Knowledge (XXG)

Second-countable space

Source đź“ť

924: 707: 945: 913: 982: 955: 935: 538:
The above space is not homeomorphic to the same set of equivalence classes endowed with the obvious metric: i.e. regular Euclidean distance for two points in the same interval, and the sum of the distances to the left hand point for points not in the same interval -- yielding a strictly coarser
521: 269:. Thus, if one has a countable base for a topology then one has a countable local base at every point, and hence every second-countable space is also a first-countable space. However any uncountable 132: 200: 300:, however, the properties of being second-countable, separable, and Lindelöf are all equivalent. Therefore, the lower limit topology on the real line is not metrizable. 985: 176: 156: 71: 1011: 332:. Second-countability is therefore a rather restrictive property on a topological space, requiring only a separation axiom to imply metrizability. 619: 973: 968: 592: 539:
topology than the above space. It is a separable metric space (consider the set of rational points), and hence is second-countable.
310: 963: 410: 76: 865: 388: 873: 1006: 358: 276:
Second-countability implies certain other topological properties. Specifically, every second-countable space is
944: 672: 241:
radii and whose centers have rational coordinates. This restricted set is countable and still forms a basis.
958: 325: 893: 888: 691: 679: 652: 612: 735: 662: 250: 923: 883: 835: 809: 657: 543: 293: 535:/~ is not first-countable at the coset of the identified points and hence also not second-countable. 181: 934: 730: 352: 345: 210:, the property of being second-countable restricts the number of open sets that a space can have. 928: 878: 799: 789: 667: 647: 207: 898: 527:
by identifying the left ends of the intervals - that is, identify 0 ~ 2 ~ 4 ~ … ~ 2k and so on.
916: 782: 740: 605: 588: 524: 285: 43: 696: 642: 296:
on the real line is first-countable, separable, and Lindelöf, but not second-countable. For
281: 372:
of a second-countable space is second-countable, although uncountable products need not be.
755: 750: 314: 277: 238: 222: 50: 845: 777: 270: 161: 141: 56: 394:
Any base for a second-countable space has a countable subfamily which is still a base.
1000: 855: 765: 745: 369: 317: 304: 948: 840: 760: 706: 307:, sequential compactness, and countable compactness are all equivalent properties. 297: 214: 17: 292:
has a countable subcover). The reverse implications do not hold. For example, the
938: 850: 397:
Every collection of disjoint open sets in a second-countable space is countable.
380: 329: 234: 218: 531:
is second-countable, as a countable union of second-countable spaces. However,
794: 725: 684: 321: 289: 254: 819: 230: 47: 229:) with its usual topology is second-countable. Although the usual base of 804: 772: 721: 628: 342: 135: 31: 580:, (1970) Addison-Wesley Publishing Company, Reading Massachusetts. 361:
of second-countable spaces need not be second-countable; however,
601: 73:
is second-countable if there exists some countable collection
237:, one can restrict to the collection of all open balls with 187: 178:
can be written as an union of elements of some subfamily of
82: 597: 303:
In second-countable spaces—as in metric spaces—
253:. A space is first-countable if each point has a countable 516:{\displaystyle X=\cup \cup \cup \dots \cup \cup \dotsb } 127:{\displaystyle {\mathcal {U}}=\{U_{i}\}_{i=1}^{\infty }} 413: 184: 164: 144: 79: 59: 27:
Topological space whose topology has a countable base
