Knowledge (XXG)

Seismic metamaterial

Source đź“ť

962:
field experiment called the META-WT experiment was performed in the Nauen wind farm. This for the first time demonstrated that at the city scale, collective resonance of wind turbine structures can modify seismic waves propagating through it. These new observations have implications for seismic hazard in a city where dense urban structures like tall buildings can strongly modify the wavefield.
926:. The compressional wave solutions used in the electromagnetic cloaking are transferred to material fluidic solutions where fluid motion is parallel to the wavevector. The computations then show that coordinate transformations can be applied to acoustic media when restricted to normal incidence in two dimensions. 817:
layer. The other layers alternate and surround the previous layer all the way to the first layer. Electromagnetic wave scattering was calculated and simulated for the layered (metamaterial) structure and the split-ring resonator anisotropic metamaterial, to show the effectiveness of the layered metamaterial.
662:
on artificial structures, which exist on or near the surface of the Earth. Current designs of seismic metamaterials utilize configurations of boreholes, trees or proposed underground resonators to act as a large scale material. Experiments have observed both reflections and bandgap attenuation from
816:
material is much thinner than the radiated wavelength. As a whole, such structure is an anisotropic medium. The layered dielectric materials surround an "infinite conducting cylinder". The layered dielectric materials radiate outward, in a concentric fashion, and the cylinder is encased in the first
961:
At the geophysics scale, in a forest in the Landes region of France in 2016, an ambitious seismic experiment called the METAFORET experiment demonstrated that trees could significantly modify the surface wavefield due to their coupled resonances when arranged at a subwavelength scale. A follow-up
929:
Next the electromagnetic cloaking shell is referenced as an exact equivalence for a simulated demonstration of the acoustic cloaking shell. Bulk modulus and mass density determine the spatial dimensions of the cloak, which can bend any incident wave around the center of the shell. In a simulation
796:
configuration. A prior simulation showed that it is possible to create concealment from electromagnetic radiation with concentric, alternating layers of electromagnetic metamaterials. That study is in contrast to concealment by inclusions in a split ring resonator designed as an
663:
artificially induced seismic waves. These are the first experiments to verify that seismic metamaterials can be measured for frequencies below 100 Hz, where damage from Rayleigh waves is the most harmful to artificial structures.
1313:
Roux, P.; Bindi, D; Boxberger, T.; Colombi, A.; Cotton, F.; Douste-Bacque, I.; Garambois, S.; Gueguen, P.; Hillers, G.; Hollis, D.; Lecocq, T.; Pondaven, I. (2018-03-01). "Toward Seismic Metamaterials: The METAFORET Project".
741:; the waves would pass around the building so as to arrive in phase as the earthquake wave proceeded, as if the building was not there. The mathematical models produce the regular pattern provided by 1488:
Pilz, Marco; Roux, Philippe; Mohammed, Shoaib Ayjaz; Garcia, Raphael F.; Steinmann, Rene; Aubert, Coralie; Bernauer, Felix; Guéguen, Philippe; Ohrnberger, Matthias; Cotton, Fabrice (2024).
88: 780:
medium. The design that worked is ten layers of six different materials, which can be easily deployed in building foundations. As of 2009, the project is still in the design stage.
637: 942:
that the waves are in fact dispersed around the location of the building. The frequency range of this capability is shown to have no limitation regarding the
1490:"Wind turbines as a metamaterial-like urban layer: an experimental investigation using a dense seismic array and complementary sensing technologies" 1360: 788:
For seismic metamaterials to protect surface structures, the proposal includes a layered structure of metamaterials, separated by elastic
1119: 891:
acoustic media and isotropic electromagnetic media are exactly equivalent. Under these conditions, the isotropic characteristic works in
958:
In 2012, researchers held an experimental field-test near Grenoble (France), with the aim to highlight analogy with phononic crystals.
630: 1379:
Huang, Ying; Feng, Y; Jiang, T (2007-08-21). "Electromagnetic cloaking by layered structure of homogeneous isotropic materials".
