Knowledge

Self-avoiding walk

Source 📝

31: 39: 574:. In this context, it is customary to treat the SAW as a dynamical process, such that in every time-step a walker randomly hops between neighboring nodes of the network. The walk ends when the walker reaches a dead-end state, such that it can no longer progress to newly un-visited nodes. It was recently found that on 89:) is a closed self-avoiding walk on a lattice. Very little is known rigorously about the self-avoiding walk from a mathematical perspective, although physicists have provided numerous conjectures that are believed to be true and are strongly supported by numerical simulations. 1887: 380: 514: 237:, that is, independence of macroscopic observables from microscopic details, such as the choice of the lattice. One important quantity that appears in conjectures for universal laws is the 2017: 445: 613:
has shown that such a measure exists for self-avoiding walks in the half-plane. One important question involving self-avoiding walks is the existence and conformal invariance of the
560: 2552: 108:
with a certain number of nodes, typically a fixed step length and has the property that it doesn't cross itself or another walk. A system of SAWs satisfies the so-called
2376: 2979: 1972: 2509: 2489: 2893: 2810: 2820: 2494: 2504: 2862: 1905: 210:-step self-avoiding walks. The pivot algorithm works by taking a self-avoiding walk and randomly choosing a point on this walk, and then applying 2577: 2759: 3049: 3039: 2562: 1182: 1163: 2949: 2913: 183:
above which excluded volume is negligible. A SAW that does not satisfy the excluded volume condition was recently studied to model explicit
2866: 3217: 2954: 2064: 1965: 1351: 1384: 3263: 3019: 2597: 2567: 968: 728: 323: 2870: 2854: 818: 3258: 3064: 2769: 1989: 686: 234: 2969: 2934: 2903: 2898: 2537: 2334: 2251: 2908: 2236: 1269:
sequence A007764 (Number of nonintersecting (or self-avoiding) rook paths joining opposite corners of an n X n grid)
3253: 2532: 2339: 1911: 1053:
Tishby, I.; Biham, O.; Katzav, E. (2016). "The distribution of path lengths of self avoiding walks on ErdƑs–RĂ©nyi networks".
464: 2258: 622: 2994: 2874: 1192:
Madras, N.; Sokal, A. D. (1988). "The pivot algorithm – A highly efficient Monte-Carlo method for the self-avoiding walk".
3222: 2999: 2835: 2734: 2719: 2131: 2047: 1958: 1767: 1724: 578:
networks, the distribution of path lengths of such dynamically grown SAWs can be calculated analytically, and follows the
3009: 2645: 3004: 1845: 2607: 2191: 2136: 2052: 1927: 1411: 575: 2939: 2929: 2572: 2542: 233:
One of the phenomena associated with self-avoiding walks and statistical physics models in general is the notion of
3248: 2944: 2109: 2007: 2655: 2231: 2012: 3024: 2825: 2739: 2724: 2114: 1577: 602:-step self-avoiding walks in the full plane. It is currently unknown whether the limit of the uniform measure as 2858: 2744: 2166: 2246: 2221: 1433: 680: 587: 199: 2964: 2547: 2082: 617:, that is, the limit as the length of the walk goes to infinity and the mesh of the lattice goes to zero. The 413: 1315:
Generic python implementation to simulate SAWs and expanding FiberWalks on a square lattices in n-dimensions.
3159: 3149: 2840: 2622: 2361: 2226: 2037: 1870: 2444: 3101: 3029: 2288: 1919: 1478: 1344: 3124: 3106: 3086: 3081: 2800: 2632: 2612: 2459: 2402: 2241: 2151: 1704: 1396: 579: 533: 222: 93: 2592: 3199: 3154: 3144: 2885: 2830: 2805: 2774: 2754: 2514: 2499: 2366: 1865: 1860: 1650: 1582: 1238: 1201: 1072: 1011: 853:"The complexity of counting self-avoiding walks in subgraphs of two-dimensional grids and hypercubes" 771: 695: 195: 3194: 3034: 2959: 2764: 2524: 2434: 2324: 1623: 1600: 1535: 1483: 1468: 1401: 583: 238: 78: 3164: 3129: 3044: 3014: 2784: 2779: 2602: 2439: 2104: 1981: 1850: 1830: 1789: 1552: 1217: 1119: 1088: 1062: 1035: 1001: 974: 946: 915: 897: 761: 656: 180: 2845: 1107: 3243: 3184: 2989: 2640: 2397: 2314: 2283: 2176: 2156: 2146: 2002: 1997: 1893: 1855: 1779: 1687: 1592: 1498: 1473: 1463: 1406: 1389: 1379: 1374: 1337: 1292: 1178: 1159: 1027: 964: 885: 799: 724: 314: 158: 2850: 2587: 225:. There is currently no known formula, although there are rigorous methods of approximation. 3204: 3091: 2974: 2344: 2319: 2268: 2196: 2119: 2072: 1810: 1677: 1660: 1488: 1246: 1209: 1129: 1080: 1019: 956: 907: 864: 833: 789: 779: 668: 662: 455: 3169: 3069: 3054: 2815: 2749: 2427: 2371: 2354: 2099: 1825: 1762: 1423: 109: 66: 43: 2984: 2216: 1520: 1084: 590:
distribution to a node can be obtained by solving a set of coupled recurrence equations.
