Knowledge (XXG)

Fluxional molecule

Source 📝

357: 325: 463:, but the barriers for these processes are typically high such that these processes do not lead to line broadening. For some compounds, dynamics occur via dissociation of a ligand, giving a pentacoordinate intermediate, which is subject to the mechanisms discussed above. Yet another mechanism, exhibited by Fe(CO) 491: 107:
and typically involves recording spectra at various temperatures. In the ideal case, low temperature spectra can be assigned to the "slow exchange limit", whereas spectra recorded at higher temperatures correspond to molecules at "fast exchange limit". Typically, high temperature spectra are simpler
497:
At temperatures near 100 °C, the 500 MHz H NMR spectrum of DMF shows only one signal for the methyl groups. Near room temperature, however, separate signals are seen for the non-equivalent methyl groups. The rate of exchange can be calculated at the temperature where the two signals are
306: 590:
is the difference in Hz between the frequencies of the exchanging sites. These frequencies are obtained from the limiting low-temperature NMR spectrum. At these lower temperatures, the dynamics continue, of course, but the contribution of the dynamics to line broadening is negligible.
130:
For processes that are too slow for traditional DNMR analysis, the technique spin saturation transfer (SST, also called EXSY for exchange spectroscopy) is applicable. This magnetization transfer technique gives rate information, provided that the rates exceed
1358:
Vancea, L.; Bennett, M. J.; Jones, C. E.; Smith, R. A.; Graham, W. A. G. (1977). "Stereochemically Nonrigid Six-Coordinate Metal Carbonyl Complexes. 1. Polytopal Rearrangement and X-Ray Structure of Tetracarbonylbis(trimethylsilyl)iron".
108:
than those recorded at low temperatures, since at high temperatures, equivalent sites are averaged out. Prior to the advent of DNMR, kinetics of reactions were measured on non-equilibrium mixtures, monitoring the approach to equilibrium.
581: 102:
Temperature dependent changes in the NMR spectra result from dynamics associated with the fluxional molecules when those dynamics proceed at rates comparable to the frequency differences observed by NMR. The experiment is called
167: 348:
and carbon-13 NMR spectra of cyclohexane show each only singlets near room temperature. At low temperatures, the singlet in the H NMR spectrum decoalesces but the C NMR spectrum remains unchanged.
655: 1425:; Davison, A.; Faller, J. W.; Lippard, S. J.; Morehouse, S. M. (1966). "Stereochemically Nonrigid Organometallic Compounds. I. π-Cyclopentadienyliron Dicarbonyl σ-Cyclopentadiene". 376:, even at temperatures as low as −100 °C, fails to distinguish the axial from the equatorial fluorine environments. The apparent equivalency arises from the low barrier for 1083:
Casey H. Londergan; Clifford P. Kubiak (2003). "Electron Transfer and Dynamic Infrared-Band Coalescence: It Looks Like Dynamic NMR Spectroscopy, but a Billion Times Faster".
373: 369: 340:. Carbon–hydrogen bonds that are axial in one configuration become equatorial in the other, and vice versa. At room temperature the two chair conformations rapidly 1143: 111:
Many molecular processes exhibit fluxionality that can be probed on the NMR time scale. Beyond the examples highlighted below, other classic examples include the
504: 396:: only one signal is observed in the C NMR spectrum near room temperature) whereas at low temperatures, two signals in a 2:3 ratio can be resolved. In 1048:
Jarek, R. L.; Flesher, R. J.; Shin, S. K. (1997). "Kinetics of Internal Rotation of N,N-Dimethylacetamide: A Spin-Saturation Transfer Experiment".
1342: 356: 301:{\displaystyle k\sim \Delta \nu _{\circ }\sim 2(10\mathrm {cm} ^{-1})(300\cdot 10^{8}\mathrm {cm/s} )\sim 6\times 10^{11}\mathrm {s} ^{-1}\cdot } 311:
Clearly, processes that induce line-broadening on the IR time-scale must be much more rapid than the cases that exchange on the NMR time scale.
901: 475:
and related hydride complexes, is intramolecular scrambling of ligands over the faces of the tetrahedron defined by the four CO ligands.
