Knowledge (XXG)

Semiconductor device fabrication

Source đź“ť

467:. FOUPs in many fabs contain an internal nitrogen atmosphere which helps prevent copper from oxidizing on the wafers. Copper is used in modern semiconductors for wiring. The insides of the processing equipment and FOUPs is kept cleaner than the surrounding air in the cleanroom. This internal atmosphere is known as a mini-environment and helps improve yield which is the amount of working devices on a wafer. This mini environment is within an EFEM (equipment front end module) which allows a machine to receive FOUPs, and introduces wafers from the FOUPs into the machine. Additionally many machines also handle wafers in clean nitrogen or vacuum environments to reduce contamination and improve process control. Fabrication plants need large amounts of liquid nitrogen to maintain the atmosphere inside production machinery and FOUPs, which are constantly purged with nitrogen. There can also be an air curtain or a mesh between the FOUP and the EFEM which helps reduce the amount of humidity that enters the FOUP and improves yield. 893:. During this shortage caused by the COVID-19 pandemic, many semiconductor manufacturers banned employees from leaving company grounds. Many countries granted subsidies to semiconductor companies for building new fabrication plants or fabs. Many companies were affected by counterfeit chips. Semiconductors have become vital to the world economy and the national security of some countries. The US has asked TSMC to not produce semiconductors for Huawei, a Chinese company. CFET transistors were explored, which stacks NMOS and PMOS transistors on top of each other. Two approaches were evaluated for constructing these transistors: a monolithic approach which built both types of transistors in one process, and a sequential approach which built the two types of transistors separately and then stacked them. 712:
once, were developed to carry several wafers between process steps, but wafers had to be individually removed from the carrier, processed and returned to the carrier, so acid-resistant carriers were developed to eliminate this time consuming process, so the entire cassette with wafers was dipped into wet etching and wet cleaning tanks. When wafer sizes increased to 100 mm, the entire cassette would often not be dipped as uniformly, and the quality of the results across the wafer became hard to control. By the time 150 mm wafers arrived, the cassettes were not dipped and were only used as wafer carriers and holders to store wafers, and robotics became prevalent for handling wafers. With 200 mm wafers manual handling of wafer cassettes becomes risky as they are heavier.
2028:
defects. A particle needs to be 1/5 the size of a feature to cause a killer defect. So if a feature is 100 nm across, a particle only needs to be 20 nm across to cause a killer defect. Electrostatic electricity can also affect yield adversely. Chemical contaminants or impurities include heavy metals such as iron, copper, nickel, zinc, chromium, gold, mercury and silver, alkali metals such as sodium, potassium and lithium, and elements such as aluminum, magnesium, calcium, chlorine, sulfur, carbon, and fluorine. It is important for these elements to not remain in contact with the silicon, as they could reduce yield. Chemical mixtures may be used to remove these elements from the silicon; different mixtures are effective against different elements.
2024:
dust particles, however since the 1990s, yield degradation is mainly caused by process variation, the process itself and by the tools used in chip manufacturing, although dust still remains a problem in many older fabs. Dust particles have an increasing effect on yield as feature sizes are shrunk with newer processes. Automation and the use of mini environments inside of production equipment, FOUPs and SMIFs have enabled a reduction in defects caused by dust particles. Device yield must be kept high to reduce the selling price of the working chips since working chips have to pay for those chips that failed, and to reduce the cost of wafer processing. Yield can also be affected by the design and operation of the fab.
816:, thus the conventional notion of a process node has become blurred. Additionally, TSMC and Samsung's 10 nm processes are only slightly denser than Intel's 14 nm in transistor density. They are actually much closer to Intel's 14 nm process than they are to Intel's 10 nm process (e.g. Samsung's 10 nm processes' fin pitch is the exact same as that of Intel's 14 nm process: 42 nm). Intel has changed the name of its 10 nm process to position it as a 7 nm process. As transistors become smaller, new effects start to influence design decisions such as self-heating of the transistors, and other effects such as electromigration have become more evident since the 16 nm node. 1714:, creating dummy gates, manufacturing sources and drains by ion deposition and dopant annealing, depositing an "interlevel dielectric (ILD)" and then polishing, and removing the dummy gates to replace them with a metal whose workfunction depended on whether the transistor was NMOS or PMOS, thus creating the metal gate. A third process, full silicidation (FUSI) was not pursued due to manufacturing problems. Gate-first became dominant at the 22 nm/20 nm node. HKMG has been extended from planar transistors for use in FinFET and nanosheet transistors. Hafnium silicon oxynitride can also be used instead of hafnium oxide. 1978:
according to predetermined test limits such as maximum operating frequencies/clocks, number of working (fully functional) cores per chip, etc. The resulting binning data can be graphed, or logged, on a wafer map to trace manufacturing defects and mark bad chips. This map can also be used during wafer assembly and packaging. Binning allows chips that would otherwise be rejected to be reused in lower-tier products, as is the case with GPUs and CPUs, increasing device yield, especially since very few chips are fully functional (have all cores functioning correctly, for example).
834:: horizontal and vertical nanowires, horizontal nanosheet transistors (Samsung MBCFET, Intel Nanoribbon), vertical FET (VFET) and other vertical transistors, complementary FET (CFET), stacked FET, vertical TFETs, FinFETs with III-V semiconductor materials (III-V FinFET), several kinds of horizontal gate-all-around transistors such as nano-ring, hexagonal wire, square wire, and round wire gate-all-around transistors and negative-capacitance FET (NC-FET) which uses drastically different materials. FD-SOI was seen as a potential low cost alternative to FinFETs. 1464:. These ingots are then sliced into wafers about 0.75 mm thick and polished to obtain a very regular and flat surface. During the production process wafers are often grouped into lots, which are represented by a FOUP, SMIF or a wafer cassette, which are wafer carriers. FOUPs and SMIFs can be transported in the fab between machines and equipment with an automated OHT (Overhead Hoist Transport) AMHS (Automated Material Handling System). Besides SMIFs and FOUPs, wafer cassettes can be placed in a wafer box or a wafer carrying box. 1367: 827:(FinFETs), where the gate surrounds the channel on three sides, allowing for increased energy efficiency and lower gate delay—and thus greater performance—over planar transistors at the 22nm node, because planar transistors which only have one surface acting as a channel, started to suffer from short channel effects. A startup called SuVolta created a technology called Deeply Depleted Channel (DDC) to compete with FinFET transistors, which uses planar transistors at the 65 nm node which are very lightly doped. 1401:(FFUs) at regular intervals to constantly replace and filter the air in the cleanroom; semiconductor capital equipment may also have their own FFUs to clean air in the equipment's EFEM which allows the equipment to receive wafers in FOUPs. The FFUs, combined with raised floors with grills, help ensure a laminar air flow, to ensure that particles are immediately brought down to the floor and do not stay suspended in the air due to turbulence. The workers in a semiconductor fabrication facility are required to wear 2117:
finished, packaged chips, are called the back end, post-fab, ATMP (Assembly, Test, Marking, and Packaging) or ATP (Assembly, Test and Packaging) of semiconductor manufacturing, and may be carried out by OSAT (OutSourced Assembly and Test) companies which are separate from semiconductor foundries. A foundry is a company or fab performing manufacturing processes such as photolithography and etching that are part of the front end of semiconductor manufacturing.
1823: 797:'s 130 nm, 90 nm, 65 nm, 45 nm and 32 nm single, dual, quad, six and eight core processors made since 2001. During the transition from 200 mm to 300 mm wafers in 2001, many bridge tools were used which could process both 200 mm and 300 mm wafers. At the time, 18 companies could manufacture chips in the leading edge 130 nm process. 46: 741:
wafers. The semiconductor industry has adopted larger wafers to cope with the increased demand for chips as larger wafers provide more surface area per wafer. Over time, the industry shifted to 300 mm wafers which brought along the adoption of FOUPs, but many products that are not advanced are still produced in 200 mm wafers such as analog ICs, RF chips, power ICs,
497:
is used as a measurement of area for different parts of a semiconductor device, based on the feature size of a semiconductor manufacturing process. Many semiconductor devices are designed in sections called cells, and each cell represents a small part of the device such as a memory cell to store data. Thus F is used to measure the area taken up by these cells or sections.
2036:
achieve the same functions of larger dies or surpass them, and smaller features require reduced process variation and increased purity (reduced contamination) to maintain high yields. Metrology tools are used to inspect the wafers during the production process and predict yield, so wafers predicted to have too many defects may be scrapped to save on processing costs.
1690:. Semiconductor equipment may have several chambers which process wafers in processes such as deposition and etching. Many pieces of equipment handle wafers between these chambers in an internal nitrogen or vacuum environment to improve process control. Wet benches with tanks containing chemical solutions were historically used for cleaning and etching wafers. 1808:
transistors, and an upper layer which is a tungsten plug that connects the transistors to the interconnect. Intel at the 10nm node introduced contact-over-active-gate (COAG) which, instead of placing the contact for connecting the transistor close to the gate of the transistor, places it directly over the gate of the transistor to improve transistor density.
1566:/resist ashing or by "wet" resist stripper chemistry. Wet etching was widely used in the 1960s and 1970s, but it was replaced by dry etching/plasma etching starting at the 10 micron to 3 micron nodes. This is because wet etching makes undercuts (etching under mask layers or resist layers with patterns). Dry etching has become the dominant etching technique. 20: 746:
Materials introduced the Producer, a cluster tool that had chambers grouped in pairs for processing wafers, which shared common vacuum and supply lines but were otherwise isolated, which was revolutionary at the time as it offered higher productivity than other cluster tools without sacrificing quality, due to the isolated chamber design.
6432:
Tateshita, Y.; Wang, J.; Nagano, K.; Hirano, T.; Miyanami, Y.; Ikuta, T.; Kataoka, T.; Kikuchi, Y.; Yamaguchi, S.; Ando, T.; Tai, K.; Matsumoto, R.; Fujita, S.; Yamane, C.; Yamamoto, R.; Kanda, S.; Kugimiya, K.; Kimura, T.; Ohchi, T.; Yamamoto, Y.; Nagahama, Y.; Hagimoto, Y.; Wakabayashi, H.; Tagawa,
2116:
The packaged chips are retested to ensure that they were not damaged during packaging and that the die-to-pin interconnect operation was performed correctly. A laser then etches the chip's name and numbers on the package. The steps involving testing and packaging of dies, followed by final testing of
2031:
Several models are used to estimate yield. They are Murphy's model, Poisson's model, the binomial model, Moore's model and Seeds' model. There is no universal model; a model has to be chosen based on actual yield distribution (the location of defective chips). For example, Murphy's model assumes that
2023:
Device yield or die yield is the number of working chips or dies on a wafer, given in percentage since the number of chips on a wafer (Die per wafer, DPW) can vary depending on the chips' size and the wafer's diameter. Yield degradation is a reduction in yield, which historically was mainly caused by
1589:
as it still required a separate furnace but ion implantation ultimately prevailed in the 1970s as it offers better reproducibility of results. Ion implantation is practical because of the high sensitivity of semiconductor devices to foreign atoms, as ion implantation does not deposit large numbers of
1417:
pods isolate the wafers from the air in the cleanroom, increasing yield because they reduce the number of defects caused by dust particles. Also, fabs have as few people as possible in the cleanroom to make maintaining the cleanroom environment easier, since people, even when wearing cleanroom suits,
736:
Until the 1980s, physical vapor deposition was the primary technique used for depositing materials onto wafers, until the advent of chemical vapor deposition. Equipment with diffusion pumps was replaced with those using turbomolecular pumps as the latter do not use oil which often contaminated wafers
496:
Feature size is determined by the width of the smallest lines that can be patterned in a semiconductor fabrication process, this measurement is known as the linewidth. Patterning often refers to photolithography which allows a device design or pattern to be defined on the device during fabrication. F
2965: 2193:
It is vital that workers not be directly exposed to these dangerous substances. The high degree of automation common in the IC fabrication industry helps to reduce the risks of exposure. Most fabrication facilities employ exhaust management systems, such as wet scrubbers, combustors, heated absorber
2035:
Smaller dies cost less to produce (since more fit on a wafer, and wafers are processed and priced as a whole), and can help achieve higher yields since smaller dies have a lower chance of having a defect, due to their lower surface area on the wafer. However, smaller dies require smaller features to
1807:
Since the 22 nm node, some manufacturers have added a new process called middle-of-line (MOL) which connects the transistors to the rest of the interconnect made in the BEoL process. The MOL is often based on tungsten and has upper and lower layers: the lower layer connects the junctions of the
711:
In the era of 2 inch wafers, these were handled manually using tweezers and held manually for the time required for a given process. Tweezers were replaced by vacuum wands as they generate fewer particles which can contaminate the wafers. Wafer carriers or cassettes, which can hold several wafers at
1885:
processing, which eliminates processing steps. As the number of interconnect levels increases, planarization of the previous layers is required to ensure a flat surface prior to subsequent lithography. Without it, the levels would become increasingly crooked, extending outside the depth of focus of
1718:
also be used to remove materials isotropically, in all directions at the same time but without the capability to create vertical walls. Plasma ALE was initially adopted for etching contacts in transistors, and since the 7 nm node it is also used to create transistor structures by etching them.
