Knowledge (XXG)

Dual polyhedron

Source đź“ť

1206: 122: 905:(mentioned below). Failing that, for a polyhedron with a circumscribed sphere, inscribed sphere, or midsphere (one with all edges as tangents), this can be used. However, it is possible to reciprocate a polyhedron about any sphere, and the resulting form of the dual will depend on the size and position of the sphere; as the sphere is varied, so too is the dual form. The choice of center for the sphere is sufficient to define the dual up to similarity. 945: 31: 932:, where lines and edges are interchanged. Projective polarity works well enough for convex polyhedra. But for non-convex figures such as star polyhedra, when we seek to rigorously define this form of polyhedral duality in terms of projective polarity, various problems appear. Because of the definitional issues for geometric duality of non-convex polyhedra, 1194: 912:
has a face plane, edge line, or vertex lying on the center of the sphere, the corresponding element of its dual will go to infinity. Since Euclidean space never reaches infinity, the projective equivalent, called extended Euclidean space, may be formed by adding the required 'plane at infinity'. Some
1000:
Even when a pair of polyhedra cannot be obtained by reciprocation from each other, they may be called duals of each other as long as the vertices of one correspond to the faces of the other, and the edges of one correspond to the edges of the other, in an incidence-preserving way. Such pairs of
1035:(poset) of elements, such that incidences, or connections, between elements of the set correspond to incidences between elements (faces, edges, vertices) of a polyhedron. Every such poset has a dual poset, formed by reversing all of the order relations. If the poset is visualized as a 1071:
which is geometrically self-dual about its intersphere: all angles are congruent, as are all edges, so under duality these congruences swap. Similarly, every topologically self-dual convex polyhedron can be realized by an equivalent geometrically self-dual polyhedron, its
189:
about a sphere. Here, each vertex (pole) is associated with a face plane (polar plane or just polar) so that the ray from the center to the vertex is perpendicular to the plane, and the product of the distances from the center to each is equal to the square of the radius.
1095:(with the same number of sides). Adding a frustum (pyramid with the top cut off) below the prism generates another infinite family, and so on. There are many other convex self-dual polyhedra. For example, there are 6 different ones with 7 vertices and 16 with 8 vertices. 1023:
More generally, for any polyhedron whose faces form a closed surface, the vertices and edges of the polyhedron form a graph embedded on this surface, and the vertices and edges of the (abstract) dual polyhedron form the dual graph of the original graph.
971:
If we reciprocate such a canonical polyhedron about its midsphere, the dual polyhedron will share the same edge-tangency points, and thus will also be canonical. It is the canonical dual, and the two together form a canonical dual compound.
1042:
Every geometric polyhedron corresponds to an abstract polyhedron in this way, and has an abstract dual polyhedron. However, for some types of non-convex geometric polyhedra, the dual polyhedra may not be realizable geometrically.
1059:. Geometrically, it is not only topologically self-dual, but its polar reciprocal about a certain point, typically its centroid, is a similar figure. For example, the dual of a regular tetrahedron is another regular tetrahedron, 1066:
Every polygon is topologically self-dual, since it has the same number of vertices as edges, and these are switched by duality. But it is not necessarily self-dual (up to rigid motion, for instance). Every polygon has a
1098:
A self-dual non-convex icosahedron with hexagonal faces was identified by BrĂĽckner in 1900. Other non-convex self-dual polyhedra have been found, under certain definitions of non-convex polyhedra and their duals.
77:
of a polyhedron. Therefore, for many classes of polyhedra defined by their symmetries, the duals belong to a corresponding symmetry class. For example, the regular polyhedra – the (convex)
370: 618: 277: 704: 968:(or intersphere) exists tangent to every edge, and such that the average position of the points of tangency is the center of the sphere. This form is unique up to congruences. 892: 845: 798: 751: 645: 444: 66:
of the other, and the edges between pairs of vertices of one correspond to the edges between pairs of faces of the other. Such dual figures remain combinatorial or
416: 517: 865: 818: 771: 724: 540: 488: 468: 390: 297: 211: 183: 70:, but not all can also be constructed as geometric polyhedra. Starting with any given polyhedron, the dual of its dual is the original polyhedron. 1642: 1169:
polytopes, the dual facets will be polar reciprocals of the original's vertex figure. For example, in four dimensions, the vertex figure of the
1821: 1731: 1551: 1161:
In general, the facets of a polytope's dual will be the topological duals of the polytope's vertex figures. For the polar reciprocals of the
147:
There are many kinds of duality. The kinds most relevant to elementary polyhedra are polar reciprocity and topological or abstract duality.