66:, the term fluxional depends on the context and the method used to assess the dynamics. Often, a molecule is considered fluxional if its 455:, featuring close-packed array of six ligating atoms surrounding a central atom. Such compounds do rearrange intramolecularly via the 1460: 1386:
H. S. Gutowsky; C. H. Holm (1956). "Rate Processes and Nuclear Magnetic Resonance Spectra. II. Hindered Internal Rotation of Amides".
372:
consists of a P-coupled doublet, indicating that the equatorial and axial fluorine centers interchange rapidly on the NMR timescale.
1478: 1127: 962: 875: 878: 694: 75: 427:
there is no rigid molecular structure; the H atoms are always in motion. More precisely, the spatial distribution of protons in
863:: The use of permutation-inversion groups for the symmetry classification of the states of fluxional (or non-rigid) molecules. 1165:-butylcyclohexane by Dynamic NMR Spectroscopy and Computational Methods. Observation of Chair and Twist-Boat Conformations". 78:) due to chemical exchange. In some cases, where the rates are slow, fluxionality is not detected spectroscopically, but by 452: 604: 58:
interchange between symmetry-equivalent positions. Because virtually all molecules are fluxional in some respects, e.g.
161:. Application of the equation for coalescence of two signals separated by 10 cm gives the following result: 365: 120: 59: 744:
ligand splits at low temperatures owing to the slow hopping of the Fe center from carbon to carbon in the η-C
451:
While nonrigidity is common for pentacoordinate species, six-coordinate species typically adopt a more rigid
1201:
Gutowsky, H. S.; McCall, D. W.; Slichter, C. P. (1953). "Nuclear Magnetic Resonance Multiplets in Liquids".
91: 150: 1339: 498:
just merged. This "coalescence temperature" depends on the measuring field. The relevant equation is:
1395: 1256: 1211: 1057: 1022: 844: 397: 341: 761: 802: 1282: 1137: 777: 385: 112: 1456: 1317: 1274: 1247: 1183: 1123: 1100: 958: 897: 871: 792: 752:
ligand. Two mechanisms have been proposed, with the consensus favoring the 1,2 shift pathway.
484: 154: 79: 35: 886:, Wiley, New York, 1975 (reprinted by Dover 1992), describing the term "semi-rigid molecule". 1434: 1422: 1403: 1368: 1309: 1264: 1219: 1175: 1092: 1065: 1030: 997: 933: 852: 132: 63: 891: 1346: 797: 381: 1300:
Thompson, KC; Crittenden, DL; Jordan, MJ (2005). "CH5+: Chemistry's chameleon unmasked".
1399: 1260: 1215: 1061: 1026: 848: 1203: 782: 576:{\displaystyle k={\frac {\pi \Delta \nu _{\circ }}{2^{1/2}}}\sim 2\Delta \nu _{\circ }} 456: 377: 324: 1472: 1167: 720:
At 30 °C, the H NMR spectrum shows only two peaks, one typical (δ5.6) of the η-C
424: 158: 71: 67: 1286: 1237:
Asvany, O.; Kumar P, P.; Redlich, B.; Hegemann, I.; Schlemmer, S.; Marx, D. (2005).
1001: 787: 460: 17: 404:), a similar pattern is observed even though this compound has only four ligands. 333: 124: 1451:
Robert B. Jordan, Reaction Mechanisms of Inorganic and Organometallic Systems (
925: 384:, by which the axial and equatorial fluorine atoms rapidly exchange positions. 857: 832: 766: 345: 116: 149:
Although less common, some dynamics are also observable on the time-scale of
1269: 1238: 938: 772: 658: 408: 337: 31: 1321: 1278: 1187: 1104: 1096: 51: 1438: 1372: 992:
John W. Faller "Stereochemical Nonrigidity of Organometallic Complexes"
1407: 1313: 1223: 1179: 1069: 1034: 778:
Molecular symmetry § Molecular rotation and molecular nonrigidity
328:
Cyclohexane chair flip (ring inversion) reaction via boat conformation
1340:
http://www.theochem.ruhr-uni-bochum.de/research/marx/topic4b.en.html
1157:
Gill, G.; Pawar, D. M.; Noe, E. A. (2005). "Conformational Study of
693: 490: 692: 323: 55: 27:
Molecules whose atoms interchange between symmetric positions
489: 355: 94:
exhibit fluxionality. Fluxionality is, however, pervasive.