17: 1242: 1205: 1076: 1015: 888:(1 May 2012). "The connective constant of the honeycomb lattice equals sqrt(2+sqrt 2)". 775: 3174: 3139: 3059: 2665: 2412: 2329: 2298: 2293: 2273: 2263: 2206: 2201: 2181: 2161: 2126: 2094: 2077: 1840: 1784: 1772: 1743: 1699: 1682: 1665: 1618: 1562: 1547: 1515: 1453: 1295: 794: 749: 571: 203: 184: 869: 852: 112:
condition. In higher dimensions, the SAW is believed to behave much like the ordinary
3237: 3076: 2617: 2454: 2449: 2407: 2349: 2171: 2087: 2027: 1694: 1670: 1540: 1510: 1493: 1458: 1443: 1323: 1221: 1092: 618: 614: 310: 978: 960: 919: 3134: 3096: 2650: 2582: 2471: 2466: 2278: 2211: 2186: 2022: 1939: 1934: 1835: 1815: 1572: 1505: 1039: 934: 610: 74: 73:) that does not visit the same point more than once. This is a special case of the 70: 2714: 1108:"Efficient network exploration by means of resetting self-avoiding random walkers" 30: 27:
A sequence of moves on a lattice that does not visit the same point more than once
1319: 911: 784: 143:, whose physical volume prohibits multiple occupation of the same spatial point. 3179: 2698: 2693: 2688: 2678: 2481: 2422: 2417: 2381: 2141: 2032: 1900: 1820: 1530: 1525: 937:; Werner, Wendelin (2004). "On the scaling limit of planar self-avoiding walk". 674: 124: 113: 50: 1309: 1134: 1023: 221:
Calculating the number of self-avoiding walks in any given lattice is a common
3189: 2729: 2673: 2557: 1753: 1738: 1733: 1714: 1448: 716: 191: 132: 2683: 1709: 1655: 1567: 1418: 1300: 745: 582:. For arbitrary networks, the distribution of path lengths of the walk, the 1031: 803: 689: â€“ Properties of systems that are independent of the dynamical details 454:
has only been approximated numerically, and is believed not to even be an
1610: 1006: 837: 211: 120: 62: 1314: 1229:
Fisher, M. E. (1966). "Shape of a self-avoiding walk or polymer chain".
992:
Carlos P. Herrero (2005). "Self-avoiding walks on scale-free networks".
135:
in order to model the real-life behavior of chain-like entities such as
2510:
Generalized autoregressive conditional heteroskedasticity (GARCH) model
1950: 1640: 1557: 1360: 1213: 190:
The properties of SAWs cannot be calculated analytically, so numerical
147: 140: 136: 128: 1250: 38: 1628: 951: 750:"The Fiber Walk: A Model of Tip-Driven Growth with Lateral Expansion" 1124: 1067: 1271:—the number of self-avoiding paths joining opposite corners of an 902: 766: 214:
transformations (rotations and reflections) on the walk after the
37: 29: 1265: 562:
does not; in other words, this law is believed to be universal.
1954: 1333: 407:
is only known for the hexagonal lattice, where it is equal to:
399:
depends on the particular lattice chosen for the walk so does
375:{\displaystyle \mu =\lim _{n\to \infty }c_{n}^{\frac {1}{n}}.} 42:
Self-avoiding walk on a 20x20 square lattice, simulated using
570:
Self-avoiding walks have also been studied in the context of
131:. Indeed, SAWs may have first been introduced by the chemist 665: â€“ Path in a graph that visits each vertex exactly once 621:
of the self-avoiding walk is conjectured to be described by
1329: 1268: 2490:
Autoregressive conditional heteroskedasticity (ARCH) model
609:
induces a measure on infinite full-plane walks. However,
119:
SAWs and SAPs play a central role in the modeling of the
2018:
Independent and identically distributed random variables
509:{\displaystyle c_{n}\approx \mu ^{n}n^{\frac {11}{32}}} 2495:
Autoregressive integrated moving average (ARIMA) model
677: â€“ Process forming a path from many random steps 536: 530:
depends on the lattice, but the power law correction
467: 416: 326: 691:
Pages displaying wikidata descriptions as a fallback
127:
behavior of thread- and loop-like molecules such as