1535:
ICGG 2018 - Proceedings of the 18th International Conference on Geometry and Graphics: 40th Anniversary - Milan, Italy, August 3-7, 2018
1373: 1851: 1349: 1210: 113:, a geometric transformation that, when applied to a convex polyhedron, realizes the dual polyhedron as another convex polyhedron. 545: 304: 1377: 1878: 1754: 1359: 1012:
of the polyhedron), embedded on the surface of the polyhedron (a topological sphere). This graph can be projected to form a
1060: 925: 83: 1972: 1566: 1381: 1369: 1393: 1363: 1205: 1967: 1338: 1055:
if its dual has exactly the same connectivity between vertices, edges, and faces. Abstractly, they have the same
917:
found a way to represent these infinite duals, in a manner suitable for making models (of some finite portion).
1342: 1284: 493:
Typically when no sphere is specified in the construction of the dual, then the unit sphere is used, meaning
216: 1797: 989: 902: 1532:
Wohlleben, Eva (2019), "Duality in Non-Polyhedral Bodies Part I: Polyliner", in Cocchiarella, Luigi (ed.),
936:
argues that any proper definition of a non-convex polyhedron should include a notion of a dual polyhedron.
1709: 650: 1355: 1032: 1322: 1292: 1155: 1073: 961: 121: 1714: 1174: 929: 186: 156: 98:
polyhedron (one in which any two vertices are equivalent under symmetries of the polyhedron) is an
1977: 1962: 1677: 1538:, Advances in Intelligent Systems and Computing, vol. 809, Springer, p. 485–486, 1084: 1083:
There are infinitely many geometrically self-dual polyhedra. The simplest infinite family is the
981: 898: 1793: 1749: 1689: 1225: 870: 823: 776: 729: 623: 984:, each face of the dual polyhedron may be derived from the original polyhedron's corresponding 1935: 1916: 1897: 1874: 1847: 1817: 1801: 1727: 1547: 1533: 1408: 1088: 1028: 952:
of cuboctahedron (light) and rhombic dodecahedron (dark). Pairs of edges meet on their common
423: 67: 59: 1839: 1809: 1771: 1763: 1719: 1669: 1539: 1218: 1166: 1162: 1092: 1013: 140: 99: 1861: 1831: 1785: 1741: 1652: 1857: 1827: 1781: 1737: 1648: 1403: 1330: 1311: 1248: 1068: 1016:
on a flat plane. The graph formed by the vertices and edges of the dual polyhedron is the
909: 395: 162: 103: 95: 63: 1939: 496: 1570: 102:
polyhedron (one in which any two faces are equivalent ), and vice versa. The dual of an
1280: 1091:, consists of polyhedra that can be roughly described as a pyramid sitting on top of a 913:
theorists prefer to stick to Euclidean space and say that there is no dual. Meanwhile,
850: 803: 756: 709: 525: 473: 453: 375: 282: 196: 168: 126: 79: 42:. Vertices of one correspond to faces of the other, and edges correspond to each other. 1920: 944: 1956: 1697: 1681: 1305: 1198: 1056: 1036: 985: 949: 1901: 1580: 1039:, the dual poset can be visualized simply by turning the Hasse diagram upside down. 1701: 1693: 1638: 1398: 1182: 1120: 1005: 30: 1806:
Shaping Space: Exploring polyhedra in nature, art, and the geometrical imagination
1708:, Algorithms and Combinatorics, vol. 25, Berlin: Springer, pp. 461–488, 129:
can be constructed by connecting the face centers. In general this creates only a
17: 1813: 1723: 1255: 1222: 447: 87: 1767: 1673: 1543: 1237: 1233: 1229: 1017: 1009: 51: 39: 1944: 1925: 1906: 1299: 1077: 965: 953: 106:
polyhedron (one in which any two edges are equivalent ) is also isotoxal.