827:, McGraw-Hill, New York, 1955 (reprinted by Dover 1980) 332:
The interconversion of equivalent chair conformers of
607: 507: 170: 54:
that undergo dynamics such that some or all of their
994:
Encyclopedia of Inorganic and Bioinorganic Chemistry
650:{\displaystyle k\sim 2(500)=1000\mathrm {s} ^{-1}} 649: 575: 300: 439:is many times broader than its parent molecule CH 352:Berry pseudorotation of pentacoordinate compounds 1013:Bryant, Robert G. (1983). "The NMR time scale". 1239:"Understanding the Infrared Spectrum of Bare CH 957:(2nd ed.). Philadelphia: W. B. Saunders. 823:E. B. Wilson, J. C. Decius, and P. C. Cross, 483:A classic example of a fluxional molecule is 8: 833:"The symmetry groups of non-rigid molecules" 690:exhibits the phenomenon of "ring whizzing". 336:(and many other cyclic compounds) is called 773:Hapticity § Hapticity and fluxionality 1142:: CS1 maint: location missing publisher ( 896:(2 ed.). Ottawa: NRC Research Press. 1268: 937: 856: 638: 633: 606: 567: 542: 538: 527: 514: 506: 286: 281: 274: 249: 242: 236: 211: 203: 184: 169: 818:Molecular Vibrational-Rotational Spectra 697:The structure of the ring whizzer Fe(η-C 917: 1334:For an animation of the dynamics of CH 1135: 1122:(2nd ed.). Oxford. p. 373. 890:Philip R. Bunker; Per Jensen (2006). 364:A prototypical fluxional molecule is 7: 407:A well-studied fluxional ion is the 893:Molecular Symmetry and Spectroscopy 868:Fundamentals of Molecular Symmetry 634: 560: 520: 360:Iron-pentacarbonyl-Berry-mechanism 282: 254: 246: 243: 207: 204: 177: 25: 736:. The singlet assigned to the η-C 392:) follows the pattern set for PF 76:Heisenberg uncertainty principle 1002:10.1002/9781119951438.eibc0211 831:Longuet-Higgins, H.C. (1963). 623: 617: 258: 223: 220: 196: 1: 1453:Topics in Inorganic Chemistry 1085:Chemistry: A European Journal 1050:Journal of Chemical Education 1015:Journal of Chemical Education 955:Physical Methods in Chemistry 816:D. Papoušek and M. R. Aliev, 453:octahedral molecular geometry 320:Cyclohexane and related rings 74:(beyond that dictated by the 866:P. R. Bunker and P. Jensen, 374:Fluorine-19 NMR spectroscopy 157:in a mixed-valence dimer of 996:2011, Wiley-VCH, Weinheim. 1495: 953:Drago, Russell S. (1977). 884:Molecular Rotation Spectra 728:and the other assigned η-C 858:10.1080/00268976300100501 820:Elsevier, Amsterdam, 1982 1479:Chemical bond properties 980:Dynamic NMR Spectroscopy 366:phosphorus pentafluoride 92:organometallic compounds 1270:10.1126/science.1113729 939:10.1351/goldbook.F02463 1097:10.1002/chem.200305028 769:, a fluxional molecule 717: 651: 598:= 1ppm @ 500 MHz 577: 494: 447:Six-coordinate species 361: 329: 302: 978:J. Sandström (1982). 696: 657:(ca. 0.5 millisecond 652: 578: 493: 359: 327: 303: 86:Spectroscopic studies 1421:Bennett, Jr. M. J.; 825:Molecular Vibrations 605: 505: 398:sulfur tetrafluoride 168: 1439:10.1021/ja00971a012 1400:1956JChPh..25.1228G 1373:10.1021/ic50170a035 1361:Inorganic Chemistry 1261:2005Sci...309.1219A 1255:(5738): 1219–1222. 