:0377044 60:. Each 56:on the 40: ( 1175:from ( 1158:  1150:  1120:  1112:  1079:  1055:  1045:  1020:  1012:  977:  967:  945:  937:  929:  921:  889:  873:  865:  801:  745:  735:  717:  707:  689:  657:  649:  641:  611:  603:  571:  93:,..., 1118:S2CID 927:JSTOR 815:arXiv 799:S2CID 781:arXiv 763:(PDF) 647:JSTOR 569:S2CID 509:Notes 28:, a 1148:ISSN 1110:ISSN 1077:ISBN 1043:ISBN 1010:ISSN 965:ISBN 919:ISSN 887:ISBN 863:ISSN 733:ISBN 705:ISBN 639:ISSN 601:ISSN 304:for 284:The 254:1977 250:1974 167:free 145:. A 42:1877 1140:doi 1102:doi 1000:doi 943:Zbl 911:doi 855:doi 791:doi 743:JFM 715:JFM 677:doi 673:160 631:doi 591:doi 559:doi 425:|. 208:))/ 204:∪Ω( 44:). 24:In 1189:: 1156:MR 1154:, 1146:, 1136:63 1134:, 1116:, 1108:, 1098:83 1096:, 1090:, 1071:, 1053:MR 1051:, 1041:, 1018:MR 1016:, 1008:, 996:19 994:, 975:MR 973:, 941:, 935:MR 933:, 925:, 917:, 907:99 871:MR 869:, 861:, 851:46 849:, 843:, 823:, 813:, 797:, 789:, 777:14 775:, 756:, 741:, 713:, 687:MR 685:, 671:, 655:MR 653:, 645:, 637:, 627:88 609:MR 607:, 599:, 587:16 585:, 567:, 555:24 553:, 252:, 236:. 188:)/ 173:. 165:, 102:, 86:, 1142:: 1104:: 1002:: 913:: 857:: 827:: 817:: 793:: 783:: 679:: 633:: 593:: 561:: 486:g 478:g 471:g 463:C 461:( 459:2 455:g 451:g 447:g 435:n 431:n 422:i 418:c 413:i 409:c 387:. 382:4 375:) 369:i 365:d 361:+ 358:z 353:i 349:c 345:( 339:= 336:) 333:z 330:( 327:P 306:d 298:d 290:G 234:g 230:g 226:g 222:G 218:G 214:H 210:G 206:G 202:H 198:g 190:G 186:G 182:G 178:G 138:i 134:B 129:i 125:A 120:i 116:T 108:g 104:B 99:g 95:A 91:1 88:B 84:1 81:A 74:g 70:p 66:p 54:p

Index


mathematics
Kleinian group
Friedrich Schottky
1877
Riemann sphere
Jordan curve
Jordan curves
Möbius transformations
Kleinian group
Maskit (1967)
finitely generated
free
loxodromic
Riemann surface
1974
1977
Yamamoto (1991)
Doyle (1988)
Hou (2010)

limit set
Lebesgue measure
Hausdorff measure
Poincaré series
Poincaré
Bers 1975
Teichmüller space
Beltrami equation
Riley slice

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.