1662:
International Journal of Mathematical Education in Science and Technology
1590:
Anthony M. Cutler and Egon Schulte; "Regular Polyhedra of Index Two", I;
1461:, Pages 3-5. (Note, Wenninger's discussion includes nonconvex polyhedra.) 1178: 1170: 1114: 74: 47: 1273: 1266: 1776: 1494:
also discusses some issues on the way to deriving his infinite duals.
213:
and is centered at the origin (so that it is defined by the equation
136: 1706:
Discrete and Computational Geometry: The Goodman–Pollack Festschrift
1193: 1204: 1192: 1130:− 1)-dimensional elements, or facets, of the other, and the 943: 29: 901:, it is common to use a sphere centered on this point, as in the 27:
Polyhedron associated with another by swapping vertices for faces
35: 800:. The correspondence between the vertices, edges, and faces of 1577: 1611:, Vol. A 30, Part 4 July 1974, Fig. 3c and accompanying text. 1201:, {4,4}, is self-dual, as shown by these red and blue tilings 1692:(2003), "Are your polyhedra the same as my polyhedra?", in 1434:, "Basic notions about stellation and duality", p. 1. 365:{\displaystyle P^{\circ }=\{q~{\big |}~q\cdot p\leq r^{2}} 1660:
Gailiunas, P.; Sharp, J. (2005), "Duality of polyhedra",
1213:, {∞,∞} in red, and its dual position in blue 1573:, based on paper by Gunnar Brinkmann, Brendan D. McKay, 1001:
polyhedra are still topologically or abstractly dual.
1004:
The vertices and edges of a convex polyhedron form a
873: 853: 826: 806: 779: 759: 732: 712: 653: 626: 548: 528: 499: 476: 456: 426: 398: 378: 307: 285: 219: 199: 171: 86: – form dual pairs, where the regular 1752:(2007), "Graphs of polyhedra; polyhedra as graphs", 1138:− 1)-dimensional element will correspond to 886: 859: 839: 812: 792: 765: 745: 718: 698: 639: 612: 534: 511: 482: 462: 438: 410: 384: 364: 291: 271: 205: 177: 1483: 1126:The vertices of one polytope correspond to the ( 620:the corresponding vertex of the dual polyhedron 1622:Vielecke und Vielflache: Theorie und Geschichte 847:reverses inclusion. For example, if an edge of 1487: 960:Any convex polyhedron can be distorted into a 279:), then the polar dual of a convex polyhedron 1217:The primary class of self-dual polytopes are 894:will be contained in the corresponding face. 867:contains a vertex, the corresponding edge of 332: 8: 1515: 1454: 402: 321: 1607:N. J. Bridge; "Faceting the Dodecahedron", 1598:April 2011, Volume 52, Issue 1, pp 133–161. 1571:Symmetries of Canonical Self-Dual Polyhedra 1291:The self-dual (infinite) regular Euclidean 1228:. All regular polygons, {a} are self-dual, 613:{\displaystyle x_{0}x+y_{0}y+z_{0}z=r^{2},} 1873:, Providence: American Mathematical Soc., 1051:Topologically, a polyhedron is said to be 1775: 1713: 1647:(2nd ed.), Oxford: Clarendon Press, 1519: 1491: 1458: 1431: 1185:, which are the dual of the icosahedron. 