Knowledge (XXG)

Schröder–Bernstein theorem for measurable spaces

Source 📝

658: 698:). However, they are isomorphic as measurable spaces. Indeed, the closed interval is evidently isomorphic to a shorter closed subinterval of the open interval. Also the open interval is evidently isomorphic to a part of the closed interval (just itself, for instance). 44:. However, (a) the latter theorem is very difficult to prove, (b) the former theorem is satisfactory in many important cases (see Examples), and (c) the former theorem is used in the proof of the latter theorem. 991: 1028: 841: 809: 755: 1110: 863: 777: 726: 381: 323: 297: 159: 125: 503: 1063: 647: 617: 410: 355: 456: 433: 587: 567: 543: 523: 251: 231: 199: 179: 90: 70: 546: 17: 36:. This theorem, whose proof is quite easy, is instrumental when proving that two measurable spaces are isomorphic. The general theory of 1100: 657: 202: 865:(as measurable spaces, of course, not as topological spaces) can be made by a well-known trick with interspersed digits; for example, 1105: 993:
is clearly injective. It is easy to check that it is bimeasurable. (However, it is not bijective; for example, the number
953: 996: 814: 782: 731: 37: 326: 254: 846: 760: 709: 691: 360: 302: 263: 129: 95: 476: 1033: 622: 592: 25: 687: 386: 331: 1085:
See Proposition 3.3.6 (on page 96), and the first paragraph of Section 3.3 (on page 94).
438: 415: 572: 552: 528: 508: 236: 216: 184: 164: 75: 55: 1094: 683: 695: 461:
An isomorphism (between two measurable spaces) is, by definition, a bimeasurable
21: 462: 41: 33: 258: 40:
contains very strong results about isomorphic measurable spaces, see
92:
be measurable spaces. If there exist injective, bimeasurable maps
465:. If it exists, these measurable spaces are called isomorphic. 757:
are isomorphic as measurable spaces. It is immediate to embed
1036: 999: 956: 849: 817: 785: 763: 734: 712: 625: 595: 575: 555: 531: 511: 479: 441: 418: 389: 363: 334: 305: 266: 239: 219: 187: 167: 132: 98: 78: 58: 1057: 1022: 986:{\displaystyle g:\mathbb {R} ^{2}\to \mathbb {R} } 985: 857: 835: 803: 771: 749: 720: 641: 611: 581: 561: 537: 517: 497: 450: 427: 404: 375: 349: 317: 291: 245: 225: 193: 173: 153: 119: 84: 64: 547:proof of the Cantor–Bernstein–Schroeder theorem 8: 1111:Theorems in the foundations of mathematics 1035: 1003: 998: 979: 978: 969: 965: 964: 955: 851: 850: 848: 824: 820: 819: 816: 792: 788: 787: 784: 765: 764: 762: 741: 737: 736: 733: 714: 713: 711: 630: 624: 600: 594: 574: 554: 530: 510: 478: 440: 417: 388: 362: 333: 304: 271: 265: 238: 218: 186: 166: 131: 97: 77: 57: 656: 32:since measurable spaces are also called 569:is measurable, since it coincides with 7: 233:is bimeasurable" means that, first, 1023:{\displaystyle 1/11=0.090909\dots } 357:is measurable for every measurable 299:is measurable for every measurable 473:First, one constructs a bijection 30:Borel Schroeder–Bernstein theorem, 18:Cantor–Bernstein–Schroeder theorem 14: 836:{\displaystyle \mathbb {R} ^{2}.} 804:{\displaystyle \mathbb {R} ^{2}.