3117: 2922: 2884: 2793: 2707: 2664: 2631: 2523: 2480: 2390: 2307: 2063: 1988: 1879: 1803: 1752: 1723: 1639: 1609: 1591: 1432: 1367: 1283:from 0 to 12. Also includes an extended list up to 1106:Colombani, G.; Bertagnolli, G.; Artime, O. (2023). 264:-step self avoiding walk can be decomposed into an 1055:Journal of Physics A: Mathematical and Theoretical 554: 508: 439: 374: 2377:Stochastic chains with memory of variable length 671: â€“ Mathematical problem set on a chessboard 334: 659: â€“ Physics associated with critical points 96:, a self-avoiding walk is a chain-like path in 1966: 1345: 945:(2). American Mathematical Society: 339–364. 851:Liƛkiewicz M; Ogihara M; Toda S (July 2003). 8: 34:Self-avoiding walk on a 15×15 square lattice 939:Proceedings of Symposia in Pure Mathematics 2505:Autoregressive–moving-average (ARMA) model 1973: 1959: 1951: 1352: 1338: 1330: 272:-step self-avoiding walk, it follows that 1133: 1123: 1066: 1005: 950: 901: 868: 793: 783: 765: 723:. Cornell University Press. p. 672. 541: 535: 495: 485: 472: 466: 425: 417: 415: 358: 353: 337: 325: 317:to show that the following limit exists: 440:{\displaystyle {\sqrt {2+{\sqrt {2}}}}.} 1906:List of fractals by Hausdorff dimension 708: 252:-step self-avoiding walks. Since every 2811:Doob's martingale convergence theorems 1310:Java applet of a 2D self-avoiding walk 2563:Constant elasticity of variance (CEV) 2553:Chan–Karolyi–Longstaff–Sanders (CKLS) 7: 179:. The dimension is called the upper 586:of the non-visited network and the 187:resulting from expansion of a SAW. 3050:Skorokhod's representation theorem 2831:Law of large numbers (weak/strong) 555:{\displaystyle n^{\frac {11}{32}}} 344: 25: 3020:Martingale representation theorem 1888:How Long Is the Coast of Britain? 3065:Stochastic differential equation 2955:Doob's optional stopping theorem 2950:Doob–Meyer decomposition theorem 598:Consider the uniform measure on 268:-step self-avoiding walk and an 2935:Convergence of random variables 2821:Fisher–Tippett–Gnedenko theorem 721:Principles of Polymer Chemistry 2533:Binomial options pricing model 1912:The Fractal Geometry of Nature 1194:Journal of Statistical Physics 1154:Madras, N.; Slade, G. (1996). 1112:Journal of Physics: Complexity 1085:10.1088/1751-8113/49/28/285002 341: 218:th step to create a new walk. 1: 3000:Kolmogorov continuity theorem 2836:Law of the iterated logarithm 1175:Intersections of Random Walks 870:10.1016/S0304-3975(03)00080-X 168:it is close to 5/3 while for 3005:Kolmogorov extension theorem 2684:Generalized queueing network 2192:Interacting particle systems 912:10.4007/annals.2012.175.3.14 857:Theoretical Computer Science 785:10.1371/journal.pone.0085585 202:simulations for the uniform 2137:Continuous-time random walk 1928:Chaos: Making a New Science 1231:Journal of Chemical Physics 961:10.1090/pspum/072.2/2112127 3280: 3145:Extreme value theory (EVT) 2945:Doob decomposition theorem 2237:Ornstein–Uhlenbeck process 2008:Chinese restaurant process 1024:10.1103/PhysRevE.71.016103 298:. Therefore, the sequence 241:, defined as follows. Let 3213: 3025:Optional stopping theorem 2826:Large deviation principle 2578:Heath–Jarrow–Morton (HJM) 2515:Moving-average (MA) model 2500:Autoregressive (AR) model 2325:Hidden Markov model (HMM) 2259:Schramm–Loewner evolution 623:Schramm–Loewner evolution 458:. It is conjectured that 175:the fractal dimension is 18:Self-avoiding random walk 3264:Variants of random walks 2940:DolĂ©ans-Dade exponential 2770:Progressively measurable 2568:Cox–Ingersoll–Ross (CIR) 1322:to generate SAWs on the 1135:10.1088/2632-072X/acff33 817:Hayes B (Jul–Aug 1998). 698:– All are self-avoiding. 683: â€“ Video game genre 200:Markov chain Monte Carlo 3259:Computational chemistry 3160:Mathematical statistics 3150:Large deviations theory 2980:Infinitesimal generator 2841:Maximal ergodic theorem 2760:Piecewise-deterministic 2362:Random dynamical system 2227:Markov additive process 819:"How to Avoid Yourself" 198:is a common method for 2995:Karhunen–LoĂšve theorem 2930:Cameron–Martin formula 2894:Burkholder–Davis–Gundy 2289:Variance gamma process 1920:The Beauty of Fractals 1173:Lawler, G. F. (1991). 1156:The Self-Avoiding Walk 556: 510: 441: 376: 46: 44:sequential Monte Carlo 35: 3254:Computational physics 3125:Actuarial mathematics 3087:Uniform integrability 3082:Stratonovich integral 3010:LĂ©vy–Prokhorov metric 2914:Marcinkiewicz–Zygmund 2801:Central limit theorem 2403:Gaussian random field 2232:McKean–Vlasov process 2152:Dyson Brownian motion 2013:Galton–Watson process 890:Annals of Mathematics 884:Duminil-Copin, Hugo; 748:; J.S. Weitz (2014). 