914: 878: 872: 852: 831: 825: 805: 784: 778: 758: 737: 731: 711: 687: 674: 661: 652: 631: 625: 601: 585: 569: 553: 547: 527: 498: 475: 455: 425: 397: 377: 356: 331: 330: 312: 306: 284: 263: 250: 237: 224: 218: 198: 170: 1808:, New York: Springer, pp. 211–216, 1503: 1470: 1443: 933: 130: 120: 91: 1424: 272:{\displaystyle x^{2}+y^{2}+z^{2}=r^{2}} 1150:)-dimensional element. The dual of an 1142:hyperplanes that intersect to give a ( 1596:Contributions to Algebra and Geometry 1243:The self-dual regular polytopes are: 1189:Self-dual polytopes and tessellations 1076:, reciprocal about the center of the 7: 1800:(2013), "Duality of polyhedra", in 1368:Paracompact hyperbolic honeycombs: 1177:; the dual of the 600-cell is the 699:{\displaystyle (x_{0},y_{0},z_{0})} 1592:Beiträge zur Algebra und Geometrie 1119:in two dimension these are called 25: 1329:The self-dual (infinite) regular 1211:Infinite-order apeirogonal tiling 542:described by the linear equation 1575:Fast generation of planar graphs 1103:Dual polytopes and tessellations 1457:, 3.2 Duality, pp. 78–79; 1354:Compact hyperbolic honeycombs: 1348:Paracompact hyperbolic tiling: 924:here is closely related to the 773:corresponds to an edge line of 726:corresponds to a face plane of 1846:, Cambridge University Press, 1484:GrĂĽnbaum & Shephard (2013) 1276:in 4 dimensions, {3,4,3}. 1107:Duality can be generalized to 693: 654: 109:Duality is closely related to 1: 1154:-dimensional tessellation or 185:is often defined in terms of 1869:Barvinok, Alexander (2002), 1814:10.1007/978-0-387-92714-5_15 1724:10.1007/978-3-642-55566-4_21 1488:Gailiunas & Sharp (2005) 1337:Compact hyperbolic tilings: 1240:of the form {a,b,b,a}, etc. 1061:reflected through the origin 706:. Similarly, each vertex of 54:is associated with a second 1506:, Theorem 3.1, p. 449. 1087:. Another infinite family, 193:When the sphere has radius 165:, the dual of a polyhedron 1994: 1768:10.1016/j.disc.2005.09.037 1516:Cundy & Rollett (1961) 1455:Cundy & Rollett (1961) 1394:Conway polyhedron notation 1158:can be defined similarly. 887:{\displaystyle P^{\circ }} 840:{\displaystyle P^{\circ }} 793:{\displaystyle P^{\circ }} 746:{\displaystyle P^{\circ }} 640:{\displaystyle P^{\circ }} 519:in the above definitions. 154: 1674:10.1080/00207390500064049 1641:; Rollett, A. P. (1961), 1624:, Teubner, Leipzig, 1900. 1544:10.1007/978-3-319-95588-9 62:of one correspond to the 1317:In general, all regular 1285:grand stellated 120-cell 1261:In general, all regular 990:Dorman Luke construction 976:Dorman Luke construction 903:Dorman Luke construction 897:For a polyhedron with a 753:, and each edge line of 439:{\displaystyle q\cdot p} 84:Kepler–Poinsot polyhedra 1321:-dimensional Euclidean 1111:-dimensional space and 1020:of the original graph. 