Knowledge (XXG)

Schwarz–Ahlfors–Pick theorem

Source 📝

404: 292: 344: 183: 445: 147: 116: 479: 438: 474: 195: 484: 431: 464: 36: 469: 300: 156: 186: 91: 47: 411: 32: 150: 69: 415: 132: 127: 58: 403: 101: 369: 123: 83: 349: 76:
generalised the lemma to maps from the unit disk to other negatively curved surfaces:
458: 373: 43: 28: 87: 73: 64:
to itself, will not increase the Poincaré distance between points. The unit disk
20: 51: 287:{\displaystyle \sigma (f(z_{1}),f(z_{2}))\leq \rho (z_{1},z_{2})} 419: 16:
Extension of the Schwarz lemma for hyperbolic geometry
303: 198: 159: 135: 104: 338: 286: 177: 141: 110: 348:A generalization of this theorem was proved by 439: 8: 374:"From Schwarz to Pick to Ahlfors and Beyond" 446: 432: 321: 308: 302: 275: 262: 237: 215: 197: 158: 134: 103: 361: 98:be the unit disk with Poincaré metric 68:with the Poincaré metric has negative 7: 400: 398: 153:is ≤ −1; let 418:. You can help Knowledge (XXG) by 14: 480:Theorems in differential geometry 339:{\displaystyle z_{1},z_{2}\in U.} 402: 178:{\displaystyle f:U\rightarrow S} 27:theorem is an extension of the 281: 255: 246: 243: 230: 221: 208: 202: 169: 1: 475:Theorems in complex analysis 501: 397: 485:Riemannian geometry stubs 37:Poincaré half-plane model 142:{\displaystyle \sigma } 57:to itself, or from the 414:-related article is a 340: 288: 179: 143: 112: 341: 289: 180: 144: 113: 111:{\displaystyle \rho } 301: 196: 187:holomorphic function 157: 133: 102: 48:holomorphic function 25:Schwarz–Ahlfors–Pick 465:Hyperbolic geometry 412:Riemannian geometry 33:hyperbolic geometry 381:Notices of the AMS 372:(September 1999). 336: 284: 175: 151:Gaussian curvature 139: 108: 70:Gaussian curvature 46:states that every 44:Schwarz–Pick lemma 427: 426: 492: 470:Riemann surfaces 448: 441: 434: 406: 399: 389: 388: 378: 370:Osserman, Robert 366: 345: 343: 342: 337: 326: 325: 313: 312: 293: 291: 290: 285: 280: 279: 267: 266: 242: 241: 220: 219: 184: 182: 181: 176: 148: 146: 145: 140: 128:Hermitian metric 117: 115: 114: 109: 59:upper half-plane 500: 499: 495: 494: 493: 491: 490: 489: 455: 454: 453: 452: 395: 393: 392: 376: 368: 367: 363: 358: 317: 304: 299: 298: 271: 258: 233: 211: 194: 193: 155: 154: 131: 130: 126:endowed with a 124:Riemann surface 100: 99: 17: 12: 11: 5: 498: 496: 488: 487: 482: 477: 472: 467: 457: 456: 451: 450: 443: 436: 428: 425: 424: 407: 391: 390: 360: 359: 357: 354: 350:Shing-Tung Yau 335: 332: 329: 324: 320: 316: 311: 307: 295: 294: 283: 278: 274: 270: 265: 261: 257: 254: 251: 248: 245: 240: 236: 232: 229: 226: 223: 218: 214: 210: 207: 204: 201: 174: 171: 168: 165: 162: 138: 107: 35:, such as the 15: 13: 10: 9: 6: 4: 3: 2: 497: 486: 483: 481: 478: 476: 473: 471: 468: 466: 463: 462: 460: 449: 444: 442: 437: 435: 430: 429: 423: 421: 417: 413: 408: 405: 401: 396: 387:(8): 868–873. 386: 382: 375: 371: 365: 362: 355: 353: 351: 346: 333: 330: 327: 322: 318: 314: 309: 305: 276: 272: 268: 263: 259: 252: 249: 238: 234: 227: 224: 216: 212: 205: 199: 192: 191: 190: 188: 172: 166: 163: 160: 152: 136: 129: 125: 121: 105: 97: 93: 89: 85: 81: 77: 75: 72:−1. In 1938, 71: 67: 63: 60: 56: 53: 49: 45: 40: 38: 34: 30: 29:Schwarz lemma 26: 22: 420:expanding it 409: 394: 384: 380: 364: 347: 296: 119: 95: 79: 78: 74:Lars Ahlfors 65: 61: 54: 41: 24: 18: 21:mathematics 459:Categories 356:References 352:in 1973. 328:∈ 253:ρ 250:≤ 200:σ 170:→ 137:σ 106:ρ 52:unit disk 50:from the 297:for all 189:. Then 94:). Let 88:Ahlfors 84:Schwarz 80:Theorem 149:whose 118:; let 23:, the 410:This 377:(PDF) 185:be a 122:be a 416:stub 92:Pick 42:The 31:for 19:In 461:: 385:46 383:. 379:. 39:. 447:e 440:t 433:v 422:. 334:. 331:U 323:2 319:z 315:, 310:1 306:z 282:) 277:2 273:z 269:, 264:1 260:z 256:( 247:) 244:) 239:2 235:z 231:( 228:f 225:, 222:) 217:1 213:z 209:( 206:f 203:( 173:S 167:U 164:: 161:f 120:S 96:U 90:– 86:– 82:( 66:U 62:H 55:U

Index

mathematics
Schwarz lemma
hyperbolic geometry
Poincaré half-plane model
Schwarz–Pick lemma
holomorphic function
unit disk
upper half-plane
Gaussian curvature
Lars Ahlfors
Schwarz
Ahlfors
Pick
Riemann surface
Hermitian metric
Gaussian curvature
holomorphic function
Shing-Tung Yau
Osserman, Robert
"From Schwarz to Pick to Ahlfors and Beyond"
Stub icon
Riemannian geometry
stub
expanding it
v
t
e
Categories
Hyperbolic geometry
Riemann surfaces

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.