580:Gompertz distribution 557: 511: 442: 403:. The exact value of 377: 248:denote the number of 223:computational problem 94:computational physics 83:self-avoiding polygon 41: 33: 3200:Time series analysis 3155:Mathematical finance 3040:Reflection principle 2367:Regenerative process 2167:Fleming–Viot process 1982:Stochastic processes 1866:Lewis Fry Richardson 1861:Hamid Naderi Yeganeh 1651:Burning Ship fractal 1583:Weierstrass function 1296:"Self-Avoiding Walk" 933:Lawler, Gregory F.; 838:10.1511/1998.31.3301 696:Space-filling curves 534: 465: 450:For other lattices, 414: 324: 3195:Stochastic analysis 3035:Quadratic variation 3030:Prokhorov's theorem 2965:Feynman–Kac formula 2435:Markov random field 2083:Birth–death process 1624:Space-filling curve 1601:Multifractal system 1484:Space-filling curve 1469:Sierpinski triangle 1243:1966JChPh..44..616F 1206:1988JSP....50..109M 1077:2016JPhA...49B5002T 1016:2005PhRvE..71a6103H 776:2014PLoSO...985585B 584:degree distribution 390:connective constant 368: 239:connective constant 3165:Probability theory 3045:Skorokhod integral 3015:Malliavin calculus 2598:Korn-Kreer-Lenssen 2482:Time series models 2445:Pitman–Yor process 1851:Aleksandr Lyapunov 1831:Desmond Paul Henry 1795:Self-avoiding walk 1790:Percolation theory 1434:Iterated function 1375:Fractal dimensions 1293:Weisstein, Eric W. 1214:10.1007/bf01022990 886:Smirnov, Stanislav 826:American Scientist 657:Critical phenomena 588:first-hitting-time 552: 506: 437: 372: 349: 348: 194:are employed. The 181:critical dimension 150:. For example, in 55:self-avoiding walk 47: 36: 3249:Discrete geometry 3231: 3230: 3185:Signal processing 2904:Doob's upcrossing 2899:Doob's martingale 2863:Engelbert–Schmidt 2806:Donsker's theorem 2740:Feller-continuous 2608:Rendleman–Bartter 2398:Dirichlet process 2315:Branching process 2284:Telegraph process 2177:Geometric process 2157:Empirical process 2147:Diffusion process 2003:Branching process 1998:Bernoulli process 1948: 1947: 1894:Coastline paradox 1871:WacƂaw SierpiƄski 1856:Benoit Mandelbrot 1780:Fractal landscape 1688:Misiurewicz point 1593:Strange attractor 1474:Apollonian gasket 1464:Sierpinski carpet 1251:10.1063/1.1726734 1184:978-0-8176-3892-4 1165:978-0-8176-3891-7 549: 503: 432: 430: 366: 333: 313:and we can apply 159:fractal dimension 75:graph theoretical 16:(Redirected from 3271: 3205:Machine learning 3092:Usual hypotheses 2975:Girsanov theorem 2960:Dynkin's formula 2725:Continuous paths 2633:Actuarial models 2573:Garman–Kohlhagen 2543:Black–Karasinski 2538:Black–Derman–Toy 2525:Financial models 2391:Fields and other 2320:Gaussian process 2269:Sigma-martingale 2073:Additive process 1975: 1968: 1961: 1952: 1811:Michael Barnsley 1678:Lyapunov fractal 1536:SierpiƄski curve 1489:Blancmange curve 1354: 1347: 1340: 1331: 1306: 1305: 1267: 1254: 1225: 1200:(1–2): 109–186. 1188: 1169: 1140: 1139: 1137: 1127: 1103: 1097: 1096: 1070: 1050: 1044: 1043: 1009: 1007:cond-mat/0412658 989: 983: 982: 954: 930: 924: 923: 905: 896:(3): 1653–1665. 881: 875: 874: 872: 848: 842: 841: 823: 814: 808: 807: 797: 787: 769: 741: 735: 734: 713: 692: 663:Hamiltonian path 647: 645: 643: 642: 639: 636: 608: 601: 561: 559: 558: 553: 551: 550: 542: 529: 525: 515: 513: 512: 507: 505: 504: 496: 490: 489: 477: 476: 456:algebraic number 453: 446: 444: 443: 438: 433: 431: 426: 418: 406: 402: 398: 387: 381: 379: 378: 373: 367: 359: 357: 347: 308: 297: 271: 267: 263: 251: 247: 217: 209: 185:surface geometry 178: 174: 167: 156: 107: 101: 21: 3279: 3278: 3274: 3273: 3272: 3270: 3269: 3268: 3234: 3233: 3232: 3227: 3209: 3170:Queueing theory 3113: 3055:Skorokhod space 2918: 2909:Kunita–Watanabe 2880: 2846:Sanov's theorem 2816:Ergodic theorem 2789: 2785:Time-reversible 2703: 2666:Queueing models 2660: 2656:Sparre–Anderson 2646:CramĂ©r–Lundberg 2627: 2613:SABR volatility 2519: 2476: 2428:Boolean network 2386: 2372:Renewal process 2303: 2252:Non-homogeneous 2242:Poisson process 2132:Contact process 2095:Brownian motion 2065:Continuous time 2059: 2053:Maximal entropy 1984: 1979: 1949: 1944: 1875: 1826:Felix Hausdorff 1799: 1763:Brownian motion 1748: 1719: 1642: 1635: 1605: 1587: 1578:Pythagoras tree 1435: 1428: 1424:Self-similarity 1368:Characteristics 1363: 1358: 1320:Norris software 1291: 1290: 1262: 1257: 1228: 1191: 1185: 1172: 1166: 1153: 1149: 1147:Further reading 1144: 1143: 1105: 1104: 1100: 1052: 1051: 1047: 991: 990: 986: 971: 932: 931: 927: 883: 882: 878: 863:(1–3): 129–56. 