522:For each face plane of 1940:"Self-dual polyhedron" 1609:Acta Crystallographica 1214: 1202: 1134:points that define a ( 957: 888: 861: 841: 814: 794: 767: 747: 720: 700: 647:will have coordinates 641: 614: 536: 513: 484: 464: 440: 412: 386: 366: 293: 273: 207: 179: 144: 73:Duality preserves the 43: 1871:A course in convexity 1323:hypercubic honeycombs 1236:of the form {a,b,a}, 1208: 1196: 1033:partially ordered set 1031:is a certain kind of 947: 889: 862: 842: 815: 795: 768: 748: 721: 701: 642: 615: 537: 514: 485: 465: 446:denotes the standard 441: 413: 387: 367: 294: 274: 208: 180: 124: 58:structure, where the 33: 1755:Discrete Mathematics 1074:canonical polyhedron 871: 851: 824: 804: 777: 757: 730: 710: 651: 624: 546: 526: 497: 474: 454: 424: 411:{\displaystyle P\},} 396: 376: 305: 283: 217: 197: 169: 1973:Self-dual polyhedra 1921:"Dual tessellation" 1644:Mathematical Models 1232:of the form {a,a}, 1181:, whose facets are 1047:Self-dual polyhedra 1029:abstract polyhedron 996:Topological duality 930:projective geometry 908:If a polyhedron in 512:{\displaystyle r=1} 187:polar reciprocation 157:Polar reciprocation 151:Polar reciprocation 1936:Weisstein, Eric W. 1917:Weisstein, Eric W. 1898:Weisstein, Eric W. 1802:Senechal, Marjorie 1283:{5,5/2,5} and the 1215: 1203: 1089:elongated pyramids 982:uniform polyhedron 964:, in which a unit 958: 899:center of symmetry 884: 857: 837: 810: 790: 763: 743: 716: 696: 637: 610: 532: 509: 480: 460: 436: 408: 382: 362: 289: 269: 203: 175: 145: 68:abstract polyhedra 44: 18:Self-dual polytope 1902:"Dual polyhedron" 1840:Wenninger, Magnus 1823:978-0-387-92713-8 1733:978-3-642-62442-1 1696:; Basu, Saugata; 1553:978-3-319-95588-9 1409:Self-dual polygon 1350:{∞,∞} 1219:regular polytopes 860:{\displaystyle P} 813:{\displaystyle P} 766:{\displaystyle P} 719:{\displaystyle P} 535:{\displaystyle P} 483:{\displaystyle p} 463:{\displaystyle q} 385:{\displaystyle p} 339: 329: 292:{\displaystyle P} 206:{\displaystyle r} 178:{\displaystyle P} 111:polar reciprocity 94:. The dual of an 16:(Redirected from 1985: 1968:Duality theories 1949: 1948: 1930: 1929: 1911: 1910: 1883: 1864: 1834: 1794:GrĂĽnbaum, Branko 1788: 1779: 1762:(3–5): 445–463, 1750:GrĂĽnbaum, Branko 1744: 1717: 1690:GrĂĽnbaum, Branko 1684: 1655: 1639:Cundy, H. Martyn 1625: 1618: 1612: 1605: 1599: 1588: 1582: 1563: 1557: 1556: 1529: 1523: 1520:Wenninger (1983) 1518:, p.  117; 1513: 1507: 1501: 1495: 1492:Wenninger (1983) 1482:See for example 1480: 1474: 1468: 1462: 1459:Wenninger (1983) 1452: 1446: 1441: 1435: 1432:Wenninger (1983) 1429: 1333:honeycombs are: 1325:: {4,3,...,3,4}. 1249:regular polygons 1226:Schläfli symbols 1014:Schlegel diagram 915:Wenninger (1983) 893: 891: 890: 885: 883: 882: 866: 864: 863: 858: 846: 844: 843: 838: 836: 835: 819: 817: 816: 811: 799: 797: 796: 791: 789: 788: 772: 770: 769: 764: 752: 750: 749: 744: 742: 741: 725: 723: 722: 717: 705: 703: 702: 697: 692: 691: 679: 678: 666: 665: 646: 644: 643: 638: 636: 635: 619: 617: 616: 611: 606: 605: 590: 589: 574: 573: 558: 557: 541: 539: 538: 