901:
This is a list of processing techniques that are employed numerous times throughout the construction of a modern electronic device; this list does not necessarily imply a specific order, nor that all techniques are taken during manufacture as, in practice the order and which techniques are applied,
740:
200 mm diameter wafers were first used in 1990 for making chips. These became the standard until the introduction of 300 mm diameter wafers in 2000. Bridge tools were used in the transition from 150 mm wafers to 200 mm wafers and in the transition from 200 mm to 300 mm
1990:
Usually, the fab charges for testing time, with prices in the order of cents per second. Testing times vary from a few milliseconds to a couple of seconds, and the test software is optimized for reduced testing time. Multiple chip (multi-site) testing is also possible because many testers have the
1717:
Since the 16 nm/14 nm node, atomic layer etching (ALE) is increasingly used for etching as it offers higher precision than other etching methods. In production, plasma ALE is commonly used, which removes materials unidirectionally, creating structures with vertical walls. Thermal ALE can
1584:
and polysilicon. Doping consists of introducing impurities into the atomic structure of a semiconductor material, in order to modify its electrical properties. Initially thermal diffusion with furnaces at 900-1200°C with gases containing dopants were used for doping wafers and there was resistance
786:
semiconductor companies, outsourcing their production to companies like TSMC. They also have facilities spread in different countries. As the average utilization of semiconductor devices increased, durability became an issue and manufacturers started to design their devices to ensure they last for
2027:
Tight control over contaminants and the production process are necessary to increase yield. Contaminants may be chemical contaminants or be dust particles. "Killer defects" are those caused by dust particles that cause complete failure of the device (such as a transistor). There are also harmless
1894:
is still sometimes employed when the number of interconnect levels is no more than three. Copper interconnects use an electrically conductive barrier layer to prevent the copper from diffusing into ("poisoning") its surroundings, often made of tantalum nitride. In 1997, IBM was the first to adopt
1977:
with an electronic tester that presses tiny probes against the chip. The machine marks each bad chip with a drop of dye. Currently, electronic dye marking is possible if wafer test data (results) are logged into a central computer database and chips are "binned" (i.e. sorted into virtual bins)
1561:
image on the wafer using short-wavelength light; the exposed regions (for "positive" resist) are washed away by a developer solution. The wafer then undergoes etching where materials not protected by the mask are removed. After removal or other processing, the remaining photoresist is removed by
1982:
may be used to disconnect parts of chips such as cores, either because they did not work as intended during binning, or as part of market segmentation (using the same chip for low, mid and high-end tiers). Chips may have spare parts to allow the chip to fully pass testing even if it has several
1706:
is not compatible with polysilicon gates which requires the use of a metal gate. Two approaches were used in production: gate-first and gate-last. Gate-first consists of depositing the high-k dielectric and then the gate metal such as tantalum nitride whose workfunction depends on whether the
745:
and MEMS devices. Some processes such as cleaning, ion implantation, etching, annealing and oxidation started to adopt single wafer processing instead of batch wafer processing in order to improve the reproducibility of results. A similar trend existed in MEMS manufacturing. In 1998, Applied
1633:
A recipe in semiconductor manufacturing is a list of conditions under which a wafer will be processed by a particular machine in a processing step during manufacturing. Process variability is a challenge in semiconductor processing, in which wafers are not processed evenly or the quality or
2032:
yield loss occurs more at the edges of the wafer (non-working chips are concentrated on the edges of the wafer), Poisson's model assumes that defective dies are spread relatively evenly across the wafer, and Seeds's model assumes that defective dies are clustered together.
1898:
In 2014, Applied Materials proposed the use of cobalt in interconnects at the 22 nm node, used for encapsulating copper interconnects in cobalt to prevent electromigration, replacing tantalum nitride since it needs to be thicker than cobalt in this application.
448:
nodes, fabrication can take up to 15 weeks, with 11–13 weeks being the industry average. Production in advanced fabrication facilities is completely automated, with automated material handling systems taking care of the transport of wafers from machine to machine.
1803:
BEoL has been used since 1995 at the 350 nm and 250 nm nodes (0.35 and 0.25 micron nodes), at the same time chemical mechanical polishing began to be employed. At the time, 2 metal layers for interconnect, also called metallization was state-of-the-art.
1693:
At the 90 nm node, transistor channels made with strain engineering were introduced to improve drive current in PMOS transistors by introducing regions with silicon-germanium in the transistor. The same was done in NMOS transistors at the 20 nm node.
555:
Initially transistor gate length was smaller than that suggested by the process node name (e.g. 350 nm node); however this trend reversed in 2009. Feature sizes can have no connection to the nanometers (nm) used in marketing. For example, Intel's former
2961: 7024: 1946:
Once the front-end process has been completed, the semiconductor devices or chips are subjected to a variety of electrical tests to determine if they function properly. The percent of devices on the wafer found to perform properly is referred to as the
885:
nodes. GlobalFoundries has decided to stop the development of new nodes beyond 12 nanometers in order to save resources, as it has determined that setting up a new fab to handle sub-12 nm orders would be beyond the company's financial abilities.
1707:
transistor is NMOS or PMOS, polysilicon deposition, gate line patterning, source and drain ion implantation, dopant anneal, and silicidation of the polysilicon and the source and drain. In DRAM memories this technology was first adopted in 2015.
504:
has specific rules on the minimum size (width or CD/Critical Dimension) and spacing for features on each layer of the chip. Normally a new semiconductor process has smaller minimum sizes and tighter spacing. In some cases, this allows a simple
1697:
In 2007, HKMG (high-k/metal gate) transistors were introduced by Intel at the 45 nm node, which replaced polysilicon gates which in turn replaced metal gate (aluminum gate) technology in the 1970s. High-k dielectric such as hafnium oxide
2002:" to speed testing and reduce testing costs. In certain designs that use specialized analog fab processes, wafers are also laser-trimmed during testing, in order to achieve tightly distributed resistance values as specified by the design. 1844:), blanket films of aluminum are deposited first, patterned, and then etched, leaving isolated wires. Dielectric material is then deposited over the exposed wires. The various metal layers are interconnected by etching holes (called " 1783:
of chip fabrication, which refers to the packaging and testing stages). BEOL processing involves creating metal interconnecting wires that are isolated by dielectric layers. The insulating material has traditionally been a form of
2054:
Once tested, a wafer is typically reduced in thickness in a process also known as "backlap", "backfinish", "wafer backgrind" or "wafer thinning" before the wafer is scored and then broken into individual dies, a process known as
1598:(RTA) to activate the dopants. Annealing was initially done at 500 to 700°C, but this was later increased to 900 to 1100°C. Implanters can either process a single wafer at a time or several, up to 17, mounted on a rotating disk. 1864:(DRAM), because the number of interconnect levels can be small (no more than four). The aluminum was sometimes alloyed with copper for preventing recrystallization. Gold was also used in interconnects in early chips. 2073:
After the dies are tested for functionality and binned, they are packaged. Plastic or ceramic packaging involves mounting the die, connecting the die/bond pads to the pins on the package, and sealing the die. Tiny
7013: 2078:
are used to connect the pads to the pins. In the 'old days' (1970s), wires were attached by hand, but now specialized machines perform the task. Traditionally, these wires have been composed of gold, leading to a
1986:
Chips are also tested again after packaging, as the bond wires may be missing, or analog performance may be altered by the package. This is referred to as the "final test". Chips may also be imaged using x-rays.
1123:(for complete photoresist removal/photoresist stripping, also known as dry strip, historically done with a chemical solvent called a resist stripper, to allow wafers to undergo another round of photolithography) 4200: 1923:
of photoresist and other coatings. Wafer metrology equipment/tools, or wafer inspection tools are used to verify that the wafers haven't been damaged by previous processing steps up until testing; if too many
803:
Since 2009, "node" has become a commercial name for marketing purposes that indicates new generations of process technologies, without any relation to gate length, metal pitch or gate pitch. For example,
1389:, semiconductor purity was not as big of an issue as it is today in device manufacturing. In the 1960s, workers could work on semiconductor devices in street clothing. As devices become more integrated, 6302:
Frank, M. M. (2011). High-k / metal gate innovations enabling continued CMOS scaling. 2011 Proceedings of the European Solid-State Device Research Conference (ESSDERC). doi:10.1109/essderc.2011.6044239
1966:
size of 17.92 mm. The yield went down to 32.0% with an increase in die size to 100 mm. The number of killer defects on a wafer, regardless of die size, can be noted as the defect density (or D
357: 1686:
technology involves the insertion of an insulating layer between the raw silicon wafer and the thin layer of subsequent silicon epitaxy. This method results in the creation of transistors with reduced
1958:
The yield is often but not necessarily related to device (die or chip) size. As an example, in December 2019, TSMC announced an average yield of ~80%, with a peak yield per wafer of >90% for their
718:
In 1984, KLA developed the first automatic reticle and photomask inspection tool. In 1985, KLA developed an automatic inspection tool for silicon wafers, which replaced manual microscope inspection.
5533: 715:
In the 1970s, several companies migrated their semiconductor manufacturing technology from bipolar to CMOS technology. Semiconductor manufacturing equipment has been considered costly since 1978.
7257: 1702:) replaced silicon oxynitride (SiON), in order to prevent large amounts of leakage current in the transistor while allowing for continued scaling or shrinking of the transistors. However HfO 2126: 6293:
Robertson, J., & Wallace, R. M. (2015). High-K materials and metal gates for CMOS applications. Materials Science and Engineering: R: Reports, 88, 1–41. doi:10.1016/j.mser.2014.11.001
1409:
by humans. To increase yield, FOUPs and semiconductor capital equipment may have a mini environment with ISO class 1 level of dust, and FOUPs can have an even cleaner micro environment.
1744:), patterning of the gate, patterning of the source and drain regions, and subsequent implantation or diffusion of dopants to obtain the desired complementary electrical properties. In 733:
devices. It can also be made with Bipolar, CMOS and DMOS devices. Applied Materials developed the first practical multi chamber, or cluster wafer processing tool, the Precision 5000.
4338: 509:
of a currently produced chip design to reduce costs, improve performance, and increase transistor density (number of transistors per unit area) without the expense of a new design.
1779:, they must be interconnected to form the desired electrical circuits. This occurs in a series of wafer processing steps collectively referred to as BEOL (not to be confused with 1478:
In semiconductor device fabrication, the various processing steps fall into four general categories: deposition, removal, patterning, and modification of electrical properties.
996:
Development (removal of parts of the resist by application of a liquid developer, leaving only parts of the wafer exposed for ion implantation, layer deposition, etching, etc)
6936: 3120: 6845:
Löper, Philipp; Stuckelberger, Michael; Niesen, Bjoern; Werner, Jérémie; Filipič, Miha; Moon, Soo-Jin; Yum, Jun-Ho; Topič, Marko; De Wolf, Stefaan; Ballif, Christophe (2015).
4682: 3060: 2275: 549: 350: 5583: 3980: 6961: 6019: 3085: 4615: 1867:
More recently, as the number of interconnect levels for logic has substantially increased due to the large number of transistors that are now interconnected in a modern
1397:
with filtered air to remove even the smallest particles, which could come to rest on the wafers and contribute to defects. The ceilings of semiconductor cleanrooms have
4168: 552:) has become more of a marketing term that has no standardized relation with functional feature sizes or with transistor density (number of transistors per unit area). 2224: 708:
Wafer size has grown over time, from 25 mm in 1960, to 50 mm in 1969, 100 mm in 1976, 125 mm in 1981, 150 mm in 1983 and 200 mm in 1992.
4190: 2109:, like most packages, is many times larger than the actual die hidden inside, whereas CSP chips are nearly the size of the die; a CSP can be constructed for each die 3662:
Huff, Howard R.; Goodall, Randal K.; Bullis, W. Murray; Moreland, James A.; Kirscht, Fritz G.; Wilson, Syd R.; The NTRS Starting Materials Team (24 November 1998).
1796:
materials, also called low-Îş dielectrics, are being used (such as silicon oxycarbide), typically providing dielectric constants around 2.7 (compared to 3.82 for SiO
6435:"High-Performance and Low-Power CMOS Device Technologies Featuring Metal/High-k Gate Stacks with Uniaxial Strained Silicon Channels on (100) and (110) Substrates" 343: 4454: 2268: 2092: 907: 7076: 4994: 1370:
Progress of miniaturization, and comparison of sizes of semiconductor manufacturing process nodes with some microscopic objects and visible light wavelengths
4774: 5525: 1951:. Manufacturers are typically secretive about their yields, but it can be as low as 30%, meaning that only 30% of the chips on the wafer work as intended. 4742: 2550:
450mm FOUP/LPU system in advanced semiconductor manufacturing processes: A study on the minimization of oxygen content inside FOUP when the door is opened
2357:
Hendrik Purwins; Bernd Barak; Ahmed Nagi; Reiner Engel; Uwe Höckele; Andreas Kyek; Srikanth Cherla; Benjamin Lenz; Günter Pfeifer; Kurt Weinzierl (2014).