850: 849: 845: 821: 816: 815: 811: 743: 742: 738: 731: 715: 714: 710: 705: 690: 653: 640: 637: 634: 633: 631: 626: 625:with parameter 603: 599: 596: 568: 537: 532: 531: 527: 520: 491: 481: 468: 463: 462: 451: 412: 411: 404: 400: 397: 393: 385: 322: 321: 305: 299: 295: 291: 285: 273: 269: 265: 253: 249: 246: 242: 231: 215: 207: 196:pivot algorithm 176: 169: 162: 151: 110:excluded volume 103: 97: 28: 23: 22: 15: 12: 11: 5: 3277: 3275: 3267: 3266: 3261: 3256: 3251: 3246: 3236: 3235: 3229: 3228: 3226: 3225: 3220: 3218:List of topics 3214: 3211: 3210: 3208: 3207: 3202: 3197: 3192: 3187: 3182: 3177: 3175:Renewal theory 3172: 3167: 3162: 3157: 3152: 3147: 3142: 3140:Ergodic theory 3137: 3132: 3130:Control theory 3127: 3121: 3119: 3115: 3114: 3112: 3111: 3110: 3109: 3104: 3094: 3089: 3084: 3079: 3074: 3073: 3072: 3062: 3060:Snell envelope 3057: 3052: 3047: 3042: 3037: 3032: 3027: 3022: 3017: 3012: 3007: 3002: 2997: 2992: 2987: 2982: 2977: 2972: 2967: 2962: 2957: 2952: 2947: 2942: 2937: 2932: 2926: 2924: 2920: 2919: 2917: 2916: 2911: 2906: 2901: 2896: 2890: 2888: 2882: 2881: 2879: 2878: 2859:Borel–Cantelli 2848: 2843: 2838: 2833: 2828: 2823: 2818: 2813: 2808: 2803: 2797: 2795: 2794:Limit theorems 2791: 2790: 2788: 2787: 2782: 2777: 2772: 2767: 2762: 2757: 2752: 2747: 2742: 2737: 2732: 2727: 2722: 2717: 2711: 2709: 2705: 2704: 2702: 2701: 2696: 2691: 2686: 2681: 2676: 2670: 2668: 2662: 2661: 2659: 2658: 2653: 2648: 2643: 2637: 2635: 2629: 2628: 2626: 2625: 2620: 2615: 2610: 2605: 2600: 2595: 2590: 2585: 2580: 2575: 2570: 2565: 2560: 2555: 2550: 2545: 2540: 2535: 2529: 2527: 2521: 2520: 2518: 2517: 2512: 2507: 2502: 2497: 2492: 2486: 2484: 2478: 2477: 2475: 2474: 2469: 2464: 2463: 2462: 2457: 2447: 2442: 2437: 2432: 2431: 2430: 2425: 2415: 2413:Hopfield model 2410: 2405: 2400: 2394: 2392: 2388: 2387: 2385: 2384: 2379: 2374: 2369: 2364: 2359: 2358: 2357: 2352: 2347: 2342: 2332: 2330:Markov process 2327: 2322: 2317: 2311: 2309: 2305: 2304: 2302: 2301: 2299:Wiener sausage 2296: 2294:Wiener process 2291: 2286: 2281: 2276: 2274:Stable process 2271: 2266: 2264:Semimartingale 2261: 2256: 2255: 2254: 2249: 2239: 2234: 2229: 2224: 2219: 2214: 2209: 2207:Jump diffusion 2204: 2199: 2194: 2189: 2184: 2182:Hawkes process 2179: 2174: 2169: 2164: 2162:Feller process 2159: 2154: 2149: 2144: 2139: 2134: 2129: 2127:Cauchy process 2124: 2123: 2122: 2117: 2112: 2107: 2102: 2092: 2091: 2090: 2080: 2078:Bessel process 2075: 2069: 2067: 2061: 2060: 2058: 2057: 2056: 2055: 2050: 2045: 2040: 2030: 2025: 2020: 2015: 2010: 2005: 2000: 1994: 1992: 1986: 1985: 1980: 1978: 1977: 1970: 1963: 1955: 1946: 1945: 1943: 1942: 1937: 1932: 1924: 1916: 1908: 1903: 1898: 1897: 1896: 1883: 1881: 1877: 1876: 1874: 1873: 1868: 1863: 1858: 1853: 1848: 1843: 1841:Helge von Koch 1838: 1833: 1828: 1823: 1818: 1813: 1807: 1805: 1801: 1800: 1798: 1797: 1792: 1787: 1782: 1777: 1776: 1775: 1773:Brownian motor 1770: 1759: 1757: 1750: 1749: 1747: 1746: 1744:Pickover stalk 1741: 1736: 1730: 1728: 1721: 1720: 1718: 1717: 1712: 1707: 1702: 1700:Newton fractal 1697: 1692: 1691: 1690: 1683:Mandelbrot set 1680: 1675: 1674: 1673: 1668: 1666:Newton fractal 1663: 1653: 1647: 1645: 1637: 1636: 1634: 1633: 1632: 1631: 1621: 1619:Fractal canopy 1615: 1613: 1607: 1606: 1604: 1603: 1597: 1595: 1589: 1588: 1586: 1585: 1580: 1575: 1570: 1565: 1563:Vicsek fractal 1560: 1555: 1550: 1545: 1544: 1543: 1538: 1533: 1528: 1523: 1518: 1513: 1508: 1503: 1502: 1501: 1491: 1481: 1479:Fibonacci word 1476: 1471: 1466: 1461: 1456: 1454:Koch snowflake 1451: 1446: 1440: 1438: 1430: 1429: 1427: 1426: 1421: 1416: 1415: 1414: 1409: 1404: 1399: 1394: 1393: 1392: 1382: 1371: 1369: 1365: 1364: 1359: 1357: 1356: 1349: 1342: 1334: 1328: 1327: 1317: 1312: 1307: 1288: 1261: 1260:External links 1258: 1256: 1255: 1237:(2): 616–622. 