930:
with perfect conditions, because it is easier to demonstrate the principles involved, there is zero scattering in any direction.
869: 705:
of the earth materials. In other words, the speeds of the seismic waves vary as they travel through different materials in the
883:
is not possible. However, there is at least one special case where there is a direct equivalence between electromagnetics and
603: 304: 141: 1051: 1552: 972: 834: 623: 344: 230: 299: 208: 91: 830: 777: 750: 215: 44: 510: 505: 120: 294: 287: 757:
directed around an object, or hole, and protecting buildings from seismic waves employs this same principle.
997: 573: 568: 237: 1547: 1007: 846: 754: 125: 1031: 1002: 977: 805: 746: 742: 548: 166: 1501: 1460: 1398: 1323: 1266: 1217: 1167: 1148:
Brun, M.; S. Guenneau; and A.B. Movchan (2009-02-09). "Achieving control of in-plane elastic waves".
992: 838: 765: 702: 386: 203: 183: 171: 115: 845:
cloaking, and whether or not coordinate transformations could be applied to artificially fabricated
1542: 1066: 1021: 939: 588: 436: 329: 35: 1422: 1388: 1183: 1157: 1061: 880: 608: 242: 198: 193: 910:
equations when replacing the electromagnetic parameters with the following acoustic parameters:
689:
are recorded each year, by a worldwide system of earthquake detection stations. The propagation
1255:"Forests as a natural seismic metamaterial: Rayleigh wave bandgaps induced by local resonances" 1092: 1519: 1414: 1356: 1292: 1235: 1046: 1041: 899: 225: 176: 1350: 1509: 1468: 1406: 1331: 1282: 1274: 1225: 1175: 982: 903: 873: 853: 563: 538: 451: 426: 421: 376: 553: 477: 391: 322: 256: 158: 441: 311: 1505: 1464: 1402: 1327: 1270: 1221: 1171: 1287: 1254: 884: 861: 680: 558: 416: 381: 282: 188: 856:
materials to material properties in other systems shows them to be closely analogous.
1536: 943: 915: 694: 659: 598: 431: 17: 1473: 1448: 1426: 1187: 1230: 1205: 1056: 1036: 1026: 923: 919: 865: 738: 714: 710: 676: 672: 655: 583: 578: 543: 275: 729:, could be directed around the building, leaving the building unscathed, by using 892: 857: 798: 793: 686: 593: 496: 1514: 1489: 1355:. Westport, CT, USA: Greenwood Publishing Group, Incorporated. pp. 32–33. 879:
In most instances, applying coordinate transformation to engineered artificial
947: 813: 773: 769: 734: 515: 411: 1523: 987: 907: 888: 842: 809: 487: 482: 316: 1418: 1296: 1253:
Colombi, A.; Roux, P; Guenneau, S.; Gueguen, P.; Craster, R. (2016-01-11).
1239: 1410: 911: 726: 690: 466: 371: 351: 337: 887:. Furthermore, this case appears practically useful. In two dimensions, 768:
combined with other metamaterials are designed to couple at the seismic
1335: 789: 761: 698: 220: 1278: 1179: 1093:"Metamaterial cloak could render buildings 'invisible' to earthquakes" 776:
layers of this material would be stacked, each layer separated by an
361: 876:, applicable analogies can be used for other material interactions. 1393: 1204:
Brûlé, S.; Javelaud, E. H.; Enoch, S.; Guenneau, S. (2014-03-31).