1216:1953JChPh..21..279G 1174:(26): 10726–10731. 1118:J, Clayden (2003). 1062:1997JChEd..74..978J 1027:1983JChEd..60..933B 849:1963MolPh...6..445L 762:Pyramidal inversion 670:The compound Fe(η-C 82:and other methods. 70:signature exhibits 18:Semi-rigid molecule 1345:2007-12-24 at the 870:, CRC Press, 1998 718: 647: 594:For example, if Δν 573: 495: 386:Iron pentacarbonyl 362: 330: 298: 113:Cope rearrangement 1408:10.1063/1.1743184 1314:10.1021/ja0482280 1308:(13): 4954–4958. 1224:10.1063/1.1698874 1180:10.1021/jo051654z 1120:Organic chemistry 1070:10.1021/ed074p978 1035:10.1021/ed060p933 982:. Academic Press. 903:978-0-660-19628-2 837:Molecular Physics 793:Bartell mechanism 552: 485:dimethylformamide 479:Dimethylformamide 155:electron transfer 153:. One example is 80:isotopic labeling 64:organic compounds 36:molecular physics 16:(Redirected from 1486: 1463: 1449: 1443: 1442: 1427:J. Am. Chem. Soc 1418: 1412: 1411: 1394:(6): 1228–1234. 1383: 1377: 1376: 1355: 1349: 1332: 1326: 1325: 1302:J. Am. Chem. Soc 1297: 1291: 1290: 1272: 1234: 1228: 1227: 1198: 1192: 1191: 1154: 1148: 1147: 1141: 1133: 1115: 1109: 1108: 1080: 1074: 1073: 1045: 1039: 1038: 1010: 1004: 990: 984: 983: 975: 969: 968: 950: 944: 943: 941: 922: 907: 862: 860: 656: 654: 653: 648: 646: 645: 637: 582: 580: 579: 574: 572: 571: 553: 551: 550: 546: 533: 532: 531: 515: 438: 437: 436: 422: 421: 420: 307: 305: 304: 299: 294: 293: 285: 279: 278: 257: 253: 241: 240: 219: 218: 210: 189: 188: 98:NMR spectroscopy 21: 1494: 1493: 1489: 1488: 1487: 1485: 1484: 1483: 1469: 1468: 1467: 1466: 1450: 1446: 1420: 1419: 1415: 1385: 1384: 1380: 1357: 1356: 1352: 1347:Wayback Machine 1337: 1333: 1329: 1299: 1298: 1294: 1242: 1236: 1235: 1231: 1200: 1199: 1195: 1156: 1155: 1151: 1134: 1130: 1117: 1116: 1112: 1082: 1081: 1077: 1047: 1046: 1042: 1012: 1011: 1007: 991: 987: 977: 976: 972: 965: 952: 951: 947: 930:IUPAC Gold Book 924: 923: 919: 914: 904: 889: 830: 813: 811:Further reading 798:Berry mechanism 758: 751: 747: 743: 739: 735: 731: 727: 723: 716: 712: 708: 704: 700: 689: 685: 681: 677: 673: 668: 666:"Ring whizzing" 632: 603: 602: 597: 589: 563: 534: 523: 516: 503: 502: 481: 474: 470: 466: 449: 442: 435: 432: 431: 430: 428: 419: 416: 415: 414: 412: 403: 395: 391: 382:Berry mechanism 354: 322: 317: 280: 270: 232: 202: 180: 166: 165: 151:IR spectroscopy 147: 145:IR spectroscopy 139: 121:chair inversion 100: 88: 72:line-broadening 28: 23: 22: 15: 12: 11: 5: 1492: 1490: 1482: 1481: 1471: 1470: 1465: 1464: 1461:978-0195301007 1444: 1413: 1378: 1367:(4): 897–902. 1350: 1335: 1327: 1292: 1240: 1229: 1204:J. Chem. Phys. 1193: 1149: 1128: 1110: 1091:(24): 5969ff. 1075: 1040: 1005: 985: 970: 963: 945: 916: 915: 913: 910: 909: 908: 902: 887: 880: 864: 843:(5): 445–460. 