1226: 1189: 1183: 1177:. BirkhĂ€user. 1170: 1164: 1158:. BirkhĂ€user. 1150: 1148: 1145: 1142: 1141: 1098: 1061:(28): 285002. 1045: 984: 969: 925: 876: 843: 809: 736: 729: 707: 706: 704: 701: 700: 699: 693: 684: 678: 672: 666: 660: 652: 649: 595: 592: 572:network theory 567: 564: 548: 545: 540: 517: 516: 502: 499: 494: 488: 484: 480: 475: 471: 448: 447: 436: 429: 424: 421: 395: 388:is called the 383: 382: 371: 365: 362: 356: 352: 346: 343: 340: 336: 332: 329: 315:Fekete's lemma 303: 293: 289: 277: 244: 230: 227: 125:knot-theoretic 65:of moves on a 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 3276: 3265: 3262: 3260: 3257: 3255: 3252: 3250: 3247: 3245: 3242: 3241: 3239: 3224: 3221: 3219: 3216: 3215: 3212: 3206: 3203: 3201: 3198: 3196: 3193: 3191: 3188: 3186: 3183: 3181: 3178: 3176: 3173: 3171: 3168: 3166: 3163: 3161: 3158: 3156: 3153: 3151: 3148: 3146: 3143: 3141: 3138: 3136: 3133: 3131: 3128: 3126: 3123: 3122: 3120: 3116: 3108: 3105: 3103: 3100: 3099: 3098: 3095: 3093: 3090: 3088: 3085: 3083: 3080: 3078: 3077:Stopping time 3075: 3071: 3068: 3067: 3066: 3063: 3061: 3058: 3056: 3053: 3051: 3048: 3046: 3043: 3041: 3038: 3036: 3033: 3031: 3028: 3026: 3023: 3021: 3018: 3016: 3013: 3011: 3008: 3006: 3003: 3001: 2998: 2996: 2993: 2991: 2988: 2986: 2983: 2981: 2978: 2976: 2973: 2971: 2968: 2966: 2963: 2961: 2958: 2956: 2953: 2951: 2948: 2946: 2943: 2941: 2938: 2936: 2933: 2931: 2928: 2927: 2925: 2921: 2915: 2912: 2910: 2907: 2905: 2902: 2900: 2897: 2895: 2892: 2891: 2889: 2887: 2883: 2876: 2872: 2868: 2867:Hewitt–Savage 2864: 2860: 2856: 2852: 2851:Zero–one laws 2849: 2847: 2844: 2842: 2839: 2837: 2834: 2832: 2829: 2827: 2824: 2822: 2819: 2817: 2814: 2812: 2809: 2807: 2804: 2802: 2799: 2798: 2796: 2792: 2786: 2783: 2781: 2778: 2776: 2773: 2771: 2768: 2766: 2763: 2761: 2758: 2756: 2753: 2751: 2748: 2746: 2743: 2741: 2738: 2736: 2733: 2731: 2728: 2726: 2723: 2721: 2718: 2716: 2713: 2712: 2710: 2706: 2700: 2697: 2695: 2692: 2690: 2687: 2685: 2682: 2680: 2677: 2675: 2672: 2671: 2669: 2667: 2663: 2657: 2654: 2652: 2649: 2647: 2644: 2642: 2639: 2638: 2636: 2634: 2630: 2624: 2621: 2619: 2616: 2614: 2611: 2609: 2606: 2604: 2601: 2599: 2596: 2594: 2591: 2589: 2586: 2584: 2581: 2579: 2576: 2574: 2571: 2569: 2566: 2564: 2561: 2559: 2556: 2554: 2551: 2549: 2548:Black–Scholes 2546: 2544: 2541: 2539: 2536: 2534: 2531: 2530: 2528: 2526: 2522: 2516: 2513: 2511: 2508: 2506: 2503: 2501: 2498: 2496: 2493: 2491: 2488: 2487: 2485: 2483: 2479: 2473: 2470: 2468: 2465: 2461: 2458: 2456: 2453: 2452: 2451: 2450:Point process 2448: 2446: 2443: 2441: 2438: 2436: 2433: 2429: 2426: 2424: 2421: 2420: 2419: 2416: 2414: 2411: 2409: 2408:Gibbs measure 2406: 2404: 2401: 2399: 2396: 2395: 2393: 2389: 2383: 2380: 2378: 2375: 2373: 2370: 2368: 2365: 2363: 2360: 2356: 2353: 2351: 2348: 2346: 2343: 2341: 2338: 2337: 2336: 2333: 2331: 2328: 2326: 2323: 2321: 2318: 2316: 2313: 2312: 2310: 2306: 2300: 2297: 2295: 2292: 2290: 2287: 2285: 2282: 2280: 2277: 2275: 2272: 2270: 2267: 2265: 2262: 2260: 2257: 2253: 2250: 2248: 2245: 2244: 2243: 2240: 2238: 2235: 2233: 2230: 2228: 2225: 2223: 2220: 2218: 2215: 2213: 2210: 2208: 2205: 2203: 2200: 2198: 2197:ItĂŽ diffusion 2195: 2193: 2190: 2188: 2185: 2183: 2180: 2178: 2175: 2173: 2172:Gamma process 2170: 2168: 2165: 2163: 2160: 2158: 2155: 2153: 2150: 2148: 2145: 2143: 2140: 2138: 2135: 2133: 2130: 2128: 2125: 2121: 2118: 2116: 2113: 2111: 2108: 2106: 2103: 2101: 2098: 2097: 2096: 2093: 2089: 2086: 2085: 2084: 2081: 2079: 2076: 2074: 2071: 2070: 2068: 2066: 2062: 2054: 2051: 2049: 2046: 2044: 2043:Self-avoiding 2041: 2039: 2036: 2035: 2034: 2031: 2029: 2028:Moran process 2026: 2024: 2021: 2019: 2016: 2014: 2011: 2009: 2006: 2004: 2001: 1999: 1996: 1995: 1993: 1991: 1990:Discrete time 1987: 1983: 1976: 1971: 1969: 1964: 1962: 1957: 1956: 1953: 1941: 1938: 1936: 1933: 1930: 1929: 1925: 1922: 1921: 1917: 1914: 1913: 1909: 1907: 1904: 1902: 1899: 1895: 1892: 1891: 1889: 1885: 1884: 1882: 