} 750:{\displaystyle \mathbb {R} ^{2}} 690:are evidently non-isomorphic as 412:must be a measurable subset of 1052: 1040: 975: 619:on its complement. Similarly, 489: 399: 393: 344: 338: 286: 280: 142: 108: 1: 589:on a measurable set and with 858:{\displaystyle \mathbb {R} } 772:{\displaystyle \mathbb {R} } 721:{\displaystyle \mathbb {R} } 811:The converse, embedding of 203:Schröder–Bernstein property 1127: 1101:Theorems in measure theory 435:not necessarily the whole 376:{\displaystyle A\subset X} 318:{\displaystyle B\subset Y} 292:{\displaystyle f^{-1}(B)} 154:{\displaystyle g:Y\to X,} 120:{\displaystyle f:X\to Y,} 498:{\displaystyle h:X\to Y} 28:, sometimes called the 1106:Descriptive set theory 1076:A Course on Borel Sets 1059: 1058:{\displaystyle g(x,y)} 1024: 987: 859: 837: 805: 773: 751: 722: 674: 643: 642:{\displaystyle h^{-1}} 613: 612:{\displaystyle g^{-1}} 583: 563: 539: 519: 499: 452: 429: 406: 377: 351: 319: 293: 247: 227: 195: 175: 155: 121: 86: 66: 24:has a counterpart for 1060: 1025: 988: 860: 838: 806: 774: 752: 723: 660: 644: 614: 584: 564: 540: 520: 500: 453: 430: 407: 378: 352: 320: 294: 248: 228: 196: 176: 156: 122: 87: 67: 38:standard Borel spaces 1034: 997: 954: 847: 815: 783: 761: 732: 710: 686:(0, 1) and the 623: 593: 573: 553: 529: 509: 477: 439: 416: 405:{\displaystyle f(X)} 387: 361: 350:{\displaystyle f(A)} 332: 303: 264: 237: 217: 201:are isomorphic (the 185: 165: 130: 96: 76: 56: 42:Kuratowski's theorem 1030:is not of the form 325:), and second, the 1055: 1020: 983: 855: 833: 801: 769: 747: 718: 692:topological spaces 675: 639: 609: 579: 559: 545:exactly as in the 535: 515: 495: 451:{\displaystyle Y.} 448: 428:{\displaystyle Y,} 425: 402: 373: 347: 315: 289: 243: 223: 191: 171: 151: 117: 82: 62: 1078:, Springer, 1998. 1074:S.M. Srivastava, 582:{\displaystyle f} 562:{\displaystyle h} 538:{\displaystyle g} 518:{\displaystyle f} 246:{\displaystyle f} 226:{\displaystyle f} 194:{\displaystyle Y} 174:{\displaystyle X} 85:{\displaystyle Y} 65:{\displaystyle X} 26:measurable spaces 1118: 1064: 1062: 1061: 1056: 1029: 1027: 1026: 1021: 1007: 992: 990: 989: 984: 982: 974: 973: 968: 945: 942: 939: 936: 933: 930: 927: 924: 921: 918: 915: 912: 909: 906: 903: 899: 896: 893: 890: 887: 883: 879: 864: 862: 861: 856: 854: 842: 840: 839: 834: 829: 828: 823: 810: 808: 807: 802: 797: 796: 791: 778: 776: 775: 770: 768: 756: 754: 753: 748: 746: 745: 740: 727: 725: 724: 719: 717: 672: 666: 648: 646: 645: 640: 638: 637: 618: 616: 615: 610: 608: 607: 588: 586: 585: 580: 568: 566: 565: 560: 544: 542: 541: 536: 524: 522: 521: 516: 504: 502: 501: 496: 457: 455: 454: 449: 434: 432: 431: 426: 411: 409: 408: 403: 382: 380: 379: 374: 356: 354: 353: 348: 324: 322: 321: 316: 298: 296: 295: 290: 279: 278: 252: 250: 249: 244: 232: 230: 229: 224: 200: 198: 197: 192: 180: 178: 177: 172: 160: 158: 157: 152: 126: 124: 123: 118: 91: 89: 88: 83: 71: 69: 68: 63: 1126: 1125: 1121: 1120: 1119: 1117: 1116: 1115: 1091: 1090: 1071: 1032: 1031: 995: 994: 963: 952: 951: 943: 940: 937: 934: 931: 928: 925: 922: 919: 916: 913: 910: 907: 904: 901: 897: 894: 891: 888: 885: 881: 877: 845: 844: 818: 813: 812: 786: 781: 780: 759: 758: 735: 730: 729: 708: 707: 704: 688:closed interval 680: 668: 662: 655: 649:is measurable. 