828: 821: 812: 809: 808: 807: 806: 805: 803:Ray–Dutt twist 800: 795: 790: 783:Pseudorotation 780: 775: 770: 764: 757: 754: 749: 745: 741: 737: 733: 729: 725: 721: 714: 710: 706: 702: 698: 687: 683: 679: 675: 671: 667: 664: 663: 662: 644: 641: 636: 631: 628: 625: 622: 619: 616: 613: 610: 595: 587: 584: 583: 570: 566: 562: 559: 556: 549: 545: 541: 537: 530: 526: 522: 519: 513: 510: 480: 477: 472: 468: 464: 457:Ray-Dutt twist 448: 445: 440: 433: 417: 401: 393: 389: 378:pseudorotation 370:F NMR spectrum 353: 350: 321: 318: 316: 313: 309: 308: 297: 292: 289: 284: 277: 273: 269: 266: 263: 260: 256: 252: 248: 245: 239: 235: 231: 228: 225: 222: 217: 214: 209: 206: 201: 198: 195: 192: 187: 183: 179: 176: 173: 159:metal clusters 146: 143: 137: 99: 96: 87: 84: 60:bond rotations 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1491: 1480: 1477: 1476: 1474: 1462: 1458: 1454: 1448: 1445: 1440: 1436: 1432: 1428: 1424: 1423:Cotton, F. A. 1417: 1414: 1409: 1405: 1401: 1397: 1393: 1389: 1388:J. Chem. Phys 1382: 1379: 1374: 1370: 1366: 1362: 1354: 1351: 1348: 1344: 1341: 1331: 1328: 1323: 1319: 1315: 1311: 1307: 1303: 1296: 1293: 1288: 1284: 1280: 1276: 1271: 1266: 1262: 1258: 1254: 1250: 1249: 1244: 1233: 1230: 1225: 1221: 1217: 1213: 1209: 1206: 1205: 1197: 1194: 1189: 1185: 1181: 1177: 1173: 1170: 1169: 1168:J. Org. Chem. 1164: 1160: 1153: 1150: 1145: 1139: 1131: 1129:9780191666216 1125: 1121: 1114: 1111: 1106: 1102: 1098: 1094: 1090: 1086: 1079: 1076: 1071: 1067: 1063: 1059: 1055: 1051: 1044: 1041: 1036: 1032: 1028: 1024: 1020: 1016: 1009: 1006: 1003: 999: 995: 989: 986: 981: 974: 971: 966: 964:0-7216-3184-3 960: 956: 949: 946: 940: 935: 931: 927: 921: 918: 911: 905: 899: 895: 894: 888: 885: 882:H. W. Kroto, 881: 879: 877: 876:0-7503-0941-5 873: 869: 865: 859: 854: 850: 846: 842: 838: 834: 829: 826: 822: 819: 815: 814: 810: 804: 801: 799: 796: 794: 791: 789: 786: 785: 784: 781: 779: 776: 774: 771: 768: 765: 763: 760: 759: 755: 753: 695: 691: 665: 660: 642: 639: 629: 626: 620: 614: 611: 608: 601: 600: 599: 592: 568: 564: 557: 554: 547: 543: 539: 535: 528: 524: 517: 511: 508: 501: 500: 499: 492: 488: 486: 478: 476: 462: 458: 454: 446: 444: 426: 425:absolute zero 410: 405: 399: 387: 383: 379: 375: 371: 367: 358: 351: 349: 347: 343: 339: 338:ring flipping 335: 326: 319: 314: 312: 295: 290: 287: 275: 271: 267: 264: 261: 250: 237: 233: 229: 226: 215: 212: 199: 193: 190: 185: 181: 174: 171: 164: 163: 162: 160: 156: 152: 144: 142: 140: 136: 128: 126: 122: 118: 114: 109: 106: 97: 95: 93: 85: 83: 81: 77: 73: 69: 68:spectroscopic 65: 61: 57: 53: 49: 45: 41: 37: 33: 19: 1452: 1447: 1433:(88): 4371. 1430: 1426: 1416: 1391: 1387: 1381: 1364: 1360: 1353: 1330: 1305: 1301: 1295: 1252: 1246: 1232: 1207: 1202: 1196: 1171: 1166: 1162: 1158: 1152: 1119: 1113: 1088: 1084: 1078: 1053: 1049: 1043: 1018: 1014: 1008: 993: 988: 979: 973: 954: 948: 929: 920: 892: 883: 867: 840: 836: 824: 817: 788:Bailar twist 719: 669: 593: 585: 496: 482: 461:Bailar twist 450: 406: 363: 331: 310: 148: 134: 129: 110: 104: 101: 89: 47: 43: 39: 29: 1021:(11): 933. 