4032: 4871: 5291:"Characterization of thin carbonized photoresist layer and investigation of dry strip process through real-time monitored variable temperature control" 7277: 4796: 4559: 2403: 2296: 2291: 830:
By 2018, a number of transistor architectures had been proposed for the eventual replacement of FinFET, most of which were based on the concept of
4258: 1687: 1076: 1955:
is one among many reasons for low yield. Testing is carried out to prevent faulty chips from being assembled into relatively expensive packages.
865:
process chips in mass production by TSMC and Samsung, although their 7 nanometer node definition is similar to Intel's 10 nanometer process. The
3539: 2553:. 2015 Joint e-Manufacturing and Design Collaboration Symposium (eMDC) & 2015 International Symposium on Semiconductor Manufacturing (ISSM). 5049: 4229: 3027: 2921: 1668:
to the silicon epitaxy step, tricks are performed to improve the performance of the transistors to be built. One method involves introducing a
906:(IDM) for their own products, and a semiconductor device might not need all techniques. Equipment for carrying out these processes is made by 7169: 6742: 6689: 6663: 6599: 6564: 6499: 6397: 6246: 6219: 6193: 6166: 6087: 5974: 5933: 5887: 5860: 5833: 5806: 5779: 5752: 5725: 5669: 5368: 5337: 5310: 5147: 5121: 5020: 4961: 3930: 3842: 3703: 3549: 3411: 3395: 3369: 3329: 2880: 2853: 2826: 2799: 2683: 2521: 5496: 5428: 890: 6982: 4814: 2229: 2203: 1236: 1205: 643:
over the next several years. Many early semiconductor device manufacturers developed and built their own equipment such as ion implanters.
581: 58: 3179: 4928: 3193: 4316: 4287: 846: 6893: 6589: 6156: 3663: 2928: 1817: 7184: 7120: 7098: 6847:"Complex Refractive Index Spectra of CH3NH3PbI3 Perovskite Thin Films Determined by Spectroscopic Ellipsometry and Spectrophotometry" 3110: 6913: 6454: 5137: 4672: 3187: 2789: 2458:
Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena
1952: 1887: 1532: 6653: 5478: 5457: 5267: 5092: 4829: 3050: 2709:"A Numerical Study on the Effects of Purge and Air Curtain Flow Rates on Humidity Invasion Into a Front Opening Unified Pod (FOUP)" 2640: 6183: 3319: 5575: 4951: 4850: 3984: 3648: 2843: 787:
enough time, and this depends on the market the device is designed for. This especially became a problem at the 10 nm node.
6951: 6679: 5399: 3920: 3224: 6042: 5612: 4505:
The next major transistor innovation was the introduction of FinFET (tri-gate) transistors on Intel's 22-nm technology in 2011.
3081: 632: 429: 6236: 5991: 5964: 5923: 2816: 7087: 6209: 5949: 5796: 4160: 3739: 2943: 2751:"Performance of Different Front-Opening Unified Pod (FOUP) Moisture Removal Techniques With Local Exhaust Ventilation System" 903: 5850: 4573: 4396: 1830:
through four layers of planarized copper interconnect, down to the polysilicon (pink), wells (greyish) and substrate (green)
7195: 5715: 1932:
has been used to predict wafer properties based on statistical methods without performing the physical measurement itself.
1342:
Trim and form (separates the lead frames from each other, and bends the lead frame's pins so that they can be mounted on a
7282: 7077:
https://www.st.com/resource/en/application_note/cd00003986-introduction-to-semiconductor-technology-stmicroelectronics.pdf
5354: 4995:
https://www.st.com/resource/en/application_note/cd00003986-introduction-to-semiconductor-technology-stmicroelectronics.pdf
3832: 3239: 2749:
Lin, Tee; Ali Zargar, Omid; Juina, Oscar; Lee, Tzu-Chieh; Sabusap, Dexter Lyndon; Hu, Shih-Cheng; Leggett, Graham (2020).
1174: 800:
In 2006, 450 mm wafers were expected to be adopted in 2012, and 675 mm wafers were expected to be used by 2021.
5327: 5165:"An Investigation of Edge Bead Removal Width Variability, Effects and Process Control in Photolithographic Manufacturing" 5010: 3616: 3491: 5111: 4006: 3385: 2068: 1861: 1745: 5693: 5659: 4906: 3693: 3359: 2707:
Benalcazar, David; Lin, Tee; Hu, Ming-Hsuan; Ali Zargar, Omid; Lin, Shao-Yu; Shih, Yang-Cheng; Leggett, Graham (2022).
1229:
or wafer bonding and stacking, this can also occur during wafer dicing, in a process known as Dice Before Grind or DBG)
910:. All equipment needs to be tested before a semiconductor fabrication plant is started. These processes are done after 456:
as they are pieces diced from a single wafer. Individual dies are separated from a finished wafer in a process called
2280: 1871:, the timing delay in the wiring has become so significant as to prompt a change in wiring material (from aluminum to 824: 722: 1311:
Molding (using special plastic molding compound that may contain glass powder as filler to control thermal expansion)
4616:"7nm, 5nm, 3nm: The new materials and transistors that will take us to the limits of Moore's law | Extremetech" 1485:
is any process that grows, coats, or otherwise transfers a material onto the wafer. Available technologies include
548:". However, this has not been the case since 1994, and the number of nanometers used to name process nodes (see the 6387: 3425: 3255: 1752:
are also fabricated at this time, typically stacked above the access transistor (the now defunct DRAM manufacturer
1528: 1524: 1056: 1011: 5904: 4425: 758:
is a global business today. The leading semiconductor manufacturers typically have facilities all over the world.
4764: 2870: 1853: 1490: 1486: 1353: 1090: 1070: 1032: 911: 2566:"Moisture Prevention in a Pre-Purged Front-Opening Unified Pod (FOUP) During Door Opening in a Mini-Environment" 1630:. Modern chips have up to eleven or more metal levels produced in over 300 or more sequenced processing steps. 7159: 6817: 6020:"History of Some Early Developments in Ion-Implantation Technology Leading to Silicon Transistor Manufacturing" 5769: 5229: 4734: 2990: 1963: 1925: 1431: 1184: 914:. A semiconductor fab operates 24/7 and many fabs use large amounts of water, primarily for rinsing the chips. 453: 7056: 5795:
Li, Jinmin; Wang, Junxi; Yi, Xiaoyan; Liu, Zhiqiang; Wei, Tongbo; Yan, Jianchang; Xue, Bin (August 31, 2020).
5392:"Laser Lift-Off(LLO) Ideal for high brightness vertical LED manufacturing - Press Release - DISCO Corporation" 4601: 4024: 3570:
Proceedings of ISSM2000. Ninth International Symposium on Semiconductor Manufacturing (IEEE Cat. No.00CH37130)
4117: 7132: 5950:"1954: Diffusion Process Developed for Transistors | the Silicon Engine | Computer History Museum" 5360: 3439: 3292: 3115: 2900: 2323: 1502: 1449: 1366: 1084: 659: 624: 5634: 5244: 3860:"Understanding the Impact of Batch vs. Single Wafer in Thermal Processing Using Cost of Ownership Analysis" 3630: 3525: 7206: 4587: 4545: 4517: 2622: 2258: 1836: 1731: 1618:, which can be carried out to create semiconductor-insulator junctions, such as in the local oxidation of 1498: 1299: 1109: 755: 721:
In 1985, STmicroelectronics invented BCD, also called BCDMOS, a semiconductor manufacturing process using
593: 589: 422: 325: 3799:
Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
1656:. The raw wafer is engineered by the growth of an ultrapure, virtually defect-free silicon layer through 2163: 2012: 1857: 1648:
Wafer processing is separated into FEOL and BEOL stages. FEOL processing refers to the formation of the
1437: 1343: 1250: 374: 6831: 4531: 4250: 3511: 6615: 6989: 6771: 5058: 4834: 3806: 3264: 2465: 2106: 1877:
layer) alongside a change in dielectric material in the interconnect (from silicon dioxides to newer
1711: 1682: 1595: 1573: 1246: 1130: 1038: 1026: 790: 564:
fins) with a width of 7 nm, so the Intel 10 nm process is similar in transistor density to
470:
Companies that manufacture machines used in the industrial semiconductor fabrication process include
300: 7252: 6359: 6135: 5877: 5823: 4221: 3412:"The Inside Story of Texas Instruments' Biggest Blunder: The TMS9900 Microprocessor - IEEE Spectrum" 3019: 2627: 6345: 4855: 4851:"Countries lavish subsidies and perks on semiconductor manufacturers as a global chip war heats up" 4222:"Exclusive: Is Intel Really Starting To Lose Its Process Lead? 7nm Node Slated For Release in 2022" 1882: 1878: 1873: 1793: 1607: 1603: 1461: 1427: 1291: 1201: 1135:
Millisecond thermal processing, millisecond anneal, millisecond processing, flash lamp anneal (FLA)
1061: 971: 759: 651: 647: 410: 406: 7185:
https://www.semiconductor-digest.com/abating-potentially-dangerous-particles-2-5m-and-smaller/amp/
7121:
https://www.csis.org/analysis/mapping-semiconductor-supply-chain-critical-role-indo-pacific-region
7099:
https://www.electronicsb2b.com/industry-buzz/invest/atmps-founding-stone-indias-semiconductor-era/
5554: 4889: 2508:. 25th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC 2014). pp. 120–124. 6930: 6570: 6505: 6460: 6327: 6276: 6117: 6067: 5504: 5420: 5184: 4797:"Taiwan chipmakers keep workers 'imprisoned' in factories to keep up with global pandemic demand" 4704: 4496: 4359: 4054: 3962: 3775: 3581: 2770: 2728: 2689: 2632: 2585: 2527: 2378: 2207: 2102: 2045: 2015:
combined with the extremes of fab processing steps). Most designs cope with at least 64 corners.
1999: 1928:
on one wafer have failed, the entire wafer is scrapped to avoid the costs of further processing.
1860:; this approach can still be (and often is) used in the fabrication of many memory chips such as 1776: 1218: 961: 870: 597: 463:
Within fabrication plants, the wafers are transported inside special sealed plastic boxes called
382: 378: 6724: 5208: 4092: 2842:
Lambrechts, Wynand; Sinha, Saurabh; Abdallah, Jassem Ahmed; Prinsloo, Jaco (13 September 2018).
881:
million transistors per square millimeter. In 2019, Samsung and TSMC announced plans to produce
762:, the world's largest manufacturer of semiconductors, has facilities in South Korea and the US. 6723:
Materials: Recent Advances". In Baklanov, Mikhail R.; Ho, Paul S.; Zschech, Ehrenfried (eds.).
5686:"Wafer Cleaning Procedures; Photoresist or Resist Stripping; Removal of Films and Particulates" 3290:
Mueller, C. W.; Robinson, P. H. (December 1964). "Grown-film silicon transistors on sapphire".
2670:. 2016 27th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC). pp. 6–11. 572:. As another example, GlobalFoundries' 12 and 14 nm processes have similar feature sizes. 7165: 6909: 6866: 6799: 6738: 6685: 6659: 6595: 6560: 6495: 6450: 6393: 6242: 6215: 6189: 6162: 6083: 5970: 5929: 5883: 5856: 5829: 5802: 5775: 5748: 5721: 5665: 5364: 5333: 5306: 5143: 5117: 5016: 4957: 4920: 4378: 3926: 3838: 3699: 3545: 3391: 3365: 3325: 3183: 3173: 2876: 2849: 2822: 2795: 2679: 2517: 2481: 2186: 2174: 1929: 1822: 1727: 1680:
becomes stretched somewhat, resulting in improved electronic mobility. Another method, called
1673: 1611: 1510: 1473: 1146: 929: 850: 541: 475: 402: 108: 4643: 4308: 4279: 4191:"14nm, 7nm, 5nm: How low can CMOS go? It depends if you ask the engineers or the economists…" 4145: 1523:
is any process that removes material from the wafer; examples include etch processes (either
678:(metal–oxide–semiconductor field-effect transistor) using the silicon-on-sapphire process at 7287: 6900: 6858: 6789: 6779: 6730: 6552: 6487: 6442: 6319: 6268: 6109: 6075: 6034: 6000: 5298: 5176: 5066: 4488: 3954: 3902: 3871: 3814: 3767: 3671: 3573: 3473: 3472:. 2014 IEEE 26th International Symposium on Power Semiconductor Devices & IC's (ISPSD). 3301: 3272: 3154: 2762: 2720: 2671: 2577: 2509: 2473: 2370: 2333: 2318: 2301: 2246: 1920: 1586: 1542: 1414: 1305: 1001: 976: 939: 679: 640: 398: 315: 304: 290: 81: 72: 5044: 3253:
Manasevit, H. M.; Simpson, W. J. (1964). "Single-Crystal Silicon on a Sapphire Substrate".