533: 518: 516: 515: 510: 489: 487: 486: 481: 469: 467: 466: 461: 445: 443: 442: 437: 417: 415: 414: 409: 391: 389: 388: 383: 371: 369: 368: 363: 361: 360: 337: 336: 335: 327: 317: 316: 298: 296: 295: 290: 278: 276: 275: 270: 268: 267: 255: 254: 242: 241: 229: 228: 212: 210: 209: 204: 184: 182: 181: 176: 141:Harmonices Mundi 131:topological dual 117:Kinds of duality 21: 1993: 1992: 1988: 1987: 1986: 1984: 1983: 1982: 1953: 1952: 1934: 1933: 1915: 1914: 1896: 1895: 1892: 1887: 1881: 1868: 1854: 1838: 1824: 1798:Shephard, G. C. 1792: 1748: 1734: 1688: 1659: 1637: 1633: 1628: 1619: 1615: 1606: 1602: 1589: 1585: 1564: 1560: 1554: 1531: 1530: 1526: 1514: 1510: 1504:GrĂĽnbaum (2007) 1502: 1498: 1481: 1477: 1471:Barvinok (2002) 1469: 1465: 1453: 1449: 1444:GrĂĽnbaum (2003) 1442: 1438: 1430: 1426: 1422: 1417: 1404:Self-dual graph 1390: 1312:Cubic honeycomb 1191: 1105: 1049: 998: 978: 942: 940:Canonical duals 934:GrĂĽnbaum (2007) 920:The concept of 910:Euclidean space 874: 869: 868: 849: 848: 827: 822: 821: 802: 801: 780: 775: 774: 755: 754: 733: 728: 727: 708: 707: 683: 670: 657: 649: 648: 627: 622: 621: 597: 581: 565: 549: 544: 543: 524: 523: 495: 494: 472: 471: 452: 451: 422: 421: 418: 394: 393: 374: 373: 352: 308: 303: 302: 281: 280: 259: 246: 233: 220: 215: 214: 195: 194: 167: 166: 163:Euclidean space 159: 153: 134: 119: 80:Platonic solids 28: 23: 22: 15: 12: 11: 5: 1991: 1989: 1981: 1980: 1975: 1970: 1965: 1955: 1954: 1951: 1950: 1931: 1912: 1891: 1890:External links 1888: 1886: 1885: 1879: 1866: 1852: 1836: 1822: 1790: 1746: 1732: 1715:10.1.1.102.755 1686: 1668:(6): 617–642, 1657: 1634: 1632: 1629: 1627: 1626: 1620:BrĂĽckner, M.; 1613: 1600: 1583: 1558: 1552: 1524: 1508: 1496: 1475: 1463: 1447: 1436: 1423: 1421: 1418: 1416: 1413: 1412: 1411: 1406: 1401: 1396: 1389: 1386: 1385: 1384: 1366: 1352: 1346: 1327: 1326: 1315: 1309: 1303: 1289: 1288: 1281:great 120-cell 1277: 1270: 1259: 1252: 1190: 1187: 1104: 1101: 1048: 1045: 997: 994: 977: 974: 962:canonical form 941: 938: 881: 877: 856: 834: 830: 809: 787: 783: 762: 740: 736: 715: 695: 690: 686: 682: 677: 673: 669: 664: 660: 656: 634: 630: 609: 604: 600: 596: 593: 588: 584: 580: 577: 572: 568: 564: 561: 556: 552: 531: 508: 505: 502: 479: 459: 435: 432: 429: 407: 404: 401: 381: 359: 355: 351: 348: 345: 342: 334: 326: 323: 320: 315: 311: 301: 299:is defined as 288: 266: 262: 258: 253: 249: 245: 240: 236: 232: 227: 223: 202: 174: 152: 149: 127:Platonic solid 125:The dual of a 118: 115: 34:The dual of a 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1990: 1979: 1976: 1974: 1971: 1969: 1966: 1964: 1961: 1960: 1958: 1947: 1946: 1941: 1937: 1932: 1928: 1927: 1922: 1918: 1913: 1909: 1908: 1903: 1899: 1894: 1893: 1889: 1882: 1876: 1872: 1867: 1863: 1859: 1855: 1853:0-521-54325-8 1849: 1845: 1841: 1837: 1833: 1829: 1825: 1819: 1815: 1811: 1807: 1803: 1799: 1795: 1791: 1787: 1783: 1778: 1773: 1769: 1765: 1761: 1757: 1756: 1751: 1747: 1743: 1739: 1735: 1729: 1725: 1721: 1716: 1711: 1707: 1703: 1702:Sharir, Micha 1699: 1695: 1694:Aronov, Boris 1691: 1687: 1683: 1679: 1675: 1671: 1667: 1663: 1658: 1654: 1650: 1646: 1645: 1640: 1636: 1635: 1630: 1623: 1617: 1614: 1610: 1604: 1601: 1597: 1593: 1587: 1584: 1581: 1579: 1576: 1572: 1568: 1562: 1559: 1555: 1549: 1545: 1541: 1537: 1536: 1528: 1525: 1522:, p. 30. 