864: 828: 714: 635: 515: 202:. A second-countable space is said to satisfy the 194: 170: 150: 126: 65: 546:is not second-countable, but is first-countable. 355:of a second-countable space is second-countable. 348:of a second-countable space is second-countable. 249:Second-countability is a stronger notion than 613: 273:is first-countable but not second-countable. 8: 104: 90: 981: 954: 620: 606: 598: 583:John G. Hocking and Gail S. Young (1961). 257:. Given a base for a topology and a point 412: 186: 185: 183: 163: 143: 118: 107: 97: 81: 80: 78: 58: 556: 523:. Define an equivalence relation and a 261:, the set of all basis sets containing 53:. More explicitly, a topological space 407:Consider the disjoint countable union 324:. It follows that every such space is 7: 375:The topology of a second-countable T 313:states that every second-countable, 221:are second-countable. For example, 119: 25: 587:Corrected reprint, Dover, 1988. 1012:Properties of topological spaces 980: 953: 943: 933: 922: 912: 911: 705: 563:Willard, theorem 16.11, p. 112 504: 480: 468: 456: 450: 438: 432: 420: 195:{\displaystyle {\mathcal {U}}} 1: 311:Urysohn's metrization theorem 158:such that any open subset of 389:cardinality of the continuum 204:second axiom of countability 1028: 874:Banach fixed-point theorem 40:completely separable space 907: 703: 929:Mathematics portal 829:Metrics and properties 815:Second-countable space 517: 383:less than or equal to 265:forms a local base at 196: 172: 152: 128: 67: 36:second-countable space 518: 365:quotients always are. 197: 173: 153: 129: 68: 46:whose topology has a 884:Invariance of domain 836:Euler characteristic 810:Bundle (mathematics) 411: 294:lower limit topology 182: 162: 142: 77: 57: 894:Tychonoff's theorem 889:PoincarĂ© conjecture 643:General (point-set) 208:countability axioms 123: 18:Second countability 879:De Rham cohomology 800:Polyhedral complex 790:Simplicial complex 513: 251:first-countability 192: 168: 148: 124: 103: 63: 994: 993: 783:fundamental group 576:Stephen Willard, 525:quotient topology 326:completely normal 280:(has a countable 171:{\displaystyle T} 151:{\displaystyle T} 66:{\displaystyle T} 44:topological space 16:(Redirected from 1019: 1007:General topology 984: 983: 957: 956: 947: 937: 927: 926: 915: 914: 709: 622: 615: 608: 599: 578:General Topology 564: 561: 522: 520: 519: 514: 336:Other properties 201: 199: 198: 193: 191: 190: 177: 175: 174: 169: 157: 155: 154: 149: 133: 131: 130: 125: 122: 117: 102: 101: 86: 85: 72: 70: 69: 64: 38:, also called a 21: 1027: 1026: 1022: 1021: 1020: 1018: 1017: 1016: 997: 996: 995: 990: 921: 903: 899:Urysohn's lemma 860: 824: 710: 701: 673:low-dimensional 631: 626: 573: 568: 567: 562: 558: 553: 409: 408: 404: 378: 338: 247: 223:Euclidean space 180: 179: 160: 159: 140: 139: 93: 75: 74: 55: 54: 28: 23: 22: 15: 12: 11: 5: 1025: 1023: 1015: 1014: 1009: 999: 998: 992: 991: 989: 988: 978: 977: 976: 971: 966: 951: 941: 931: 919: 908: 905: 904: 902: 901: 896: 891: 886: 881: 876: 870: 868: 862: 861: 859: 858: 853: 848: 846:Winding number 843: 838: 832: 830: 826: 825: 823: 822: 817: 812: 807: 802: 797: 792: 787: 786: 785: 780: 778:homotopy group 770: 769: 768: 763: 758: 753: 748: 738: 733: 728: 718: 716: 712: 711: 704: 702: 700: 699: 694: 689: 688: 687: 677: 676: 675: 665: 660: 655: 650: 645: 639: 637: 633: 632: 627: 625: 624: 617: 610: 602: 596: 595: 581: 572: 569: 566: 565: 555: 554: 552: 549: 548: 547: 540: 536: 512: 509: 506: 503: 500: 497: 494: 491: 488: 485: 482: 479: 476: 473: 470: 467: 464: 461: 458: 455: 452: 449: 446: 443: 440: 437: 434: 431: 428: 425: 422: 419: 416: 403: 400: 399: 398: 395: 392: 376: 373: 368:Any countable 366: 