7088:
https://www.3dincites.com/2009/04/the-post-fab-process-debate-for-3d-ics-foundry-or-osats/
4410: 2359:"Regression Methods for Virtual Metrology of Layer Thickness in Chemical Vapor Deposition" 2049: 2007: 1741: 1737: 1677: 1457: 1398: 1261: 1196: 933: 805: 457: 386: 330: 6373: 5449: 4977: 3859: 1634:
effectiveness of processes carried out on a wafer are not even across the wafer surface.
1545:. For example, in conventional lithography, the wafer is coated with a chemical called a 117: 99: 90: 7196:
https://19january2017snapshot.epa.gov/sites/production/files/2015-06/documents/solid.pdf
6775: 6315:
Gate-first high-k/metal gate DRAM technology for low power and high performance products
5062: 3810: 3268: 3149:(February 1963). "Nanowatt logic using field-effect metal-oxide semiconductor triodes". 2607: 2469: 1991:
resources to perform most or all of the tests in parallel and on several chips at once.
1602:
Modification of electrical properties now also extends to the reduction of a material's
766:, the second-largest manufacturer, has facilities in Europe and Asia as well as the US. 6794: 6759: 6346:"Integrating high-k /metal gates: gate-first or gate-last? | Semiconductor Digest" 5966:
Semiconductor Microchips and Fabrication: A Practical Guide to Theory and Manufacturing
2328: 1868: 1789: 1591: 1494: 1445: 1402: 1394: 1317: 1280: 1188: 1168: 1141: 1020: 869:
process began being produced by Samsung in 2018. As of 2019, the node with the highest
858: 585: 479: 414: 310: 153: 147: 141: 135: 129: 123: 5391: 4907:"VLSI Symposium - TSMC and Imec on Advanced Process and Devices Technology Toward 2nm" 4073: 3453: 460:, also called wafer dicing. The dies can then undergo further assembly and packaging. 7271: 6705: 5188: 5113:
Cleaning and Surface Conditioning Technology in Semiconductor Device Manufacturing 11
3966: 3585: 3321:
Extending Moore's Law through Advanced Semiconductor Design and Processing Techniques
3146: 3142: 2845:
Extending Moore's Law through Advanced Semiconductor Design and Processing Techniques
2774: 2732: 2263: 2182: 1974: 1941: 1916: 1827: 1800:), although materials with constants as low as 2.2 are being offered to chipmakers. 1563: 1406: 1232: 1180: 1120: 813: 771: 620: 616: 557: 545: 320: 225: 216: 207: 198: 189: 180: 171: 162: 6509: 6464: 6331: 6280: 5604: 3779: 2636: 2589: 2382: 1911:
in between the various processing steps. For example, thin film metrology based on
6574: 6414: 6121: 4765:"GlobalFoundries Stops All 7nm Development: Opts To Focus on Specialized Processes" 4629: 4500: 3151:
1963 IEEE International Solid-State Circuits Conference. Digest of Technical Papers
2693: 2531: 2075: 2056: 1912: 1661: 1541:
is the shaping or altering of deposited materials, and is generally referred to as
1287: 1275: 1268: 842: 838: 569: 483: 471: 441: 437: 270: 252: 243: 234: 6706:"Introduction to Copper / Low-K Interconnects & Electromigration Fundamentals" 4657: 4131: 1919:
is used to tightly control the thickness of gate oxide, as well as the thickness,
1756:
implemented these capacitors with trenches etched deep into the silicon surface).
1008:
are embedded in the wafer creating regions of increased or decreased conductivity)
6079: 5742: 5163:
Reiter, Tamas; McCann, Michael; Connolly, James; Haughey, Sean (February 2022).
4195: 3720: 2178: 1547: 1360: 1226: 1212: 1016: 882: 866: 862: 702: 445: 6635: 6544: 6523: 6491: 6479: 6434: 6433:
Y.; Tsukamoto, M.; Iwamoto, H.; Saito, M.; Kadomura, S.; Nagashima, N. (2006).
6313: 6262: 6103: 5290: 5164: 3890: 3818: 3664:"Model-based silicon wafer criteria for optimal integrated circuit performance" 3492:"Three Chips in One: The History of the BCD Integrated Circuit - IEEE Spectrum" 3477: 3467: 3158: 2750: 2708: 2665: 2565: 2548: 2503: 2374: 2358: 2099:
packaging can be used to place bond pads across the entire surface of the die.
1890:) is the primary processing method to achieve such planarization, although dry 1283:(The die is attached to a leadframe using conductive paste or die attach film.) 7262: 7224:
Digital Integrated Circuit Design, from VLSI Architectures to CMOS Fabrication
6734: 6556: 6323: 6272: 6113: 6108:. The 2006 IEEE International Joint Conference on Neural Network Proceedings. 5302: 3958: 3946: 3759: 3565: 2818:
Fundamental Principles of Optical Lithography: The Science of Microfabrication
2675: 2513: 2148: 2080: 1995: 1907:
The highly serialized nature of wafer processing has increased the demand for
1886:
available lithography, and thus interfering with the ability to pattern. CMP (
1749: 1649: 1460:) up to 300 mm (slightly less than 12 inches) in diameter using the 1386: 1325: 690: 655: 537: 533: 506: 433: 390: 285: 45: 24: 6446: 6360:"IEDM 2009: HKMG gate-first vs gate-last options | Semiconductor Digest" 6004: 5180: 4560:"Intel's Stacked Nanosheet Transistors Could be the Next Step in Moore's Law" 4251:"Life at 10nm. (Or is it 7nm?) And 3nm - Views on Advanced Silicon Platforms" 3889:
Weimer, R.A.; Eppich, D.M.; Beaman, K.L.; Powell, D.C.; Gonzalez, F. (2003).
3794: 3577: 2766: 2724: 2581: 2485: 7109: 6956: 5685: 5295:
2017 28th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)
4769: 4677: 4492: 4343: 3906: 3771: 3599: 3055: 2312: 2219: 2159: 2096: 2095:. Tradidionally the bond pads are located on the edges of the die, however, 1908: 1615: 1558: 1390: 1380: 1333: 1295: 1257: 1222: 944: 666:). In 1964, he published his findings with colleague William Simpson in the 6870: 6803: 5999:. 2018 22nd International Conference on Ion Implantation Technology (IIT). 4872:"China import concerns spur US to launch semiconductor supply chain review" 3764:
Proceedings of 11th International Conference on Ion Implantation Technology
3305: 1881:
insulators). This performance enhancement also comes at a reduced cost via
5450:"Product Information | DBG / Package Singulation - DISCO Corporation" 4093:"Chip Architect: Intel and Motorola/AMD's 130 nm processes to be revealed" 1221:
and polishing (reduces the thickness of the wafer for thin devices like a
3875: 3744: 3649:"Novellus offers 300-mm CVD tool that's smaller than 200-mm, lower costs" 3218: 3216: 3214: 3212: 3210: 2194:
cartridges, etc., to control the risk to workers and to the environment.
2144: 2131:
Many toxic materials are used in the fabrication process. These include:
1849: 854: 779: 775: 512:
Early semiconductor processes had arbitrary names for generations (viz.,
4830:"What are semiconductors, and why are they vital to the global economy?" 3760:"Manufacturing advantages of single wafer high current ion implantation" 2454:"Die singulation technologies for advanced packaging: A critical review" 902:
are often specific to process offerings by foundries, or specific to an
7207:
https://cleanroomtechnology.com/hi-tech-without-costing-the-earth-55605
6784: 4602:"Transistors will stop shrinking in 2021, but Moore's law will live on" 4479:
Bohr, Mark T.; Young, Ian A. (2017). "CMOS Scaling Trends and Beyond".
2606:
Kure, Tokuo; Hanaoka, Hideo; Sugiura, Takumi; Nakagawa, Shinya (2007).
2140: 2136: 1753: 1657: 1653: 1619: 1553: 1441: 1104: 925: 783: 418: 19: 6862: 5070: 3276: 2477: 2166:, used in CVD deposition of tungsten in transistor interconnects, and 6038: 5093:"Wafer Cleaning Becomes Key Challenge In Manufacturing 3D Structures" 4025:"Top 10 Worldwide Semiconductor Sales Leaders - Q1 2017 - AnySilicon" 2251: 2234: 2167: 2155: 2084: 1627: 1321: 1005: 993:
Post Exposure Baking (PEB) improves the durability of the photoresist
831: 742: 698: 675: 663: 608: 561: 520:
III/III-E/IV/V). Later each new generation process became known as a
53: 6846: 5497:"Electro Conductive Die Attach Film(Under Development) | Nitto" 5045:"A Theoretical Analysis of Wafer Cleaning Using a Cryogenic Aerosol" 3675: 2453: 432:, also called foundries or "fabs", with the central part being the " 7231: 7048: 3740:"The future of batch and single-wafer processing in wafer cleaning" 3566:"The world's first 300 mm fab at Infineon - challenges and success" 3020:"Intel 10nm isn't bigger than AMD 7nm, you're just measuring wrong" 5605:"The ASYST SMIF system - Integrated with the Tencor Surfscan 7200" 3891:"Contrasting single-wafer and batch processing for memory devices" 3454:"KLA 2020 - the tool that sparked the yield management revolution" 2285: 1979: 1821: 1676:(SiGe) is deposited. Once the epitaxial silicon is deposited, the 1623: 1514: 1506: 1453: 1365: 1151: 820: 763: 730: 686: 517: 18: 6818:"Ibm's Development of Copper Interconnect for Integrated Circuit" 3345: 2505:
Advanced FOUP purge using diffusers for FOUP door-off application
990:
Exposure (in a photolithography stepper, scanner or mask aligner)
6528: 6140: 4712: 4518:"Start-up Seeks New Life for Planar Transistors - IEEE Spectrum" 3496: 2306: 2239: 2088: 1765: 1643: 1410: 1240: 809: 767: 726: 694: 612: 565: 513: 464: 405:, thin-film deposition, ion-implantation, etching) during which 394: 295: 7263:
Designing a Heated Chuck for Semiconductor Processing Equipment
6484:
2007 International Workshop on Physics of Semiconductor Devices
5798:
III-Nitrides Light Emitting Diodes: Technology and Applications
4339:"Intel's Process Roadmap to 2025: With 4nm, 3nm, 20A and 18A?!" 3469:
0.18um BCD technology with best-in-class LDMOS from 6 V to 45 V
1614:
in UV processing (UVP). Modification is frequently achieved by
452:
A wafer often has several integrated circuits which are called
3981:"Single Wafer vs Batch Wafer Processing in MEMS Manufacturing" 1959: 1590:
atoms. Doping processes with ion implantation are followed by
1329: 1161: 794: 628: 6267:. 2012 SEMI Advanced Semiconductor Manufacturing Conference. 6235:
Nathan, Arokia; Saha, Samar K.; Todi, Ravi M. (August 2023).
4673:"Samsung Completes Development of 5nm EUV Process Technology" 3051:"Intel's 10nm Cannon Lake and Core i3-8121U Deep Dive Review" 2452:
Lei, Wei-Sheng; Kumar, Ajay; Yalamanchili, Rao (2012-04-06).
2091:
is poisonous, so lead-free "lead frames" are now mandated by
1994:
Chips are often designed with "testability features" such as
6952:"Early TSMC 5nm Test Chip Yields 80%, HVM Coming in H1 2020" 6655:
Chemical-Mechanical Planarization of Semiconductor Materials
3951:
1992 Symposium on VLSI Technology Digest of Technical Papers
2667:
FOUP purge performance improvement using EFEM flow converter
2564:
Lin, Tee; Fu, Ben-Ran; Hu, Shih-Cheng; Tang, Yi-Han (2018).
1505:(ALD) among others. Deposition can be understood to include 981:
Photoresist coating (often as a liquid, on the entire wafer)
6318:. 2015 IEEE International Electron Devices Meeting (IEDM). 6105:
Virtual Metrology Technique for Semiconductor Manufacturing
4815:"Chip shortages lead to more counterfeit chips and devices" 4455:"Intel's Tri-Gate transistors: everything you need to know" 3111:"1963: Complementary MOS Circuit Configuration is Invented" 3082:"VLSI 2018: GlobalFoundries 12nm Leading-Performance, 12LP" 2404:"8 Things You Should Know About Water & Semiconductors" 2352: 2350: 1736:
Front-end surface engineering is followed by growth of the
428:
The fabrication process is performed in highly specialized
6719:
Dubois, Geraud; Volksen, Willi (February 24, 2012). "Low-
5421:"Product Information | Polishers - DISCO Corporation" 4921:"Power outage partially halts Toshiba Memory's chip plant" 4007:"Applied Materials Producer - a new revolution is upon us" 3795:"Approaches to single wafer high current ion implantation" 1418:
shed large amounts of particles, especially when walking.
1211:
Wafer mounting (wafer is mounted onto a metal frame using
774:, has facilities in Taiwan, China, Singapore, and the US. 436:". In more advanced semiconductor devices, such as modern 6136:"The Threat of Semiconductor Variability - IEEE Spectrum" 6068:"Ion implantation in CMOS Technology: Machine Challenges" 5570: 5568: 5555:"From a Slice of Crystal to an IC Wafer - CHM Revolution" 5326:
Einspruch, Norman G.; Brown, Dale M. (December 1, 2014).