926:"Fluxional" 443:, methane. 342:equilibrate 334:cyclohexane 125:cyclohexane 1210:(2): 279. 1056:(8): 978. 912:References 767:Bullvalene 423:. Even at 117:bullvalene 1455:), 2007. 1138:cite book 659:half-life 640:− 612:∼ 569:∘ 565:ν 561:Δ 555:∼ 529:∘ 525:ν 521:Δ 518:π 409:methanium 296:⋅ 288:− 268:× 262:∼ 230:⋅ 213:− 191:∼ 186:∘ 182:ν 178:Δ 175:∼ 52:molecules 48:molecules 44:non-rigid 40:fluxional 32:chemistry 1473:Category 1343:Archived 1322:15796561 1287:28745636 1279:15994376 1188:16355992 1161:-1,4-Di- 1105:14679508 932:. 2014. 756:See also 586:where Δν 459:and the 380:via the 315:Examples 119:and the 62:in most 1396:Bibcode 1257:Bibcode 1248:Science 1212:Bibcode 1058:Bibcode 1023:Bibcode 845:Bibcode 487:(DMF). 388:(Fe(CO) 346:proton- 1459:  1338:, see 1320:  1285:  1277:  1186:  1126:  1103:  961:  900:  874:  705:) (η-C 411:ion, 368:. Its 344:. The 1283:S2CID 713:)(CO) 686:)(CO) 678:)(η-C 467:(SiMe 90:Many 56:atoms 1457:ISBN 1431:1966 1318:PMID 1275:PMID 1184:PMID 1163:tert 1144:link 1124:ISBN 1101:PMID 959:ISBN 898:ISBN 872:ISBN 630:1000 105:DNMR 50:are 42:(or 34:and 1435:doi 1404:doi 1369:doi 1310:doi 1306:127 1265:doi 1253:309 1220:doi 1176:doi 1159:cis 1093:doi 1066:doi 1031:doi 998:doi 934:doi 853:doi 621:500 400:(SF 227:300 123:in 115:in 30:In 1475:: 1429:. 1402:. 1392:25 1390:. 1365:16 1363:. 1316:. 1304:. 1281:. 1273:. 1263:. 1251:. 1245:. 1218:. 1208:21 1182:. 1172:70 1140:}} 1136:{{ 1099:. 1087:. 1064:. 1054:74 1052:. 1029:. 1019:60 1017:. 928:. 851:. 839:. 835:. 429:CH 413:CH 276:11 272:10 234:10 200:10 141:. 133:1/ 127:. 46:) 38:, 1441:. 1437:: 1410:. 1406:: 1398:: 1375:. 1371:: 1336:5 1324:. 1312:: 1289:. 1267:: 1259:: 1243:" 1241:5 1226:. 1222:: 1214:: 1190:. 1178:: 1146:) 1132:. 1107:. 1095:: 1089:9 1072:. 1068:: 1060:: 1037:. 1033:: 1025:: 1000:: 967:. 942:. 936:: 906:. 861:. 855:: 847:: 841:6 750:5 748:H 746:5 742:5 740:H 738:5 734:5 732:H 730:5 726:5 724:H 722:5 715:2 711:5 709:H 707:5 703:5 701:H 699:5 688:2 684:5 682:H 680:5 676:5 674:H 672:5 661:) 643:1 635:s 627:= 624:) 618:( 615:2 609:k 596:o 588:o 558:2 548:2 544:/ 540:1 536:2 512:= 509:k 473:2 471:) 469:3 465:4 441:4 434:5 418:5 402:4 394:5 390:5 291:1 283:s 265:6 259:) 255:s 251:/ 247:m 244:c 238:8 224:( 221:) 216:1 208:m 205:c 197:( 194:2 172:k 138:1 135:T 20:)

Index

Semi-rigid molecule
chemistry
molecular physics
molecules
atoms
bond rotations
organic compounds
spectroscopic
line-broadening
Heisenberg uncertainty principle
isotopic labeling
organometallic compounds
Cope rearrangement
bullvalene
chair inversion
cyclohexane
1/T1
IR spectroscopy
electron transfer
metal clusters

cyclohexane
ring flipping
equilibrate
proton-
Iron-pentacarbonyl-Berry-mechanism
phosphorus pentafluoride
F NMR spectrum
Fluorine-19 NMR spectroscopy
pseudorotation

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.