356: 349: 341:A continuous, 337: 334: 271:discrete space 246: 243: 189: 167: 147: 121: 116: 113: 110: 106: 100: 96: 92: 89: 84: 62: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1024: 1013: 1010: 1008: 1005: 1004: 1002: 987: 979: 975: 972: 970: 967: 965: 962: 961: 960: 952: 950: 946: 942: 940: 936: 932: 930: 925: 920: 918: 910: 909: 906: 900: 897: 895: 892: 890: 887: 885: 882: 880: 877: 875: 872: 871: 869: 867: 863: 857: 856:Orientability 854: 852: 849: 847: 844: 842: 839: 837: 834: 833: 831: 827: 821: 818: 816: 813: 811: 808: 806: 803: 801: 798: 796: 793: 791: 788: 784: 781: 779: 776: 775: 774: 771: 767: 764: 762: 759: 757: 754: 752: 749: 747: 744: 743: 742: 739: 737: 734: 732: 729: 727: 723: 720: 719: 717: 713: 708: 698: 695: 693: 692:Set-theoretic 690: 686: 683: 682: 681: 678: 674: 671: 670: 669: 666: 664: 661: 659: 656: 654: 653:Combinatorial 651: 649: 646: 644: 641: 640: 638: 634: 630: 623: 618: 616: 611: 609: 604: 603: 600: 594: 593:0-486-65676-4 590: 586: 582: 579: 575: 574: 570: 560: 557: 550: 545: 541: 537: 534: 530: 526: 510: 507: 501: 498: 495: 492: 489: 486: 483: 477: 474: 471: 465: 462: 459: 453: 447: 444: 441: 435: 429: 426: 423: 417: 414: 406: 405: 401: 396: 393: 390: 386: 382: 374: 371: 367: 364: 360: 357: 354: 350: 347: 344: 340: 339: 335: 333: 331: 327: 323: 319: 318:regular space 316: 312: 308: 306: 301: 299: 298:metric spaces 295: 291: 287: 283: 279: 274: 272: 268: 264: 260: 256: 252: 244: 242: 240: 236: 232: 228: 224: 220: 216: 211: 209: 206:. Like other 205: 165: 145: 137: 114: 111: 108: 98: 94: 87: 60: 52: 49: 45: 41: 37: 33: 19: 986:Publications 851:Chern number 841:Betti number 814: 724: / 715:Key concepts 663:Differential 584: 577: 559: 532: 528: 384: 362: 309: 302: 284:subset) and 275: 266: 262: 258: 248: 226: 217:" spaces in 215:well-behaved 212: 203: 39: 35: 29: 949:Wikiversity 866:Key results 381:cardinality 330:paracompact 328:as well as 305:compactness 235:uncountable 219:mathematics 138:subsets of 1001:Categories 795:CW complex 736:Continuity 726:Closed set 685:cohomology 571:References 379:space has 322:metrizable 290:open cover 255:local base 245:Properties 231:open balls 974:geometric 969:algebraic 820:Cobordism 756:Hausdorff 751:connected 668:Geometric 658:Continuum 648:Algebraic 585:Topology. 544:long line 511:⋯ 508:∪ 478:∪ 475:⋯ 472:∪ 454:∪ 436:∪ 359:Quotients 315:Hausdorff 278:separable 120:∞ 48:countable 939:Wikibook 917:Category 805:Manifold 773:Homotopy 731:Interior 722:Open set 680:Homology 629:Topology 402:Examples 353:subspace 286:Lindelöf 239:rational 32:topology 964:general 766:uniform 746:compact 697:Digital 370:product 288:(every 42:, is a 959:Topics 761:metric 636:Fields 591:  351:Every 213:Many " 741:Space 551:Notes 387:(the 346:image 282:dense 589:ISBN 542:The 363:open 343:open 136:open 51:base 34:, a 320:is 233:is 134:of 30:In 1003:: 391:). 621:e 614:t 607:v 533:X 529:X 505:] 502:1 499:+ 496:k 493:2 490:, 487:k 484:2 481:[ 469:] 466:5 463:, 460:4 457:[ 451:] 448:3 445:, 442:2 439:[ 433:] 430:1 427:, 424:0 421:[ 418:= 415:X 385:c 377:1 267:x 263:x 259:x 227:R 225:( 188:U 166:T 146:T 115:1 112:= 109:i 105:} 99:i 95:U 91:{ 88:= 83:U 61:T 20:)

Index

Second countability
topology
topological space
countable
base
open
countability axioms
well-behaved
mathematics
Euclidean space
open balls
uncountable
rational
first-countability
local base
discrete space
separable
dense
Lindelöf
open cover
lower limit topology
metric spaces
compactness
Urysohn's metrization theorem
Hausdorff
regular space
metrizable
completely normal
paracompact
open

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