1878: 1872: 1869: 1867: 1864: 1862: 1859: 1857: 1854: 1852: 1849: 1847: 1844: 1842: 1839: 1837: 1834: 1832: 1829: 1827: 1824: 1822: 1819: 1817: 1814: 1812: 1809: 1808: 1806: 1802: 1796: 1793: 1791: 1788: 1786: 1783: 1781: 1778: 1774: 1771: 1769: 1768:Brownian tree 1766: 1765: 1764: 1761: 1760: 1758: 1755: 1751: 1745: 1742: 1740: 1737: 1735: 1732: 1731: 1729: 1726: 1722: 1716: 1713: 1711: 1708: 1706: 1703: 1701: 1698: 1696: 1695:Multibrot set 1693: 1689: 1686: 1685: 1684: 1681: 1679: 1676: 1672: 1671:Douady rabbit 1669: 1667: 1664: 1662: 1659: 1658: 1657: 1654: 1652: 1649: 1648: 1646: 1644: 1638: 1630: 1627: 1626: 1625: 1622: 1620: 1617: 1616: 1614: 1612: 1608: 1602: 1599: 1598: 1596: 1594: 1590: 1584: 1581: 1579: 1576: 1574: 1571: 1569: 1566: 1564: 1561: 1559: 1556: 1554: 1551: 1549: 1546: 1542: 1541:Z-order curve 1539: 1537: 1534: 1532: 1529: 1527: 1524: 1522: 1519: 1517: 1514: 1512: 1511:Hilbert curve 1509: 1507: 1504: 1500: 1497: 1496: 1495: 1494:De Rham curve 1492: 1490: 1487: 1486: 1485: 1482: 1480: 1477: 1475: 1472: 1470: 1467: 1465: 1462: 1460: 1459:Menger sponge 1457: 1455: 1452: 1450: 1447: 1445: 1444:Barnsley fern 1442: 1441: 1439: 1437: 1431: 1425: 1422: 1420: 1417: 1413: 1410: 1408: 1405: 1403: 1400: 1398: 1395: 1391: 1388: 1387: 1386: 1383: 1381: 1378: 1377: 1376: 1373: 1372: 1370: 1366: 1362: 1355: 1350: 1348: 1343: 1341: 1336: 1335: 1332: 1325: 1324:Diamond cubic 1321: 1318: 1316: 1313: 1311: 1308: 1303: 1302: 1297: 1294: 1289: 1286: 1282: 1278: 1274: 1270: 1264: 1263: 1259: 1252: 1248: 1244: 1240: 1236: 1232: 1227: 1223: 1219: 1215: 1211: 1207: 1203: 1199: 1195: 1190: 1186: 1180: 1176: 1171: 1167: 1161: 1157: 1152: 1151: 1146: 1136: 1131: 1126: 1121: 1117: 1113: 1109: 1102: 1099: 1094: 1090: 1086: 1082: 1078: 1074: 1069: 1064: 1060: 1056: 1049: 1046: 1041: 1037: 1033: 1029: 1025: 1021: 1017: 1013: 1008: 1003: 999: 995: 988: 985: 980: 976: 972: 970:0-8218-3638-2 966: 962: 958: 953: 948: 944: 940: 936: 935:Schramm, Oded 929: 926: 921: 917: 913: 909: 904: 899: 895: 891: 887: 880: 877: 871: 866: 862: 858: 854: 847: 844: 839: 835: 831: 827: 820: 813: 810: 805: 801: 796: 791: 786: 781: 777: 773: 768: 763: 760:(1): e85585. 759: 755: 751: 747: 740: 737: 732: 730:9780801401343 726: 722: 718: 712: 709: 702: 697: 694: 688: 685: 682: 679: 676: 673: 670: 669:Knight's tour 667: 664: 661: 658: 655: 654: 650: 648: 629: 624: 620: 619:scaling limit 616: 615:scaling limit 612: 606: 593: 591: 589: 585: 581: 577: 573: 565: 563: 546: 543: 538: 523: 500: 497: 492: 486: 482: 478: 473: 469: 461: 460: 459: 457: 434: 427: 422: 419: 410: 409: 408: 391: 369: 363: 360: 354: 350: 338: 330: 327: 320: 319: 318: 316: 312: 306: 296: 284: 280: 276: 261: 257: 240: 236: 228: 226: 224: 219: 213: 205: 201: 197: 193: 188: 186: 182: 172: 165: 160: 154: 149: 144: 142: 138: 134: 130: 126: 122: 117: 115: 111: 106: 100: 95: 90: 88: 84: 80: 76: 72: 68: 64: 60: 56: 52: 45: 40: 32: 19: 3135:Econometrics 3097:Wiener space 2985:ItĂŽ integral 2886:Inequalities 2775:Self-similar 2745:Gauss–Markov 2735:Exchangeable 2715:CĂ dlĂ g paths 2651:Risk process 2603:LIBOR market 2472:Random graph 2467:Random field 2279:Superprocess 2217:LĂ©vy process 2212:Jump process 2187:Hunt process 2042: 2023:Markov chain 1940:Chaos theory 1935:Kaleidoscope 1926: 1918: 1910: 1836:Gaston Julia 1816:Georg Cantor 1794: 1641:Escape-time 1573:Gosper curve 1521:LĂ©vy C curve 1506:Dragon curve 1385:Box-counting 1299: 1284: 1280: 1276: 1272: 1234: 1230: 1197: 1193: 1174: 1155: 1115: 1111: 1101: 1058: 1054: 1048: 997: 994:Phys. Rev. E 993: 987: 952:math/0204277 942: 938: 928: 893: 889: 879: 860: 856: 846: 829: 825: 812: 757: 753: 744:A. Bucksch; 739: 720: 711: 687:Universality 627: 611:Harry Kesten 604: 597: 569: 521: 518: 449: 389: 384: 301: 287: 282: 278: 274: 259: 255: 235:universality 232: 229:Universality 220: 189: 170: 163: 161:is 4/3, for 152: 145: 118: 104: 98: 91: 86: 82: 77:notion of a 71:lattice path 58: 54: 48: 3180:Ruin theory 3118:Disciplines 2990:ItĂŽ's lemma 2765:Predictable 2440:Percolation 2423:Potts model 2418:Ising model 2382:White noise 2340:Differences 2202:ItĂŽ process 2142:Cox process 2038:Loop-erased 2033:Random walk 1931:(1987 book) 1923:(1986 book) 1915:(1982 book) 1901:Fractal art 1821:Bill Gosper 1785:LĂ©vy flight 1531:Peano curve 1526:Moore curve 1412:Topological 1397:Correlation 1000:(3): 1728. 