1162: 864:, and direction of power flow are universal. By understanding how 706: 265: 737:
of earthquake waves would be shortened as they interact with the
784:
Electromagnetics cloaking principles for seismic metamaterials
401: 1206:"Experiments on Seismic Metamaterials: Molding Surface Waves" 1442: 1440: 1438: 1436: 804:
The configuration can be viewed as alternating layers of "
725:
Computations showed that seismic waves traveling toward a
717:. Both of these have different modes of wave propagation. 950:, hence, the seismic cloak becomes an effective medium. 1143: 1141: 1139: 821:
Acoustic cloaking principles for seismic metamaterials
658:
that is designed to counteract the adverse effects of
1374: 1372: 1120:"Invisibility cloak could hide buildings from quakes" 47: 898:
It has been demonstrated mathematically that the 2D
808:
isotropic dielectric material" A. with "homogeneous
946:. The cloak itself demonstrates no forward or back 82: 1113: 1111: 1109: 709:. The two main components of a seismic event are 1086: 1084: 1082: 1447:Cummer, Steven A; David Schurig (2007-03-02). 1308: 1306: 631: 8: 1199: 1197: 825:The theory and ultimate development for the 83:{\displaystyle J=-D{\frac {d\varphi }{dx}}} 638: 624: 471: 261: 104: 26: 1513: 1472: 1392: 1286: 1229: 1161: 852:Applying the concepts used to understand 60: 46: 938:However, it can be demonstrated through 745:. This method was first understood with 1078: 495: 450: 400: 360: 264: 133: 107: 34: 841:. This was followed by an analysis of 747:electromagnetic cloaking metamaterials 7: 954:Experiments on Seismic Metamaterials 25: 940:computation and visual simulation 1091:Johnson, R. Colin (2009-07-23). 837:a small cylindrical object with 1449:"One path to acoustic cloaking" 1316:Seismological Research Letters 1231:10.1103/PhysRevLett.112.133901 667:The mechanics of seismic waves 1: 812:dielectric material" B. Each 1118:Barras, Colin (2009-06-26). 973:Negative index metamaterials 872:control these components of 1352:The basics of earth science 1569: 1515:10.3389/feart.2024.1352027 1494:Frontiers in Earth Science 831:coordinate transformations 670: 1474:10.1088/1367-2630/9/3/045 1349:Krebs, Robert E. (2003). 721:Towards Seismic Cloaking 142:Clausius–Duhem (entropy) 92:Fick's laws of diffusion 1210:Physical Review Letters 998:Terahertz metamaterials 300:Navier–Stokes equations 238:Material failure theory 1453:New Journal of Physics 1008:Photonic metamaterials 84: 1032:Constitutive equation 1003:Tunable metamaterials 978:Metamaterial antennas 916:vector fluid velocity 839:electromagnetic waves 766:split ring resonators 743:Metamaterial cloaking 731:seismic metamaterials 295:Bernoulli's principle 288:Archimedes' principle 85: 18:Seismic metamaterials 1411:10.1364/OE.15.011133 993:Split-ring resonator 827:seismic metamaterial 685:More than a million 652:seismic metamaterial 387:Cohesion (chemistry) 209:Infinitesimal strain 45: 1553:Continuum mechanics 1506:2024FrEaS..1252027P 1465:2007NJPh....9...45C 1403:2007OExpr..1511133H 1387:(18): 11133–11141. 