626: 621: 620: 596: 591: 590: 571: 570: 551: 550: 527: 526: 507: 506: 475: 474: 471: 437: 436: 414: 413: 385: 384: 359: 358: 330: 329: 301: 300: 267: 262: 261: 235: 234: 215: 214: 211: 183: 182: 163: 162: 128: 127: 94: 93: 74: 73: 54: 53: 50: 12: 11: 5: 1124: 1122: 1114: 1113: 1108: 1103: 1093: 1092: 1089: 1088: 1087: 1086: 1080: 1079: 1070: 1067: 1054: 1051: 1048: 1045: 1042: 1039: 1019: 1016: 1013: 1010: 1006: 1002: 981: 977: 972: 967: 962: 959: 948: 947: 853: 832: 827: 822: 800: 795: 790: 767: 744: 739: 728:and the plane 716: 706:The real line 703: 700: 694:(that is, not 679: 676: 654: 651: 636: 633: 629: 606: 603: 599: 578: 558: 534: 514: 494: 491: 488: 485: 482: 470: 467: 447: 444: 424: 421: 401: 398: 395: 392: 372: 369: 366: 346: 343: 340: 337: 314: 311: 308: 288: 285: 282: 277: 274: 270: 257:(that is, the 242: 222: 210: 207: 190: 170: 150: 147: 144: 141: 138: 135: 116: 113: 110: 107: 104: 101: 81: 61: 49: 46: 13: 10: 9: 6: 4: 3: 2: 1123: 1112: 1109: 1107: 1104: 1102: 1099: 1098: 1096: 1084: 1083: 1082: 1081: 1077: 1073: 1072: 1068: 1066: 1049: 1046: 1043: 1037: 1017: 1014: 1011: 1008: 1004: 1000: 970: 960: 957: 882:271.82818 28… 875: 871: 868: 867: 866: 830: 825: 798: 793: 742: 701: 699: 697: 693: 689: 685: 684:open interval 677: 671: 665: 661:Example maps 659: 652: 650: 634: 631: 627: 604: 601: 597: 576: 556: 548: 532: 512: 492: 486: 483: 480: 468: 466: 464: 459: 445: 442: 422: 419: 396: 390: 370: 367: 364: 341: 335: 328: 312: 309: 306: 283: 275: 272: 268: 260: 256: 240: 220: 208: 206: 204: 188: 168: 148: 145: 139: 136: 133: 114: 111: 105: 102: 99: 79: 59: 47: 45: 43: 39: 35: 31: 27: 23: 19: 1075: 949: 878:3.14159 265… 873: 869: 705: 696:homeomorphic 681: 669: 667::(0,1)→ and 663: 472: 460: 213:The phrase " 212: 51: 34:Borel spaces 29: 15: 872:(π,100e) = 48:The theorem 1095:Categories 1069:References 549:. Second, 255:measurable 22:set theory 1018:… 976:→ 702:Example 2 678:Example 1 632:− 602:− 490:→ 463:bijection 383:. (Thus, 368:⊂ 310:⊂ 273:− 143:→ 109:→ 1015:0.090909 950:The map 673::→(0,1). 653:Examples 259:preimage 209:Comments 505:out of 843:into 779:into 469:Proof 327:image 161:then 884:) = 682:The 525:and 181:and 72:and 52:Let 16:The 1065:). 253:is 205:). 20:of 1097:: 1009:11 946:…. 880:, 458:) 1053:) 1050:y 1047:, 1044:x 1041:( 1038:g 1012:= 1005:/ 1001:1 980:R 971:2 966:R 961:: 958:g 944:5 941:8 938:6 935:2 932:2 929:8 926:9 923:1 920:5 917:8 914:1 911:2 908:4 905:8 902:1 900:. 898:1 895:3 892:7 889:0 886:2 876:( 874:g 870:g 852:R 831:. 826:2 821:R 799:. 794:2 789:R 766:R 743:2 738:R 715:R 670:g 664:f 635:1 628:h 605:1 598:g 577:f 557:h 533:g 513:f 493:Y 487:X 484:: 481:h 446:. 443:Y 423:, 420:Y 400:) 397:X 394:( 391:f 371:X 365:A 345:) 342:A 339:( 336:f 313:Y 307:B 287:) 284:B 281:( 276:1 269:f 241:f 221:f 189:Y 169:X 149:, 146:X 140:Y 137:: 134:g 115:, 112:Y 106:X 103:: 100:f 80:Y 60:X

Index

Cantor–Bernstein–Schroeder theorem
set theory
measurable spaces
Borel spaces
standard Borel spaces
Kuratowski's theorem
Schröder–Bernstein property
measurable
preimage
image
bijection
proof of the Cantor–Bernstein–Schroeder theorem

open interval
closed interval
topological spaces
homeomorphic
Categories
Theorems in measure theory
Descriptive set theory
Theorems in the foundations of mathematics

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.