4118:"'Bridge tools' appear to be taking over 300-mm movement" 2127:
Health hazards in semiconductor manufacturing occupations
1393:
must become even cleaner. Today, fabrication plants are
685:
Semiconductor device manufacturing has since spread from
5661:
Microlithography: Science and Technology, Second Edition
5289:
Ryu, Je Hyeok; Kim, Byoung Hoon; Yoon, Sung Jin (2017).
2995:
IEEE Spectrum: Technology, Engineering, and Science News
16:
Manufacturing process used to create integrated circuits
6760:"Recent Advances in Barrier Layer of Cu Interconnects" 6588:
Widmann, D.; Mader, H.; Friedrich, H. (9 March 2013).
5268:"Ion beam deposition goes 300mm with Aviza's new tool" 3105: 3103: 2901:"Die shrink: How Intel scaled-down the 8086 processor" 2894: 2892: 2608:"Clean-room Technologies for the Mini-environment Age" 631:
in the late 1960s. RCA commercially used CMOS for its
6214:. World Scientific Publishing Company. 3 March 2008. 5852:
Fundamentals of Layout Design for Electronic Circuits
3695:
Wafer Fabrication: Automatic Material Handling System
2309:(SEMI) — the semiconductor industry trade association 6908:. Integrated Circuit Engineering Corporation. 1997. 6155:
Nishi, Yoshio; Doering, Robert (December 19, 2017).
5905:"Highly Selective Etch Rolls Out For Next-Gen Chips" 2991:"A Better Way To Measure Progress in Semiconductors" 1183:(where the electrical performance is verified using 6888: 6886: 5479:"Plasma Dicing (Dice Before Grind) | Orbotech" 5245:"Unlocking the Potential of Molecular Beam Epitaxy" 4574:"Nanowire Transistors Could Keep Moore's Law Alive" 4426:"Intel's Revolutionary 22 nm Transistor Technology" 3387:
Wafer Fabrication: Factory Performance and Analysis
2788:Nishi, Yoshio; Doering, Robert (19 December 2017). 2307:
Semiconductor Equipment and Materials International
2276:
International Technology Roadmap for Semiconductors
1385:When feature widths were far greater than about 10 550:
International Technology Roadmap for Semiconductors
7239:Handbook of Semiconductor Manufacturing Technology 6264:High-k/metal gates in leading edge silicon devices 6158:Handbook of Semiconductor Manufacturing Technology 5849:Lienig, Jens; Scheible, Juergen (March 19, 2020). 5353:Verhaverbeke, S.; Beaudry, C.; Boelen, P. (2004). 4055:"Transistor Aging Intensifies At 10/7nm And Below" 2791:Handbook of Semiconductor Manufacturing Technology 2439:Handbook of Semiconductor Manufacturing Technology 2005:Good designs try to test and statistically manage 1848:") in the insulating material and then depositing 5009:Reinhardt, Karen; Kern, Werner (March 16, 2018). 2105:(CSP) is another packaging technology. A plastic 1834:Historically, the metal wires have been composed 1775:Once the various semiconductor devices have been 693:in the 1960s to the rest of the world, including 401:and physico-chemical process (with steps such as 6935:: CS1 maint: bot: original URL status unknown ( 5635:"How a Chip Gets Made: Visiting GlobalFoundries" 5356:Aqueous Single Pass Single Wafer AI/Via Cleaning 5169:IEEE Transactions on Semiconductor Manufacturing 4411:"Foundries Rush 3-D Transistors - IEEE Spectrum" 3895:IEEE Transactions on Semiconductor Manufacturing 2755:IEEE Transactions on Semiconductor Manufacturing 2713:IEEE Transactions on Semiconductor Manufacturing 2570:IEEE Transactions on Semiconductor Manufacturing 2225:Glossary of microelectronics manufacturing terms 6902:Cost Effective Integrated Circuit Manufacturing 6549:2007 IEEE Custom Integrated Circuits Conference 5993:Review of Major Innovations in Beam Line Design 4978:"Water Scarcity and the Semiconductor Industry" 4890:"US urges Taiwan to curb chip exports to China" 2011:(extremes of silicon behavior caused by a high 1308:or integrated heat spreader (IHS) installation 6480:"High-k/Metal Gates- from research to reality" 3223:Rubin, Leonard; Poate, John (June–July 2003). 2059:. Only the good, unmarked chips are packaged. 984:Photoresist baking (solidification in an oven) 650:was the first to document epitaxial growth of 6832:"Cobalt Encapsulation Extends Copper to 10nm" 6545:"High-K/Metal Gate Technology: A New Horizon" 5771:Plasma Etching: Fundamentals and Applications 5717:Plasma Etching: Fundamentals and Applications 5012:Handbook of Silicon Wafer Cleaning Technology 4588:"Nanowires give vertical transistors a boost" 4546:"What's Different About Next-Gen Transistors" 3526:"Series 900 In-Line Sputtering System by MRC" 3512:"Applied Materials Precision 5000 CVD System" 3426:"Wafer fab costs skyrocketing out of control" 2269:Semiconductor equipment sales leaders by year 351: 8: 6758:Li, Z.; Tian, Y.; Teng, C.; Cao, H. (2020). 3541:Vacuum Deposition onto Webs, Films and Foils 3361:How Transistor Area Shrank by 1 Million Fold 3346:"Evolution of the Silicon Wafer Infographic" 2922:"Overall Roadmap Technology Characteristics" 1921:refractive index, and extinction coefficient 1840:. In this approach to wiring (often called 1710:Gate-last consisted of first depositing the 6439:2006 International Electron Devices Meeting 6072:Ion Implantation and Synthesis of Materials 4161:"A Brief History of Process Node Evolution" 3631:"300mm Semiconductor Wafers get a reprieve" 2944:"A Brief History of Process Node Evolution" 7014:"Introduction to Semiconductor Technology" 6918:. Archived from the original on 2023-01-22 4950:Labor, U. S. Dept of (February 19, 2000). 4901: 4899: 3925:. John Wiley & Sons. 28 January 2005. 1970:) of the wafer per unit area, usually cm. 877:nanometer N5 node, with a density of 171.3 670:. In 1965, C.W. Mueller and P.H. Robinson 358: 344: 29: 7110:https://www.semiconductors.org/ecosystem/ 6851:The Journal of Physical Chemistry Letters 6793: 6783: 6629: 6627: 6625: 5744:Dry Etching Technology for Semiconductors 5224: 5222: 5202: 5200: 5198: 5004: 5002: 4735:"TSMC Starts 5-Nanometer Risk Production" 4532:"The Increasingly Uneven Race to 3nm/2nm" 3687: 3685: 3611: 3609: 3013: 3011: 2872:Semiconductor Memory Devices and Circuits 2626: 2502:Wang, H. P.; Kim, S. C.; Liu, B. (2014). 918:Wafer processing (also called front end) 639:ÎĽm process before gradually scaling to a 5633:Miller, Michael J. (February 15, 2018). 4377:Derbyshire, Katherine (April 20, 2017). 3225:"Ion Implantation in Silicon Technology" 2984: 2982: 2744: 2742: 2664:Kim, Seong Chan; Schelske, Greg (2016). 2297:List of semiconductor fabrication plants 2292:List of integrated circuit manufacturers 413:, typically made of pure single-crystal 6389:Complementary Metal Oxide Semiconductor 5139:Handbook of Integrated Circuit Industry 5110:Hattori, Takeshi (September 30, 2009). 4870:Shepardson, David (December 21, 2023). 4424:Bohr, Mark; Mistry, Kaizad (May 2011). 2601: 2599: 2543: 2541: 2432: 2430: 2428: 2426: 2424: 2346: 1551:; then, a machine called an aligner or 1375:Prevention of contamination and defects 1167:Electrochemical deposition (ECD). See 1077:Metal organic chemical vapor deposition 845:chips are in mass production by Intel, 425:are used for specialized applications. 32: 6928: 6392:. BoD – Books on Demand. August 2018. 6211:Semiconductor Manufacturing Technology 6182:Grovenor, C. R. M. (October 5, 2017). 5050:Journal of the Electrochemical Society 4931:from the original on December 16, 2019 4795:Smith, Nicola; Liu, John (July 2021). 4309:"14 nm lithography process - WikiChip" 4280:"10 nm lithography process - WikiChip" 3698:. Walter de Gruyter GmbH & Co KG. 2497: 2495: 2363:IEEE/ASME Transactions on Mechatronics 6524:"The High-k Solution - IEEE Spectrum" 3180:Springer Science & Business Media 3030:from the original on October 28, 2020 1570:Modification of electrical properties 1237:three-dimensional integrated circuits 1206:three-dimensional integrated circuits 1191:may also be carried out at this step) 7: 6983:"Advanced MOSFETs and Novel Devices" 6616:"BEOL Wiring Process for CMOS Logic" 6074:. Springer. 2006. pp. 213–238. 5576:"Study into human particle shedding" 5209:"What's Next For Atomic Layer Etch?" 3858:Hossain-Pas, S.; Pas, M. F. (1997). 3175:History of Semiconductor Engineering 2230:List of semiconductor scale examples 2204:List of semiconductor scale examples 1628:metal oxide field effect transistors 1339:Laser marking or silkscreen printing 627:in 1963. CMOS was commercialised by 582:List of semiconductor scale examples 7133:"Why tech pollution's going global" 5922:Franssila, Sami (28 January 2005). 5207:LaPedus, Mark (November 16, 2017). 4360:"Chip Aging Becomes Design Problem" 4146:"Get ready for 675-mm fabs in 2021" 3947:"Trends in single-wafer processing" 2198:Timeline of commercial MOSFET nodes 1638:Front-end-of-line (FEOL) processing 560:actually has features (the tips of 421:is almost always used, but various 373:is the process used to manufacture 6238:75th Anniversary of the Transistor 5822:Powell, R. A. (December 2, 2012). 5741:Nojiri, Kazuo (October 25, 2014). 4072:Sperling, Ed (February 14, 2018). 3670:. Vol. 449. pp. 97–112. 2929:Semiconductor Industry Association 1818:interconnect (integrated circuits) 1760:Back-end-of-line (BEOL) processing 1672:wherein a silicon variant such as 936:sometimes while spinning the wafer 793:(SOI) technology has been used in 14: 6726:Low- k Materials: Recent Advances 6591:Technology of Integrated Circuits 6018:Fair, Richard B. (January 1998). 5990:Glavish, Hilton; Farley, Marvin. 5963:Lian, Yaguang (10 October 2022). 5879:Etching in Microsystem Technology 5876:Köhler, Michael (July 11, 2008). 4703:Cheng, Godfrey (14 August 2019). 3123:from the original on 23 July 2019 3088:from the original on 7 April 2019 2989:Moore, Samuel K. (21 July 2020). 