1328:2018SeiRL..89..582R 1271:2016NatSR...619238C 1222:2014PhRvL.112m3901B 1172:2009ApPhL..94f1903B 1067:Thermodynamic state 1022:Acoustic dispersion 1015:Material properties 305:Poiseuille equation 36:Continuum mechanics 30:Part of a series on 1336:10.1785/0220170196 1062:Stress (mechanics) 944:radiated frequency 847:acoustic materials 511:Magnetorheological 506:Electrorheological 243:Fracture mechanics 80: 1362:978-0-313-31930-3 1279:10.1038/srep19238 1180:10.1063/1.3068491 1156:(61903): 061903. 1047:Linear elasticity 1042:Equation of state 934:The seismic cloak 900:Maxwell equations 648: 647: 523: 522: 457: 456: 226:Contact mechanics 149: 148: 78: 16:(Redirected from 1560: 1528: 1527: 1517: 1485: 1479: 1478: 1476: 1444: 1431: 1430: 1396: 1376: 1367: 1366: 1346: 1340: 1339: 1310: 1301: 1300: 1290: 1265:(19238): 19238. 1250: 1244: 1243: 1233: 1201: 1192: 1191: 1165: 1150:Appl. Phys. Lett 1145: 1134: 1133: 1131: 1130: 1115: 1104: 1103: 1101: 1100: 1088: 983:Photonic crystal 904:normal incidence 874:wave propagation 733:. The very long 640: 633: 626: 472: 437:Gay-Lussac's law 427:Combined gas law 377:Capillary action 262: 105: 89: 87: 86: 81: 79: 77: 69: 61: 27: 21: 1568: 1567: 1563: 1562: 1561: 1559: 1558: 1557: 1533: 1532: 1531: 1487: 1486: 1482: 1446: 1445: 1434: 1378: 1377: 1370: 1363: 1348: 1347: 1343: 1322:(2A): 582–593. 1312: 1311: 1304: 1252: 1251: 1247: 1203: 1202: 1195: 1147: 1146: 1137: 1128: 1126: 1117: 1116: 1107: 1098: 1096: 1090: 1089: 1080: 1076: 1071: 1017: 1012: 968: 956: 936: 895:media as well. 854:electromagnetic 823: 786: 751:electromagnetic 723: 683: 669: 644: 615: 614: 613: 533: 525: 524: 478:Viscoelasticity 469: 459: 458: 446: 396: 392:Surface tension 356: 259: 257:Fluid mechanics 249: 248: 247: 161: 159:Solid mechanics 151: 150: 102: 94: 70: 62: 43: 42: 23: 22: 15: 12: 11: 5: 1566: 1564: 1556: 1555: 1550: 1545: 1535: 1534: 1530: 1529: 1480: 1432: 1381:Optics Express 1368: 1361: 1341: 1302: 1245: 1216:(13): 133901. 1193: 1135: 1105: 1077: 1075: 1072: 1070: 1069: 1064: 1059: 1054: 1049: 1044: 1039: 1034: 1029: 1024: 1018: 1016: 1013: 1011: 1010: 1005: 1000: 995: 990: 985: 980: 975: 969: 967: 964: 955: 952: 935: 932: 922:and the fluid 885:elastodynamics 862:wave impedance 833:achieved when 822: 819: 801:metamaterial. 785: 782: 722: 719: 668: 665: 646: 645: 643: 642: 635: 628: 620: 617: 616: 612: 611: 606: 601: 596: 591: 586: 581: 576: 571: 566: 561: 556: 551: 546: 541: 535: 534: 531: 530: 527: 526: 521: 520: 519: 518: 513: 508: 500: 499: 493: 492: 491: 490: 485: 480: 470: 465: 464: 461: 460: 455: 454: 448: 447: 445: 444: 439: 434: 429: 424: 419: 414: 408: 405: 404: 398: 397: 395: 394: 389: 384: 382:Chromatography 379: 374: 368: 365: 364: 358: 357: 355: 354: 335: 334: 333: 314: 302: 297: 285: 272: 269: 268: 260: 255: 254: 251: 250: 246: 245: 240: 235: 234: 233: 223: 218: 213: 212: 211: 206: 196: 191: 186: 181: 180: 179: 169: 163: 162: 157: 156: 153: 152: 147: 146: 145: 144: 136: 135: 131: 130: 129: 128: 123: 118: 110: 109: 103: 100: 99: 96: 95: 90: 76: 73: 68: 65: 59: 