675:Random walk 576:ErdƑs–RĂ©nyi 566:On networks 311:subadditive 212:symmetrical 192:simulations 121:topological 114:random walk 51:mathematics 3238:Categories 3190:Statistics 2970:Filtration 2871:Kolmogorov 2855:Blumenthal 2780:Stationary 2720:Continuous 2708:Properties 2593:Hull–White 2335:Martingale 2222:Local time 2110:Fractional 2088:pure birth 1739:Orbit trap 1734:Buddhabrot 1727:techniques 1715:Mandelbulb 1516:Koch curve 1449:Cantor set 1279:grid, for 1125:2310.03203 1068:1603.06613 832:(4): 314. 703:References 133:Paul Flory 3102:Classical 2115:Geometric 2105:Excursion 1846:Paul LĂ©vy 1725:Rendering 1710:Mandelbox 1656:Julia set 1568:Hexaflake 1499:Minkowski 1419:Recursion 1402:Hausdorff 1301:MathWorld 1222:123272694 1093:119182848 903:1007.0575 767:1304.3521 483:μ 479:≈ 345:∞ 342:→ 328:μ 146:SAWs are 3244:Polygons 3223:Category 3107:Abstract 2641:BĂŒhlmann 2247:Compound 1756:fractals 1643:fractals 1611:L-system 1553:T-square 1361:Fractals 1032:15697654 979:16710180 920:59164280 804:24465607 754:PLOS ONE 719:(1953). 717:P. Flory 651:See also 526:, where 392:, since 148:fractals 141:polymers 137:solvents 129:proteins 63:sequence 2730:Ergodic 2618:Vaơíček 2460:Poisson 2120:Meander 1705:Tricorn 1558:n-flake 1407:Packing 1390:Higuchi 1380:Assouad 1275:× 1239:Bibcode 1202:Bibcode 1073:Bibcode 1040:2707668 1012:Bibcode 795:3899046 772:Bibcode 746:G. Turk 644:⁠ 632:⁠ 204:measure 67:lattice 61:) is a 3070:Tanaka 2755:Mixing 2750:Markov 2623:Wilkie 2588:Ho–Lee 2583:Heston 2355:Super- 2100:Bridge 2048:Biased 1804:People 1754:Random 1661:Filled 1629:H tree 1548:String 1436:system 1220:  1181:  1162:  1091:  1038:  1030:  977:  967:  918:  802:  792:  727:  594:Limits 2923:Tools 2699:M/M/c 2694:M/M/1 2689:M/G/1 2679:Fluid 2345:Local 1880:Other 1287:= 21. 1218:S2CID 1120:arXiv 1118:(4). 1089:S2CID 1063:arXiv 1036:S2CID 1002:arXiv 975:S2CID 947:arXiv 916:S2CID 898:arXiv 822:(PDF) 762:arXiv 681:Snake 300:{log 2875:LĂ©vy 2674:Bulk 2558:Chen 2350:Sub- 2308:Both 1266:OEIS 1179:ISBN 1160:ISBN 1028:PMID 965:ISBN 800:PMID 725:ISBN 157:the 139:and 123:and 81:. A 79:path 53:, a 2455:Cox 1247:doi 1210:doi 1130:doi 1081:doi 1020:doi 957:doi 908:doi 894:175 865:doi 861:304 834:doi 790:PMC 780:doi 607:→ ∞ 524:→ ∞ 519:as 335:lim 309:is 206:on 173:≄ 4 166:= 3 155:= 2 102:or 92:In 87:SAP 69:(a 59:SAW 49:In 3240:: 2873:, 2869:, 2865:, 2861:, 2857:, 1890:" 1298:. 1245:. 1235:44 1233:. 1216:. 1208:. 1198:50 1196:. 1128:. 1114:. 1110:. 1087:. 1079:. 1071:. 1059:49 1057:. 1034:. 1026:. 1018:. 1010:. 998:71 996:. 973:. 963:. 955:. 943:72 941:. 914:. 906:. 892:. 859:. 855:. 830:86 828:. 824:. 798:. 788:. 778:. 770:. 756:. 752:. 630:= 547:32 544:11 501:32 498:11 307:} 286:≀ 258:+ 116:. 2877:) 2853:( 1974:e 1967:t 1960:v 1886:" 1353:e 1346:t 1339:v 1326:. 1304:. 1285:N 1281:N 1277:N 1273:N 1253:. 1249:: 1241:: 1224:. 1212:: 1204:: 1187:. 1168:. 1138:. 1132:: 1122:: 1116:4 1095:. 1083:: 1075:: 1065:: 1042:. 1022:: 1014:: 1004:: 981:. 959:: 949:: 922:. 910:: 900:: 873:. 867:: 840:. 836:: 806:. 782:: 774:: 764:: 758:9 733:. 646:. 641:3 638:/ 635:8 628:Îș 605:n 600:n 539:n 528:ÎŒ 522:n 493:n 487:n 474:n 470:c 452:ÎŒ 435:. 428:2 423:+ 420:2 405:ÎŒ 401:ÎŒ 396:n 394:c 386:ÎŒ 370:. 364:n 361:1 355:n 351:c 339:n 331:= 304:n 302:c 294:m 292:c 290:n 288:c 283:m 281:+ 279:n 275:c 270:m 266:n 262:) 260:m 256:n 254:( 250:n 245:n 243:c 216:n 208:n 177:2 171:d 164:d 153:d 105:R 99:R 85:( 57:( 20:)

Index

Self-avoiding random walk


sequential Monte Carlo
mathematics
sequence
lattice
lattice path
graph theoretical
path
computational physics
excluded volume
random walk
topological
knot-theoretic
proteins
Paul Flory
solvents
polymers
fractals
fractal dimension
critical dimension
surface geometry
simulations
pivot algorithm
Markov chain Monte Carlo
measure
symmetrical
computational problem
universality

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