2173:highly reactive liquids, such as 1888:chemical-mechanical planarization 1533:chemical-mechanical planarization 7278:Semiconductor device fabrication 6374:"Tracing Samsung's Road to 14nm" 5925:Introduction to Microfabrication 5903:LaPedus, Mark (March 21, 2022). 5825:Dry Etching for Microelectronics 5091:Hars, Adele (October 20, 2022). 4849:Whalen, Jeanne (June 14, 2021). 4379:"Will Self-Heating Stop FinFETs" 4358:Bailey, Brian (August 9, 2018). 4053:Mutschler, Ann (July 13, 2017). 3922:Introduction to Microfabrication 3692:Zhang, Jie (24 September 2018). 3544:. William Andrew. 21 June 2011. 3324:. CRC Press. 13 September 2018. 3153:. Vol. VI. pp. 32–33. 3018:Ridley, Jacob (April 29, 2020). 2170:used for depositing polysilicon. 1129:Rapid thermal processing (RTP), 430:semiconductor fabrication plants 371:Semiconductor device fabrication 44: 7253:Semiconductor industry glossery 7232:Wiki related to Chip Technology 7158:Baliga, B. (December 2, 2012). 7059:from the original on 2021-01-22 7030:from the original on 2018-04-03 6964:from the original on 2020-05-25 6413:LaPedus, Mark (July 24, 2017). 5696:from the original on 2020-10-15 5615:from the original on 2020-10-16 5586:from the original on 2020-10-15 5536:from the original on 2019-05-26 5460:from the original on 2019-05-16 5431:from the original on 2019-05-26 5402:from the original on 2019-06-14 5266:Vogler, D. (19 November 2008). 5116:. The Electrochemical Society. 5015:. William Andrew. p. 223. 4777:from the original on 2019-10-12 4745:from the original on 2020-05-05 4685:from the original on 2019-04-20 4644:"Transistor Options Beyond 3nm" 4319:from the original on 2019-07-01 4290:from the original on 2019-07-01 4261:from the original on 2019-07-09 4232:from the original on 2019-07-09 4203:from the original on 2019-07-09 4171:from the original on 2019-07-09 4035:from the original on 2017-11-06 3983:. 2 August 2016. Archived from 3738:Becker, Scott (24 March 2003). 3196:from the original on 2020-08-06 3063:from the original on 2020-11-12 2968:from the original on 2020-11-12 2646:from the original on 2021-11-01 2189:, used in etching and cleaning. 889:From 2020 to 2022, there was a 812:process was similar to Intel's 633:4000-series integrated circuits 6681:Copper Interconnect Technology 6634:LaPedus, Mark (May 22, 2017). 5142:. Springer. 27 November 2023. 3719:LaPedus, Mark (May 21, 2018). 3390:. Springer. 30 November 1995. 904:integrated device manufacturer 1: 7226:. Cambridge University Press. 6684:. Springer. 22 January 2010. 6658:. Springer. 26 January 2004. 5768:Sugawara, M. (May 28, 1998). 5714:Sugawara, M. (May 28, 1998). 5664:. CRC Press. 3 October 2018. 4953:Occupational Outlook Handbook 4763:Shilov, Anton; Cutress, Ian. 4189:Hruska, Joel (23 June 2014). 3240:American Institute of Physics 2869:Yu, Shimeng (19 April 2022). 2815:Mack, Chris (11 March 2008). 2154:poisonous compounds, such as 2083:(pronounced "leed frame") of 1175:Chemical-mechanical polishing 924:Cleaning by solvents such as 737:during processing in vacuum. 528:, designated by the process' 23:NASA's Glenn Research Center 7161:Epitaxial Silicon Technology 6894:"Yield and Yield Management" 6080:10.1007/978-3-540-45298-0_15 5243:PelĂ©, A-F. (29 March 2022). 5043:Natraj Narayanswami (1999). 4939:– via www.reuters.com. 4453:Grabham, Dan (May 6, 2011). 3617:"Applied Materials Producer" 2962:"Technology Node - WikiChip" 2162:in ion implantation doping, 2069:Integrated circuit packaging 1975:tests the chips on the wafer 1862:dynamic random-access memory 1746:dynamic random-access memory 1594:or, in advanced devices, by 1405:to protect the devices from 825:fin field-effect transistors 389:, and memory chips (such as 5580:www.cleanroomtechnology.com 5526:"Die Attach Film Adhesives" 4733:Schor, David (2019-04-06). 2899:Shirriff, Ken (June 2020). 2281:Semiconductor consolidation 1359:Additionally steps such as 635:in 1968, starting with a 20 409:are gradually created on a 7304: 6492:10.1109/IWPSD.2007.4472451 5329:Plasma Processing for VLSI 3837:. Springer. 29 June 2013. 3819:10.1016/j.nimb.2005.05.016 3668:AIP Conference Proceedings 3478:10.1109/ISPSD.2014.6856005 3364:. Springer. 15 July 2020. 3256:Journal of Applied Physics 3159:10.1109/ISSCC.1963.1157450 2375:10.1109/TMECH.2013.2273435 2286:Local oxidation of silicon 2201: 2124: 2066: 2043: 1939: 1815: 1763: 1725: 1641: 1572:has historically entailed 1501:(MBE), and more recently, 1495:electrochemical deposition 1471: 1425: 1378: 1012:Etching (microfabrication) 861:and GlobalFoundries, with 668:Journal of Applied Physics 579: 7174:– via Google Books. 6735:10.1002/9781119963677.ch1 6640:Semiconductor Engineering 6557:10.1109/CICC.2007.4405765 6419:Semiconductor Engineering 6324:10.1109/IEDM.2015.7409775 6273:10.1109/ASMC.2012.6212925 6241:. John Wiley & Sons. 6198:– via Google Books. 6185:Microelectronic Materials 6171:– via Google Books. 6114:10.1109/IJCNN.2006.247284 5969:. John Wiley & Sons. 5928:. John Wiley & Sons. 5909:Semiconductor Engineering 5892:– via Google Books. 5882:. John Wiley & Sons. 5865:– via Google Books. 5838:– via Google Books. 5811:– via Google Books. 5784:– via Google Books. 5757:– via Google Books. 5730:– via Google Books. 5342:– via Google Books. 5303:10.1109/ASMC.2017.7969207 5213:Semiconductor Engineering 5126:– via Google Books. 5097:Semiconductor Engineering 4966:– via Google Books. 4705:"Moore's Law is not Dead" 4658:"Samsung, GF Ramp FD-SOI" 4383:Semiconductor Engineering 4364:Semiconductor Engineering 4078:Semiconductor Engineering 4059:Semiconductor Engineering 3959:10.1109/VLSIT.1992.200629 3725:Semiconductor Engineering 2821:. John Wiley & Sons. 2676:10.1109/ASMC.2016.7491075 2514:10.1109/ASMC.2014.6846999 1491:chemical vapor deposition 1487:physical vapor deposition 1440:is made out of extremely 1091:Physical vapor deposition 1071:Chemical vapor deposition 1033:Deep reactive-ion etching 912:integrated circuit design 397:). It is a multiple-step 7222:Kaeslin, Hubert (2008). 6729:. Wiley. pp. 1–33. 6447:10.1109/IEDM.2006.346959 6005:10.1109/IIT.2018.8807986 5530:www.henkel-adhesives.com 5181:10.1109/TSM.2021.3129770 4074:"Chip Aging Accelerates" 3578:10.1109/ISSM.2000.993612 3232:The Industrial Physicist 2767:10.1109/TSM.2020.2977122 2725:10.1109/TSM.2022.3209221 2582:10.1109/TSM.2018.2791985 1748:(DRAM) devices, storage 1432:mono-crystalline silicon 1185:automatic test equipment 966:Immersion batch cleaning 6415:"What's After FinFETs?" 6027:Proceedings of the IEEE 5559:www.computerhistory.org 5361:Electrochemical Society 4630:"What's After FinFETs?" 4493:10.1109/MM.2017.4241347 3907:10.1109/TSM.2003.810939 3772:10.1109/IIT.1996.586424 3293:Proceedings of the IEEE 3116:Computer History Museum 1794:low dielectric constant 1722:Gate oxide and implants 1660:. In the most advanced 1596:rapid thermal annealing 1513:or, more specifically, 1503:atomic layer deposition 1085:Atomic layer deposition 660:North American Aviation 625:Fairchild Semiconductor 423:compound semiconductors 7237:Yoshio, Nishi (2017). 6543:Khare, Mukesh (2007). 6478:Narayanan, V. (2007). 3600:"The 300mm Era Begins" 3306:10.1109/PROC.1964.3436 2437:Yoshio, Nishi (2017). 2259:Semiconductor industry 1895:copper interconnects. 1831: 1826:Synthetic detail of a 1732:doping (semiconductor) 1499:molecular beam epitaxy 1371: 1300:tape automated bonding 1264:), and WLCSP packages) 1110:Molecular beam epitaxy 908:a handful of companies 782:are among the biggest 770:, the world's largest 756:semiconductor industry 594:Semiconductor industry 590:MOS integrated circuit 27: 6747:– via CrossRef. 2164:tungsten hexafluoride 2013:operating temperature 1858:tungsten hexafluoride 1825: 1369: 1344:printed circuit board 1079:(MOCVD), used in LEDs 654:while working at the 544:length, such as the " 502:semiconductor process 375:semiconductor devices 22: 7283:Cleanroom technology 6636:"The Race To 10/7nm" 6551:. pp. 417–420. 5297:. pp. 102–106. 4835:World Economic Forum 4132:"Foundry Wars Begin" 3876:10.1557/PROC-470-201 3834:Dry Etching for VLSI 2315:for labels on wafers 2135:poisonous elemental 2113:the wafer is diced. 2107:dual in-line package 1842:subtractive aluminum 1683:silicon on insulator 1509:layer formation, by 1363:may be carried out. 1247:Redistribution layer 1160:Laser lift-off (for 1131:rapid thermal anneal 1039:Atomic layer etching 1027:Reactive-ion etching 891:global chip shortage 791:Silicon on insulator 607:An improved type of 530:minimum feature size 6776:2020Mate...13.5049L 6048:on 2 September 2007 5855:. Springer Nature. 5801:. Springer Nature. 5063:1999JElS..146..767N 4956:. JIST Publishing. 4909:. 25 February 2024. 4856:The Washington Post 4646:. 15 February 2018. 4148:. 14 November 2006. 3987:on 18 February 2024 3811:2005NIMPB.237..284R 3269:1964JAP....35.1349M 2470:2012JVSTB..30d0801L 2121:Hazardous materials 1983:non-working parts. 1874:copper interconnect 1792:, but recently new 1604:dielectric constant 1462:Czochralski process 1428:Wafer (electronics) 1292:thermosonic bonding 1256:Wafer bumping (for 1202:Through-silicon via 1126:Thermal treatments 1117:Ion beam deposition 1062:Buffered oxide etch 972:Surface passivation 760:Samsung Electronics 652:silicon on sapphire 648:Harold M. Manasevit 615:, was developed by 540:) of the process's 407:electronic circuits 383:computer processors 379:integrated circuits 7021:STMicroelectronics 6785:10.3390/ma13215049 6486:. pp. 42–45. 5363:. pp. 23–26. 5332:. Academic Press. 4982:large.stanford.edu 4548:. 20 October 2022. 