56: 53: 50: 39: 38: 32: 31: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1565: 1554: 1551: 1549: 1548:Metamaterials 1546: 1544: 1541: 1540: 1538: 1525: 1521: 1516: 1511: 1507: 1503: 1499: 1495: 1491: 1484: 1481: 1475: 1470: 1466: 1462: 1458: 1454: 1450: 1443: 1441: 1439: 1437: 1433: 1428: 1424: 1420: 1416: 1412: 1408: 1404: 1400: 1395: 1390: 1386: 1382: 1375: 1373: 1369: 1364: 1358: 1354: 1353: 1345: 1342: 1337: 1333: 1329: 1325: 1321: 1317: 1309: 1307: 1303: 1298: 1294: 1289: 1284: 1280: 1276: 1272: 1268: 1264: 1260: 1256: 1249: 1246: 1241: 1237: 1232: 1227: 1223: 1219: 1215: 1211: 1207: 1200: 1198: 1194: 1189: 1185: 1181: 1177: 1173: 1169: 1164: 1159: 1155: 1151: 1144: 1142: 1140: 1136: 1125: 1124:New Scientist 1121: 1114: 1112: 1110: 1106: 1095:. EETimes.com 1094: 1087: 1085: 1083: 1079: 1073: 1068: 1065: 1063: 1060: 1058: 1055: 1053: 1050: 1048: 1045: 1043: 1040: 1038: 1035: 1033: 1030: 1028: 1025: 1023: 1020: 1019: 1014: 1009: 1006: 1004: 1001: 999: 996: 994: 991: 989: 986: 984: 981: 979: 976: 974: 971: 970: 965: 963: 959: 953: 951: 949: 945: 941: 933: 931: 927: 925: 921: 917: 913: 909: 905: 901: 896: 894: 890: 886: 882: 881:elastic media 877: 875: 871: 867: 863: 859: 855: 850: 848: 844: 840: 836: 832: 828: 820: 818: 815: 811: 807: 802: 800: 795: 791: 783: 781: 779: 775: 771: 767: 763: 758: 756: 753:energy is in 752: 748: 744: 740: 739:metamaterials 736: 732: 728: 720: 718: 716: 715:surface waves 712: 708: 704: 700: 696: 695:seismic waves 692: 688: 682: 678: 674: 666: 664: 661: 660:seismic waves 657: 653: 641: 636: 634: 629: 627: 622: 621: 619: 618: 610: 607: 605: 602: 600: 597: 595: 592: 590: 587: 585: 582: 580: 577: 575: 572: 570: 567: 565: 562: 560: 557: 555: 552: 550: 547: 545: 542: 540: 537: 536: 529: 528: 517: 514: 512: 509: 507: 504: 503: 502: 501: 498: 494: 489: 486: 484: 481: 479: 476: 475: 474: 473: 468: 463: 462: 453: 449: 443: 440: 438: 435: 433: 430: 428: 425: 423: 422:Charles's law 420: 418: 415: 413: 410: 409: 407: 406: 403: 399: 393: 390: 388: 385: 383: 380: 378: 375: 373: 370: 369: 367: 366: 363: 359: 353: 350: 346: 343: 339: 336: 331: 330:non-Newtonian 328: 324: 320: 319: 318: 315: 313: 310: 306: 303: 301: 298: 296: 293: 289: 286: 284: 281: 277: 274: 273: 271: 270: 267: 263: 258: 253: 252: 244: 241: 239: 236: 232: 229: 228: 227: 224: 222: 219: 217: 216:Compatibility 214: 210: 207: 205: 204:Finite strain 202: 201: 200: 197: 195: 192: 190: 187: 185: 182: 178: 175: 174: 173: 170: 168: 165: 164: 160: 155: 154: 143: 140: 139: 138: 137: 132: 127: 124: 122: 119: 117: 114: 113: 112: 111: 108:Conservations 106: 98: 97: 93: 74: 71: 66: 63: 57: 54: 51: 48: 41: 40: 37: 33: 29: 28: 19: 1497: 1493: 1483: 1456: 1452: 1384: 1380: 1351: 1344: 1319: 1315: 1262: 1258: 1248: 1213: 1209: 1153: 1149: 1127:. Retrieved 1123: 1097:. Retrieved 1057:Permittivity 1052:Permeability 1037:Elastic wave 1027:Bulk modulus 960: 957: 937: 928: 924:bulk modulus 920:mass density 906:apply to 2D 897: 878: 870:permeability 866:permittivity 851: 829:is based on 826: 824: 803: 787: 759: 730: 724: 684: 