1521: 1517: 1512: 1509: 1505: 1500: 1497: 1493: 1489: 1485: 1479: 1476: 1472: 1467: 1464: 1460: 1456: 1451: 1448: 1445: 1440: 1437: 1433: 1428: 1425: 1419: 1414: 1410: 1407: 1405: 1402: 1400: 1397: 1395: 1392: 1391: 1387: 1383: 1379: 1375: 1371: 1367: 1365: 1361: 1357: 1353: 1351: 1347: 1344: 1340: 1336: 1335: 1334: 1332: 1324: 1320: 1316: 1313: 1310: 1307: 1306:Square tiling 1304: 1301: 1298: 1297: 1296: 1294: 1286: 1282: 1278: 1275: 1271: 1269:, {3,3,...,3} 1268: 1264: 1260: 1257: 1253: 1250: 1246: 1245: 1244: 1241: 1239: 1235: 1231: 1227: 1224: 1220: 1212: 1207: 1200: 1199:square tiling 1195: 1188: 1186: 1184: 1180: 1176: 1172: 1168: 1164: 1159: 1157: 1153: 1149: 1145: 1141: 1137: 1133: 1129: 1124: 1122: 1121:dual polygons 1118: 1116: 1110: 1102: 1100: 1096: 1094: 1090: 1086: 1081: 1079: 1075: 1070: 1064: 1062: 1058: 1057:Hasse diagram 1054: 1046: 1044: 1040: 1038: 1037:Hasse diagram 1034: 1030: 1025: 1021: 1019: 1015: 1011: 1007: 1002: 995: 993: 991: 988:by using the 987: 986:vertex figure 983: 975: 973: 969: 967: 963: 955: 951: 950:dual compound 946: 939: 937: 935: 931: 927: 923: 918: 916: 911: 906: 904: 900: 895: 879: 875: 854: 832: 828: 807: 785: 781: 760: 738: 734: 713: 688: 684: 680: 675: 671: 667: 662: 658: 632: 628: 607: 602: 598: 594: 591: 586: 582: 578: 575: 570: 566: 562: 559: 554: 550: 529: 520: 506: 503: 500: 491: 477: 457: 449: 433: 430: 427: 405: 399: 379: 357: 353: 349: 346: 343: 340: 324: 318: 313: 309: 300: 286: 264: 260: 256: 251: 247: 243: 238: 234: 230: 225: 221: 200: 191: 188: 172: 164: 158: 150: 148: 142: 138: 132: 128: 123: 116: 114: 112: 107: 105: 101: 97: 93: 89: 85: 81: 76: 71: 69: 65: 61: 57: 53: 49: 41: 37: 32: 19: 1943: 1924: 1905: 1870: 1843: 1805: 1759: 1753: 1705: 1665: 1661: 1643: 1631:Bibliography 1621: 1616: 1608: 1603: 1595: 1591: 1586: 1574: 1561: 1534: 1527: 1511: 1499: 1478: 1466: 1450: 1439: 1427: 1399:Dual polygon 1345:, ... {p,p}. 1328: 1318: 1290: 1272:The regular 1262: 1242: 1216: 1160: 1151: 1147: 1143: 1139: 1135: 1131: 1127: 1125: 1112: 1108: 1106: 1097: 1082: 1069:regular form 1065: 1052: 1050: 1041: 1026: 1022: 1003: 999: 979: 970: 959: 921: 919: 907: 896: 521: 492: 419: 192: 160: 146: 135:Images from 110: 108: 72: 55: 45: 1844:Dual Models 1698:Pach, János 1473:, Page 143. 