4097:chip-architect.com 3793:Renau, A. (2005). 3721:"200mm Fab Crunch" 3172:Lojek, Bo (2007). 2208:Transistor density 2103:Chip scale package 2046:Wafer backgrinding 2000:built-in self-test 1962:test chips with a 1832: 1372: 1235:and stacking (for 1219:Wafer backgrinding 955:Jet spray cleaning 871:transistor density 641:10 ÎĽm process 598:Transistor density 28: 7171:978-0-323-15545-8 7049:"Wafer Backgrind" 6950:Cutress, Dr Ian. 6863:10.1021/jz502471h 6744:978-0-470-66254-0 6691:978-1-4419-0076-0 6665:978-3-540-43181-7 6601:978-3-662-04160-4 6566:978-1-4244-0786-6 6501:978-1-4244-1727-8 6399:978-1-78923-496-1 6248:978-1-394-20244-7 6221:978-981-310-671-0 6195:978-1-351-43154-5 6168:978-1-4200-1766-3 6089:978-3-540-23674-0 5976:978-1-119-86780-7 5935:978-0-470-02056-2 5889:978-3-527-61379-3 5862:978-3-030-39284-0 5835:978-0-08-098358-5 5808:978-981-15-7949-3 5781:978-0-19-159029-0 5754:978-3-319-10295-5 5727:978-0-19-159029-0 5671:978-1-4200-5153-7 5370:978-1-56677-411-6 5339:978-1-4832-1775-8 5312:978-1-5090-5448-0 5270:. Gold Flag Media 5149:978-981-99-2836-1 5123:978-1-56677-742-1 5071:10.1149/1.1391679 5022:978-0-323-51085-1 4963:978-1-56370-677-6 4927:. June 21, 2019. 4159:Shukla, Priyank. 3932:978-0-470-02056-2 3844:978-1-4899-2566-4 3705:978-3-11-048723-7 3551:978-1-4377-7868-7 3397:978-0-7923-9619-2 3371:978-3-030-40021-7 3331:978-1-351-24866-2 3277:10.1063/1.1713618 2942:Shukla, Priyank. 2882:978-1-000-56761-8 2855:978-1-351-24866-2 2828:978-0-470-72386-9 2801:978-1-4200-1766-3 2685:978-1-5090-0270-2 2523:978-1-4799-3944-2 2478:10.1116/1.3700230 2187:hydrofluoric acid 2175:hydrogen peroxide 1953:Process variation 1930:Virtual metrology 1728:self-aligned gate 1712:high-Îş dielectric 1688:parasitic effects 1674:silicon-germanium 1612:ultraviolet light 1592:furnace annealing 1511:thermal oxidation 1474:Wafer fabrication 1249:manufacture (for 1204:manufacture (for 1187:, binning and/or 1147:Thermal oxidation 987:Edge bead removal 958:Cryogenic aerosol 930:trichloroethylene 849:, TSMC, Samsung, 772:pure play foundry 536:(or historically 476:Applied Materials 403:thermal oxidation 399:photolithographic 368: 367: 7295: 7242: 7227: 7209: 7204: 7198: 7193: 7187: 7182: 7176: 7175: 7155: 7149: 7148: 7146: 7144: 7139:. April 25, 2002 7129: 7123: 7118: 7112: 7107: 7101: 7096: 7090: 7085: 7079: 7074: 7068: 7067: 7065: 7064: 7045: 7039: 7038: 7036: 7035: 7029: 7018: 7010: 7004: 7003: 7001: 7000: 6994: 6988:. Archived from 6987: 6979: 6973: 6972: 6970: 6969: 6947: 6941: 6940: 6934: 6926: 6924: 6923: 6907: 6898: 6890: 6881: 6880: 6878: 6877: 6842: 6836: 6835: 6828: 6822: 6821: 6814: 6808: 6807: 6797: 6787: 6755: 6749: 6748: 6716: 6710: 6709: 6702: 6696: 6695: 6676: 6670: 6669: 6650: 6644: 6643: 6631: 6620: 6619: 6612: 6606: 6605: 6585: 6579: 6578: 6540: 6534: 6533: 6520: 6514: 6513: 6475: 6469: 6468: 6441:. pp. 1–4. 6429: 6423: 6422: 6410: 6404: 6403: 6384: 6378: 6377: 6370: 6364: 6363: 6356: 6350: 6349: 6342: 6336: 6335: 6310: 6304: 6300: 6294: 6291: 6285: 6284: 6259: 6253: 6252: 6232: 6226: 6225: 6206: 6200: 6199: 6179: 6173: 6172: 6152: 6146: 6145: 6132: 6126: 6125: 6100: 6094: 6093: 6064: 6058: 6057: 6055: 6053: 6047: 6041:. Archived from 6039:10.1109/5.658764 6024: 6015: 6009: 6008: 5998: 5987: 5981: 5980: 5960: 5954: 5953: 5946: 5940: 5939: 5919: 5913: 5912: 5900: 5894: 5893: 5873: 5867: 5866: 5846: 5840: 5839: 5819: 5813: 5812: 5792: 5786: 5785: 5765: 5759: 5758: 5738: 5732: 5731: 5711: 5705: 5704: 5702: 5701: 5682: 5676: 5675: 5656: 5650: 5649: 5647: 5645: 5630: 5624: 5623: 5621: 5620: 5601: 5595: 5594: 5592: 5591: 5572: 5563: 5562: 5551: 5545: 5544: 5542: 5541: 5522: 5516: 5515: 5513: 5512: 5503:. Archived from 5493: 5487: 5486: 5483:www.orbotech.com 5475: 5469: 5468: 5466: 5465: 5446: 5440: 5439: 5437: 5436: 5417: 5411: 5410: 5408: 5407: 5388: 5382: 5381: 5379: 5377: 5350: 5344: 5343: 5323: 5317: 5316: 5286: 5280: 5279: 5277: 5275: 5263: 5257: 5256: 5254: 5252: 5240: 5234: 5233: 5226: 5217: 5216: 5204: 5193: 5192: 5160: 5154: 5153: 5134: 5128: 5127: 5107: 5101: 5100: 5088: 5082: 5081: 5079: 5077: 5040: 5034: 5033: 5031: 5029: 5006: 4997: 4992: 4986: 4985: 4974: 4968: 4967: 4947: 4941: 4940: 4938: 4936: 4917: 4911: 4910: 4903: 4894: 4893: 4886: 4880: 4879: 4867: 4861: 4860: 4846: 4840: 4839: 4825: 4819: 4818: 4811: 4805: 4804: 4792: 4786: 4785: 4783: 4782: 4760: 4754: 4753: 4751: 4750: 4730: 4724: 4723: 4721: 4719: 4700: 4694: 4693: 4691: 4690: 4668: 4662: 4661: 4660:. 27 April 2018. 4654: 4648: 4647: 4640: 4634: 4633: 4626: 4620: 4619: 4612: 4606: 4605: 4598: 4592: 4591: 4590:. 2 August 2012. 4584: 4578: 4577: 4570: 4564: 4563: 4556: 4550: 4549: 4542: 4536: 4535: 4528: 4522: 4521: 4514: 4508: 4507: 4476: 4470: 4469: 4467: 4465: 4450: 4444: 4443: 4441: 4439: 4430: 4421: 4415: 4414: 4407: 4401: 4400: 4393: 4387: 4386: 4374: 4368: 4367: 4355: 4349: 4348: 4334: 4328: 4327: 4325: 4324: 4305: 4299: 4298: 4296: 4295: 4276: 4270: 4269: 4267: 4266: 4247: 4241: 4240: 4238: 4237: 4218: 4212: 4211: 4209: 4208: 4186: 4180: 4179: 4177: 4176: 4165:design-reuse.com 4156: 4150: 4149: 4142: 4136: 4135: 4134:. 19 April 2021. 4128: 4122: 4121: 4120:. 26 April 2001. 4114: 4108: 4107: 4105: 4103: 4091:de Vries, Hans. 4088: 4082: 4081: 4069: 4063: 4062: 4050: 4044: 4043: 4041: 4040: 4021: 4015: 4014: 4003: 3997: 3996: 3994: 3992: 3977: 3971: 3970: 3943: 3937: 3936: 3917: 3911: 3910: 3886: 3880: 3879: 3855: 3849: 3848: 3829: 3823: 3822: 3805:(1–2): 284–289. 3790: 3784: 3783: 3756: 3750: 3749: 3735: 3729: 3728: 3716: 3710: 3709: 3689: 3680: 3679: 3659: 3653: 3652: 3645: 3639: 3638: 3627: 3621: 3620: 3613: 3604: 3603: 3596: 3590: 3589: 3562: 3556: 3555: 3536: 3530: 3529: 3522: 3516: 3515: 3508: 3502: 3501: 3488: 3482: 3481: 3464: 3458: 3457: 3450: 3444: 3443: 3440:"Kla 200 Series" 3436: 3430: 3429: 3422: 3416: 3415: 3408: 3402: 3401: 3382: 3376: 3375: 3356: 3350: 3349: 3342: 3336: 3335: 3316: 3310: 3309: 3287: 3281: 3280: 3250: 3244: 3243: 3229: 3220: 3205: 3204: 3202: 3201: 3169: 3163: 3162: 3139: 3133: 3132: 3130: 3128: 3107: 3098: 3097: 3095: 3093: 3084:. 22 July 2018. 3078: 3072: 3071: 3069: 3068: 3046: 3040: 3039: 3037: 3035: 3015: 3006: 3005: 3003: 3001: 2986: 2977: 2976: 2974: 2973: 2958: 2952: 2951: 2948:Design And Reuse 2939: 2933: 2932: 2926: 2918: 2912: 2911: 2909: 2907: 2896: 2887: 2886: 2866: 2860: 2859: 2839: 2833: 2832: 2812: 2806: 2805: 2785: 2779: 2778: 2746: 2737: 2736: 2704: 2698: 2697: 2661: 2655: 2654: 2652: 2651: 2645: 2630: 2612: 2603: 2594: 2593: 2561: 2555: 2554: 2545: 2536: 2535: 2499: 2490: 2489: 2449: 2443: 2442: 2434: 2419: 2418: 2416: 2415: 2408:China Water Risk 2400: 2394: 2393: 2391: 2389: 2354: 2334:Transistor count 2319:Etch pit density 2302:Microfabrication 2247:Multigate device 2087:-plated copper; 1856:technique using 1652:directly in the 1610:via exposure to 1608:low-Îş insulators 1587:ion implantation 1562:"dry" stripping/ 1450:mono-crystalline 1399:fan filter units 1306:IC encapsulation 1002:Ion implantation 977:Photolithography 940:Piranha solution 880: 876: 680:RCA Laboratories 638: 516:I/II/III/IV and 387:microcontrollers 360: 353: 346: 316:Transistor count 269: 251: 242: 233: 224: 215: 206: 197: 188: 179: 170: 161: 116: 107: 98: 89: 80: 71: 48: 30: 7303: 7302: 7298: 7297: 7296: 7294: 7293: 7292: 7268: 7267: 7249: 7236: 7228:, section 14.2. 7221: 7218: 7216:Further reading 7213: 7212: 7205: 7201: 7194: 7190: 7183: 7179: 7172: 7157: 7156: 7152: 7142: 7140: 7131: 7130: 7126: 7119: 7115: 7108: 7104: 7097: 7093: 7086: 7082: 7075: 7071: 7062: 7060: 7047: 7046: 7042: 7033: 7031: 7027: 7016: 7012: 7011: 7007: 6998: 6996: 6992: 6985: 6981: 6980: 6976: 6967: 6965: 6949: 6948: 6944: 6927: 6921: 6919: 6916: 6905: 6896: 6892: 6891: 6884: 6875: 6873: 6844: 6843: 6839: 6830: 6829: 6825: 6816: 6815: 6811: 6757: 6756: 6752: 6745: 6718: 6717: 6713: 6704: 6703: 6699: 6692: 6678: 6677: 6673: 6666: 6652: 6651: 6647: 6633: 6632: 6623: 6614: 6613: 6609: 6602: 6587: 6586: 6582: 6567: 6542: 6541: 6537: 6522: 6521: 6517: 6502: 6477: 6476: 6472: 6457: 6431: 6430: 6426: 6412: 6411: 6407: 6400: 6386: 6385: 6381: 6372: 6371: 6367: 6358: 6357: 6353: 6344: 6343: 6339: 6312: 6311: 6307: 6301: 6297: 6292: 6288: 6261: 6260: 6256: 6249: 6234: 6233: 6229: 6222: 6208: 6207: 6203: 6196: 6181: 6180: 6176: 6169: 6154: 6153: 6149: 6134: 6133: 6129: 6102: 6101: 6097: 6090: 6066: 6065: 6061: 6051: 6049: 6045: 6022: 6017: 6016: 6012: 5996: 5989: 5988: 5984: 5977: 5962: 5961: 5957: 5948: 5947: 5943: 5936: 5921: 5920: 5916: 5902: 5901: 5897: 5890: 5875: 5874: 5870: 5863: 5848: 5847: 5843: 5836: 5821: 5820: 5816: 5809: 5794: 5793: 5789: 5782: 5767: 5766: 5762: 5755: 5740: 5739: 5735: 5728: 5713: 5712: 5708: 5699: 5697: 5684: 5683: 5679: 5672: 5658: 5657: 5653: 5643: 5641: 5632: 5631: 5627: 5618: 5616: 5603: 5602: 5598: 5589: 5587: 5574: 5573: 5566: 5553: 5552: 5548: 5539: 5537: 5524: 5523: 5519: 5510: 5508: 5495: 5494: 5490: 5477: 5476: 5472: 5463: 5461: 5454:www.disco.co.jp 5448: 5447: 5443: 5434: 5432: 5425:www.disco.co.jp 5419: 5418: 5414: 5405: 5403: 5396:www.disco.co.jp 5390: 5389: 5385: 5375: 5373: 5371: 5352: 5351: 5347: 5340: 5325: 5324: 5320: 5313: 5288: 5287: 5283: 5273: 5271: 5265: 5264: 5260: 5250: 5248: 5242: 5241: 5237: 5228: 5227: 5220: 5206: 5205: 5196: 5162: 5161: 5157: 5150: 5136: 5135: 5131: 5124: 5109: 5108: 5104: 5090: 5089: 5085: 5075: 5073: 5042: 5041: 5037: 5027: 5025: 5023: 5008: 5007: 5000: 4993: 4989: 4976: 4975: 4971: 4964: 4949: 4948: 4944: 4934: 4932: 4919: 4918: 4914: 4905: 4904: 4897: 4888: 4887: 4883: 4869: 4868: 4864: 4848: 4847: 4843: 4828:Miller, Chris. 4827: 4826: 4822: 4817:. 