677:Elastic wave 673:Seismic wave 656:metamaterial 651: 649: 497:Smart fluids 442:Graham's law 348: 341: 326: 312:Pascal's law 308: 291: 279: 134:Inequalities 893:anisotropic 858:Wave vector 806:homogeneous 799:anisotropic 794:cylindrical 735:wavelengths 697:depends on 687:earthquakes 681:Hooke's law 516:Ferrofluids 417:Boyle's law 189:Hooke's law 167:Deformation 1543:Seismology 1537:Categories 1129:2009-10-20 1099:2009-09-09 1074:References 948:scattering 835:concealing 814:dielectric 774:Concentric 770:wavelength 711:body waves 703:elasticity 671:See also: 569:Gay-Lussac 532:Scientists 432:Fick's law 412:Atmosphere 231:frictional 184:Plasticity 172:Elasticity 1524:2296-6463 1459:(3): 45. 1394:0709.0363 1163:0812.0912 988:Superlens 889:isotropic 810:isotropic 609:Truesdell 539:Bernoulli 488:Rheometer 483:Rheometry 323:Newtonian 317:Viscosity 67:φ 55:− 1427:15547562 1419:19547468 1297:26750489 1240:24745420 1188:17568906 966:See also 918:, fluid 912:pressure 908:acoustic 843:acoustic 727:building 691:velocity 467:Rheology 372:Adhesion 352:Pressure 338:Buoyancy 283:Dynamics 121:Momentum 1502:Bibcode 1461:Bibcode 1399:Bibcode 1324:Bibcode 1288:4707539 1267:Bibcode 1218:Bibcode 1168:Bibcode 778:elastic 762:polymer 699:density 693:of the 654:, is a 554:Charles 362:Liquids 276:Statics 221:Bending 1522:  1425:  1417:  1359:  1295:  1285:  1259:Nature 1238:  1186:  790:plates 764:-made 760:Giant 755:effect 749:- the 679:, and 604:Stokes 599:Pascal 589:Navier 584:Newton 574:Graham 549:Cauchy 452:Plasma 347:  345:Mixing 340:  325:  307:  290:  278:  266:Fluids 199:Strain 194:Stress 177:linear 126:Energy 1423:S2CID 1389:arXiv 1184:S2CID 1158:arXiv 902:with 792:in a 707:Earth 579:Hooke 559:Euler 544:Boyle 402:Gases 1520:ISSN 1415:PMID 1357:ISBN 1293:PMID 1236:PMID 868:and 713:and 701:and 594:Noll 564:Fick 116:Mass 101:Laws 1510:doi 1469:doi 1407:doi 1332:doi 1283:PMC 1275:doi 1226:doi 1214:112 1176:doi 1539:: 1518:. 1508:. 1500:. 1498:12 1496:. 1492:. 1467:. 1455:. 1451:. 1435:^ 1421:. 1413:. 1405:. 1397:. 1385:15 1383:. 1371:^ 1330:. 1320:89 1318:. 1305:^ 1291:. 1281:. 1273:. 1261:. 1257:. 1234:. 1224:. 1212:. 1208:. 1196:^ 1182:. 1174:. 1166:. 1154:94 1152:. 1138:^ 1122:. 1108:^ 1081:^ 914:, 860:, 849:. 772:. 675:, 650:A 1526:. 1512:: 1504:: 1477:. 1471:: 1463:: 1457:9 1429:. 1409:: 1401:: 1391:: 1365:. 1338:. 1334:: 1326:: 1299:. 1277:: 1269:: 1263:6 1242:. 1228:: 1220:: 1190:. 1178:: 1170:: 1160:: 1132:. 1102:. 639:e 632:t 625:v 349:· 342:· 332:) 327:· 321:( 309:· 292:· 280:· 75:x 72:d 64:d 58:D 52:= 49:J 20:)

Index

Seismic metamaterials
Continuum mechanics
Fick's laws of diffusion
Mass
Momentum
Energy
Clausius–Duhem (entropy)
Solid mechanics
Deformation
Elasticity
linear
Plasticity
Hooke's law
Stress
Strain
Finite strain
Infinitesimal strain
Compatibility
Bending
Contact mechanics
frictional
Material failure theory
Fracture mechanics
Fluid mechanics
Fluids
Statics
Dynamics
Archimedes' principle
Bernoulli's principle
Navier–Stokes equations

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