1382:{3,3,4,3,3} 1302:: {∞} 1287:{5/2,5,5/2} 1256:tetrahedron 1238:5-polytopes 1234:4-polytopes 1223:palindromic 1183:dodecahedra 1175:icosahedron 448:dot product 88:tetrahedron 82:and (star) 1957:Categories 1880:0821829688 1569:models at 1415:References 1331:hyperbolic 1293:honeycombs 1018:dual graph 1010:1-skeleton 948:Canonical 155:See also: 75:symmetries 52:polyhedron 40:octahedron 1978:Polytopes 1963:Polyhedra 1945:MathWorld 1926:MathWorld 1907:MathWorld 1777:1773/2276 1710:CiteSeerX 1682:120818796 1364:{5,3,3,5} 1314:: {4,3,4} 1300:Apeirogon 1267:simplexes 1230:polyhedra 1156:honeycomb 1115:polytopes 1078:midsphere 1053:self-dual 966:midsphere 954:midsphere 880:∘ 833:∘ 786:∘ 739:∘ 633:∘ 431:⋅ 350:≤ 344:⋅ 314:∘ 100:isohedral 92:self-dual 1842:(1983), 1704:(eds.), 1388:See also 1254:Regular 1179:120-cell 1171:600-cell 1146:− 1085:pyramids 372:for all 104:isotoxal 96:isogonal 60:vertices 50:, every 48:geometry 1862:0730208 1832:3077226 1804:(ed.), 1786:2287486 1742:2038487 1653:0124167 1378:{4,4,4} 1374:{6,3,6} 1370:{3,6,3} 1360:{5,3,5} 1356:{3,5,3} 1308:: {4,4} 1274:24-cell 1258:: {3,3} 1173:is the 1167:uniform 1163:regular 926:duality 922:duality 1877:  1860:  1850:  1830:  1820:  1784:  1740:  1730:  1712:  1680:  1651:  1550:  1486:, and 1380:, and 1362:, and 1251:, {a}. 980:For a 420:where 338:  328:  143:(1619) 137:Kepler 38:is an 1678:S2CID 1420:Notes 1343:{6,6} 1339:{5,5} 1295:are: 1221:with 1113:dual 1093:prism 1008:(the 1006:graph 64:faces 1875:ISBN 1848:ISBN 1818:ISBN 1728:ISBN 1567:Java 1548:ISBN 1279:The 1247:All 1209:The 1197:The 1165:and 820:and 470:and 56:dual 36:cube 1810:doi 1772:hdl 1764:doi 1760:307 1720:doi 1670:doi 1578:PDF 1565:3D 1540:doi 1027:An 928:in 450:of 392:in 161:In 139:'s 90:is 46:In 1959:: 1942:, 1938:, 1923:, 1919:, 1904:, 1900:, 1858:MR 1856:, 1828:MR 1826:, 1816:, 1796:; 1782:MR 1780:, 1770:, 1758:, 1738:MR 1736:, 1726:, 1718:, 1700:; 1676:, 1666:36 1664:, 1649:MR 1594:/ 1546:, 1490:. 1376:, 1372:, 1358:, 1341:, 1123:. 1080:. 1063:. 992:. 490:. 1884:. 1865:. 1835:. 1812:: 1789:. 1774:: 1766:: 1745:. 1722:: 1685:. 1672:: 1656:. 1542:: 1319:n 1265:- 1263:n 1152:n 1148:j 1144:n 1140:j 1136:j 1132:j 1128:n 1117:; 1109:n 956:. 876:P 855:P 829:P 808:P 782:P 761:P 735:P 714:P 694:) 689:0 685:z 681:, 676:0 672:y 668:, 663:0 659:x 655:( 629:P 608:, 603:2 599:r 595:= 592:z 587:0 583:z 579:+ 576:y 571:0 567:y 563:+ 560:x 555:0 551:x 530:P 507:1 504:= 501:r 478:p 458:q 434:p 428:q 406:, 403:} 400:P 380:p 358:2 354:r 347:p 341:q 333:| 325:q 322:{ 319:= 310:P 287:P 265:2 261:r 257:= 252:2 248:z 244:+ 239:2 235:y 231:+ 226:2 222:x 201:r 173:P 133:. 20:)

Index

Self-dual polytope

cube
octahedron
geometry
polyhedron
vertices
faces
abstract polyhedra
symmetries
Platonic solids
Kepler–Poinsot polyhedra
tetrahedron
self-dual
isogonal
isohedral
isotoxal

Platonic solid
topological dual
Kepler
Harmonices Mundi
Polar reciprocation
Euclidean space
polar reciprocation
dot product
center of symmetry
Dorman Luke construction
Euclidean space
Wenninger (1983)

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