Knowledge (XXG)

Semi-Lagrangian scheme

Source 📝

372:
In a Lagrangian scheme, individual air parcels are traced but there are clearly certain drawbacks: the number of parcels can be very large indeed and it may often happen for a large number of parcels to cluster together, leaving relatively large regions of space completely empty. Such voids can
388:
Semi-Lagrangian schemes use a regular (Eulerian) grid, just like finite difference methods. The idea is this: at every time step the point where a parcel originated from is calculated. An interpolation scheme is then utilized to estimate the value of the dependent variable at the grid points
164: 40:
description, which considers the rate of change of system variables fixed at a particular point in space. A semi-Lagrangian scheme uses Eulerian framework but the discrete equations come from the Lagrangian perspective.
310: 367: 398: 37: 29: 74: 334: 208: 483: 236: 186: 67: 373:
cause computational problems, e.g. when calculating spatial derivatives of various quantities. There are ways round this, such as the technique known as
389:
surrounding the point where the particle originated from. The references listed contain more details on how the Semi-Lagrangian scheme is applied.
418: 254: 374: 336:
are the (dependent) variables describing a parcel of air (such as velocity, pressure, temperature etc.) and the function
408: 25: 377:, where a dependent variable is expressed in non-local form, i.e. as an integral of itself times a kernel function. 339: 413: 458: 159:{\displaystyle {\frac {DF}{Dt}}={\frac {\partial F}{\partial t}}+(\mathbf {v} \cdot {\vec {\nabla }})F,} 249:
It can be shown that the equations governing atmospheric motion can be written in the Lagrangian form
243: 380:
Semi-Lagrangian schemes avoid the problem of having regions of space essentially free of parcels.
317: 191: 403: 21: 210:
is the velocity field. The first term on the right-hand side of the above equation is the
36:) focuses on following individual air parcels along their trajectories as opposed to the 468: 443: 221: 171: 52: 477: 33: 28:
models for the integration of the equations governing atmospheric motion. A
450:(Chapter 3, Section 3.3.3), Cambridge University Press, Cambridge, 2003. 305:{\displaystyle {\frac {D\mathbf {V} }{Dt}}=\mathbf {S} (\mathbf {V} ),} 459:
http://www.ecmwf.int/sites/default/files/User_Guide_V1.2_20151123.pdf
433:: C++ trajectory library, including semi-Lagrangian tracer codes. 430: 242:. Note that the Lagrangian rate of change is also known as the 448:
Atmospheric Modeling, Data Assimilation and Predictability
399:
Lagrangian and Eulerian specification of the flow field
469:
http://kiwi.atmos.colostate.edu/group/dave/at604.html
342: 320: 257: 224: 194: 174: 77: 55: 361: 328: 304: 230: 202: 180: 158: 61: 8: 49:The Lagrangian rate of change of a quantity 362:{\displaystyle \mathbf {S} (\mathbf {V} )} 351: 343: 341: 321: 319: 291: 283: 264: 258: 256: 223: 195: 193: 173: 136: 135: 127: 101: 78: 76: 54: 238:and the second term is often called the 419:Stochastic Eulerian Lagrangian methods 455:User Guide to ECMWF forecast products 369:represents source and/or sink terms. 32:description of a system (such as the 7: 484:Numerical climate and weather models 188:can be a scalar or vector field and 314:where the components of the vector 467:(AT604, Chapter 5, Section 5.11), 138: 112: 104: 14: 352: 344: 322: 292: 284: 265: 196: 128: 375:Smoothed Particle Hydrodynamics 356: 348: 296: 288: 147: 141: 124: 1: 409:Trajectory (fluid mechanics) 329:{\displaystyle \mathbf {V} } 203:{\displaystyle \mathbf {v} } 26:numerical weather prediction 500: 384:The Semi-Lagrangian scheme 414:Immersed Boundary Methods 24:that is widely used in 363: 330: 306: 232: 204: 182: 160: 63: 18:Semi-Lagrangian scheme 364: 331: 307: 233: 205: 183: 161: 64: 465:Atmospheric Modeling 340: 318: 255: 222: 192: 172: 75: 53: 244:material derivative 359: 326: 302: 228: 218:rate of change of 200: 178: 156: 59: 457:(Section 2.1.3), 404:Contour advection 278: 231:{\displaystyle F} 181:{\displaystyle F} 144: 119: 96: 62:{\displaystyle F} 491: 368: 366: 365: 360: 355: 347: 335: 333: 332: 327: 325: 311: 309: 308: 303: 295: 287: 279: 277: 269: 268: 259: 237: 235: 234: 229: 209: 207: 206: 201: 199: 187: 185: 184: 179: 165: 163: 162: 157: 146: 145: 137: 131: 120: 118: 110: 102: 97: 95: 87: 79: 68: 66: 65: 60: 22:numerical method 499: 498: 494: 493: 492: 490: 489: 488: 474: 473: 440: 427: 395: 386: 338: 337: 316: 315: 270: 260: 253: 252: 220: 219: 190: 189: 170: 169: 111: 103: 88: 80: 73: 72: 51: 50: 47: 45:Some background 12: 11: 5: 497: 495: 487: 486: 476: 475: 472: 471: 463:D.A. Randall, 461: 451: 439: 436: 435: 434: 426: 425:External links 423: 422: 421: 416: 411: 406: 401: 394: 391: 385: 382: 358: 354: 350: 346: 324: 301: 298: 294: 290: 286: 282: 276: 273: 267: 263: 240:advection term 227: 198: 177: 155: 152: 149: 143: 140: 134: 130: 126: 123: 117: 114: 109: 106: 100: 94: 91: 86: 83: 58: 46: 43: 13: 10: 9: 6: 4: 3: 2: 496: 485: 482: 481: 479: 470: 466: 462: 460: 456: 452: 449: 445: 442: 441: 437: 432: 429: 428: 424: 420: 417: 415: 412: 410: 407: 405: 402: 400: 397: 396: 392: 390: 383: 381: 378: 376: 370: 312: 299: 280: 274: 271: 261: 250: 247: 245: 241: 225: 217: 213: 175: 166: 153: 150: 132: 121: 115: 107: 98: 92: 89: 84: 81: 70: 56: 44: 42: 39: 35: 31: 27: 23: 19: 464: 454: 453:A. Persson, 447: 387: 379: 371: 313: 251: 248: 239: 215: 211: 167: 71: 69:is given by 48: 17: 15: 20:(SLS) is a 438:References 34:atmosphere 30:Lagrangian 444:E. Kalnay 142:→ 139:∇ 133:⋅ 113:∂ 105:∂ 478:Category 393:See also 216:Eulerian 38:Eulerian 168:where 431:ctraj 212:local 16:The 214:or 480:: 446:, 246:. 357:) 353:V 349:( 345:S 323:V 300:, 297:) 293:V 289:( 285:S 281:= 275:t 272:D 266:V 262:D 226:F 197:v 176:F 154:, 151:F 148:) 129:v 125:( 122:+ 116:t 108:F 99:= 93:t 90:D 85:F 82:D 57:F

Index

numerical method
numerical weather prediction
Lagrangian
atmosphere
Eulerian
material derivative
Smoothed Particle Hydrodynamics
Lagrangian and Eulerian specification of the flow field
Contour advection
Trajectory (fluid mechanics)
Immersed Boundary Methods
Stochastic Eulerian Lagrangian methods
ctraj
E. Kalnay
http://www.ecmwf.int/sites/default/files/User_Guide_V1.2_20151123.pdf
http://kiwi.atmos.colostate.edu/group/dave/at604.html
Category
Numerical climate and weather models

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.