14 June 2021. 4813: 4812: 4808: 4794: 4793: 4789: 4780: 4778: 4762: 4761: 4757: 4748: 4746: 4732: 4731: 4727: 4717: 4715: 4702: 4701: 4697: 4688: 4686: 4671:Shilov, Anton. 4670: 4669: 4665: 4656: 4655: 4651: 4642: 4641: 4637: 4632:. 24 July 2017. 4628: 4627: 4623: 4614: 4613: 4609: 4604:. 25 July 2016. 4600: 4599: 4595: 4586: 4585: 4581: 4572: 4571: 4567: 4558: 4557: 4553: 4544: 4543: 4539: 4530: 4529: 4525: 4516: 4515: 4511: 4478: 4477: 4473: 4463: 4461: 4452: 4451: 4447: 4437: 4435: 4428: 4423: 4422: 4418: 4409: 4408: 4404: 4395: 4394: 4390: 4376: 4375: 4371: 4357: 4356: 4352: 4336: 4335: 4331: 4322: 4320: 4313:en.wikichip.org 4307: 4306: 4302: 4293: 4291: 4284:en.wikichip.org 4278: 4277: 4273: 4264: 4262: 4249: 4248: 4244: 4235: 4233: 4220: 4219: 4215: 4206: 4204: 4188: 4187: 4183: 4174: 4172: 4158: 4157: 4153: 4144: 4143: 4139: 4130: 4129: 4125: 4116: 4115: 4111: 4101: 4099: 4090: 4089: 4085: 4071: 4070: 4066: 4052: 4051: 4047: 4038: 4036: 4023: 4022: 4018: 4005: 4004: 4000: 3990: 3988: 3979: 3978: 3974: 3945: 3944: 3940: 3933: 3919: 3918: 3914: 3888: 3887: 3883: 3864:MRS Proceedings 3857: 3856: 3852: 3845: 3831: 3830: 3826: 3792: 3791: 3787: 3758: 3757: 3753: 3737: 3736: 3732: 3718: 3717: 3713: 3706: 3691: 3690: 3683: 3676:10.1063/1.56795 3661: 3660: 3656: 3651:. 10 July 2000. 3647: 3646: 3642: 3629: 3628: 3624: 3615: 3614: 3607: 3602:. 10 July 2000. 3598: 3597: 3593: 3564: 3563: 3559: 3552: 3538: 3537: 3533: 3524: 3523: 3519: 3510: 3509: 3505: 3490: 3489: 3485: 3466: 3465: 3461: 3452: 3451: 3447: 3438: 3437: 3433: 3424: 3423: 3419: 3410: 3409: 3405: 3398: 3384: 3383: 3379: 3372: 3358: 3357: 3353: 3344: 3343: 3339: 3332: 3318: 3317: 3313: 3300:(12): 1487–90. 3289: 3288: 3284: 3252: 3251: 3247: 3227: 3222: 3221: 3208: 3199: 3197: 3190: 3182:. p. 330. 3171: 3170: 3166: 3141: 3140: 3136: 3126: 3124: 3109: 3108: 3101: 3091: 3089: 3080: 3079: 3075: 3066: 3064: 3048: 3047: 3043: 3033: 3031: 3017: 3016: 3009: 2999: 2997: 2988: 2987: 2980: 2971: 2969: 2960: 2959: 2955: 2941: 2940: 2936: 2924: 2920: 2919: 2915: 2905: 2903: 2898: 2897: 2890: 2883: 2868: 2867: 2863: 2856: 2841: 2840: 2836: 2829: 2814: 2813: 2809: 2802: 2787: 2786: 2782: 2748: 2747: 2740: 2706: 2705: 2701: 2686: 2663: 2662: 2658: 2649: 2647: 2643: 2628:10.1.1.493.1460 2610: 2605: 2604: 2597: 2563: 2562: 2558: 2547: 2546: 2539: 2524: 2501: 2500: 2493: 2451: 2450: 2446: 2436: 2435: 2422: 2413: 2411: 2402: 2401: 2397: 2387: 2385: 2356: 2355: 2348: 2343: 2338: 2215: 2210: 2202:Main articles: 2200: 2129: 2123: 2071: 2065: 2052: 2050:Die preparation 2044:Main articles: 2042: 2040:Die preparation 2021: 1969: 1944: 1938: 1905: 1903:Wafer metrology 1852:in them with a 1820: 1814: 1799: 1787: 1773: 1768: 1762: 1742:silicon dioxide 1740:(traditionally 1738:gate dielectric 1734: 1726:Main articles: 1724: 1705: 1701: 1678:crystal lattice 1646: 1640: 1626:) to fabricate 1476: 1470: 1434: 1426:Main articles: 1424: 1403:cleanroom suits 1383: 1377: 1267:Die cutting or 1262:ball grid array 1197:Die preparation 1142:Furnace anneals 949:Wafer scrubbing 934:ultrapure water 899: 878: 874: 806:GlobalFoundries 752: 636: 605: 600: 578: 542:transistor gate 522:technology node 492: 458:die singulation 364: 335: 331:Nanoelectronics 282: 276: 267: 258: 249: 240: 231: 222: 213: 204: 195: 186: 177: 168: 159: 114: 105: 96: 87: 78: 69: 56: 37: 35: 17: 12: 11: 5: 7301: 7299: 7291: 7290: 7285: 7280: 7270: 7269: 7266: 7265: 7260: 7255: 7248: 7247:External links 7245: 7244: 7243: 7234: 7229: 7217: 7214: 7211: 7210: 7199: 7188: 7177: 7170: 7150: 7124: 7113: 7102: 7091: 7080: 7069: 7040: 7005: 6974: 6942: 6914: 6882: 6837: 6834:. 13 May 2014. 6823: 6809: 6750: 6743: 6711: 6697: 6690: 6671: 6664: 6645: 6621: 6607: 6600: 6580: 6565: 6535: 6515: 6500: 6470: 6455: 6424: 6405: 6398: 6379: 6376:. 12 May 2015. 6365: 6351: 6337: 6305: 6295: 6286: 6254: 6247: 6227: 6220: 6201: 6194: 6174: 6167: 6147: 6127: 6095: 6088: 6059: 6033:(1): 111–137. 6010: 5982: 5975: 5955: 5941: 5934: 5914: 5895: 5888: 5868: 5861: 5841: 5834: 5814: 5807: 5787: 5780: 5774:. OUP Oxford. 5760: 5753: 5733: 5726: 5720:. OUP Oxford. 5706: 5690:www.eesemi.com 5677: 5670: 5651: 5625: 5596: 5564: 5546: 5517: 5488: 5470: 5441: 5412: 5383: 5369: 5345: 5338: 5318: 5311: 5281: 5258: 5235: 5218: 5194: 5155: 5148: 5129: 5122: 5102: 5083: 5057:(2): 767–774. 5035: 5021: 4998: 4987: 4969: 4962: 4942: 4912: 4895: 4881: 4862: 4841: 4820: 4806: 4787: 4755: 4725: 4695: 4663: 4649: 4635: 4621: 4607: 4593: 4579: 4565: 4551: 4537: 4534:. 24 May 2021. 4523: 4509: 4471: 4445: 4416: 4402: 4388: 4369: 4350: 4337:Cutress, Ian. 4329: 4300: 4271: 4257:. 2018-03-12. 4242: 4228:. 2016-09-10. 4213: 4181: 4151: 4137: 4123: 4109: 4083: 4064: 4045: 4031:. 2017-05-09. 4016: 3998: 3972: 3938: 3931: 3912: 3901:(2): 138–146. 3881: 3850: 3843: 3824: 3785: 3751: 3730: 3711: 3704: 3681: 3654: 3640: 3622: 3605: 3591: 3557: 3550: 3531: 3517: 3503: 3483: 3459: 3445: 3431: 3417: 3403: 3396: 3377: 3370: 3351: 3337: 3330: 3311: 3282: 3263:(4): 1349–51. 3245: 3206: 3188: 3164: 3147:Wanlass, Frank 3143:Sah, Chih-Tang 3134: 3099: 3073: 3049:Cutress, Ian. 3041: 3007: 2978: 2953: 2934: 2913: 2888: 2881: 2861: 2854: 2834: 2827: 2807: 2800: 2780: 2761:(2): 310–315. 2738: 2719:(4): 670–679. 2699: 2684: 2656: 2615:Hitachi Review 2595: 2576:(1): 108–115. 2556: 2537: 2522: 2491: 2444: 2420: 2410:. 11 July 2013 2395: 2345: 2344: 2342: 2339: 2337: 2336: 2331: 2329:Planar process 2326: 2321: 2316: 2310: 2304: 2299: 2294: 2289: 2283: 2278: 2273: 2272: 2271: 2266: 2256: 2255: 2254: 2244: 2243: 2242: 2232: 2227: 2222: 2216: 2214: 2211: 2199: 2196: 2191: 2190: 2171: 2152: 2122: 2119: 2067:Main article: 2064: 2061: 2041: 2038: 2020: 2017: 1967: 1940:Main article: 1937: 1934: 1904: 1901: 1869:microprocessor 1816:Main article: 1813: 1810: 1797: 1790:silicate glass 1785: 1772: 1769: 1764:Main article: 1761: 1758: 1723: 1720: 1703: 1699: 1670:straining step 1642:Main article: 1639: 1636: 1600: 1599: 1567: 1536: 1518: 1469: 1466: 1423: 1420: 1379:Main article: 1376: 1373: 1357: 1356: 1351: 1350: 1349: 1348: 1347: 1340: 1337: 1318:Electroplating 1315: 1312: 1303: 1284: 1281:Die attachment 1273: 1272: 1271: 1265: 1254: 1244: 1230: 1216: 1209: 1194: 1193: 1192: 1189:laser trimming 1178: 1172: 1169:Electroplating 1165: 1158: 1157: 1156: 1155: 1154: 1144: 1139: 1136: 1133: 1124: 1118: 1115: 1114: 1113: 1102: 1101: 1100: 1097: 1088: 1082: 1081: 1080: 1068: 1067: 1066: 1065: 1064: 1054: 1053: 1052: 1051: 1050: 1049: 1048: 1045: 1036: 1021:plasma etching 1009: 999: 998: 997: 994: 991: 988: 985: 982: 974: 969: 968: 967: 964: 959: 956: 953: 950: 947: 942: 937: 898: 895: 859:Toshiba Memory 751: 748: 604: 601: 577: 574: 491: 488: 480:Tokyo Electron 415:semiconducting 381:(ICs) such as 366: 365: 363: 362: 355: 348: 340: 337: 336: 334: 333: 328: 323: 318: 313: 308: 298: 293: 288: 281: 278: 277: 275: 274: 263: 260: 259: 257: 256: 247: 238: 229: 220: 211: 202: 193: 184: 175: 166: 157: 151: 145: 139: 133: 127: 121: 112: 103: 94: 85: 76: 66: 63: 62: 54:MOSFET scaling 50: 49: 41: 40: 15: 13: 10: 9: 6: 4: 3: 2: 7300: 7289: 7286: 7284: 7281: 7279: 7276: 7275: 7273: 7264: 7261: 7259: 7258:Wafer heating 7256: 7254: 7251: 7250: 7246: 7240: 7235: 7233: 7230: 7225: 7220: 7219: 7215: 7208: 7203: 7200: 7197: 7192: 7189: 7186: 7181: 7178: 7173: 7167: 7163: 7162: 7154: 7151: 7138: 7134: 7128: 7125: 7122: 7117: 7114: 7111: 7106: 7103: 7100: 7095: 7092: 7089: 7084: 7081: 7078: 7073: 7070: 7058: 7054: 7050: 7044: 7041: 7026: 7023:. p. 6. 7022: 7015: 7009: 7006: 6995:on 2020-10-26 6991: 6984: 6978: 6975: 6963: 6959: 6958: 6953: 6946: 6943: 6938: 6932: 6917: 6915:1-877750-60-3 6911: 6904: 6903: 6895: 6889: 6887: 6883: 6872: 6868: 6864: 6860: 6856: 6852: 6848: 6841: 6838: 6833: 6827: 6824: 6819: 6813: 6810: 6805: 6801: 6796: 6791: 6786: 6781: 6777: 6773: 6769: 6765: 6761: 6754: 6751: 6746: 6740: 6736: 6732: 6728: 6727: 6722: 6715: 6712: 6707: 6701: 6698: 6693: 6687: 6683: 6682: 6675: 6672: 6667: 6661: 6657: 6656: 6649: 6646: 6641: 6637: 6630: 6628: 6626: 6622: 6617: 6611: 6608: 6603: 6597: 6593: 6592: 6584: 6581: 6576: 6572: 6568: 6562: 6558: 6554: 6550: 6546: 6539: 6536: 6531: 6530: 6525: 6519: 6516: 6511: 6507: 6503: 6497: 6493: 6489: 6485: 6481: 6474: 6471: 6466: 6462: 6458: 6456:1-4244-0438-X 6452: 6448: 6444: 6440: 6436: 6428: 6425: 6420: 6416: 6409: 6406: 6401: 6395: 6391: 6390: 6383: 6380: 6375: 6369: 6366: 6361: 6355: 6352: 6347: 6341: 6338: 6333: 6329: 6325: 6321: 6317: 6316: 6309: 6306: 6299: 6296: 6290: 6287: 6282: 6278: 6274: 6270: 6266: 6265: 6258: 6255: 6250: 6244: 6240: 6239: 6231: 6228: 6223: 6217: 6213: 6212: 6205: 6202: 6197: 6191: 6188:. Routledge. 6187: 6186: 6178: 6175: 6170: 6164: 6161:. CRC Press. 6160: 6159: 6151: 6148: 6143: 6142: 6137: 6131: 6128: 6123: 6119: 6115: 6111: 6107: 6106: 6099: 6096: 6091: 6085: 6081: 6077: 6073: 6069: 6063: 6060: 6044: 6040: 6036: 6032: 6028: 6021: 6014: 6011: 6006: 6002: 5995: 5994: 5986: 5983: 5978: 5972: 5968: 5967: 5959: 5956: 5951: 5945: 5942: 5937: 5931: 5927: 5926: 5918: 5915: 5910: 5906: 5899: 5896: 5891: 5885: 5881: 5880: 5872: 5869: 5864: 5858: 5854: 5853: 5845: 5842: 5837: 5831: 5827: 5826: 5818: 5815: 5810: 5804: 5800: 5799: 5791: 5788: 5783: 5777: 5773: 5772: 5764: 5761: 5756: 5750: 5746: 5745: 5737: 5734: 5729: 5723: 5719: 5718: 5710: 5707: 5695: 5691: 5687: 5681: 5678: 5673: 5667: 5663: 5662: 5655: 5652: 5640: 5636: 5629: 5626: 5614: 5610: 5606: 5600: 5597: 5585: 5581: 5577: 5571: 5569: 5565: 5560: 5556: 5550: 5547: 5535: 5531: 5527: 5521: 5518: 5507:on 2019-05-26 5506: 5502: 5501:www.nitto.com 5498: 5492: 5489: 5484: 5480: 5474: 5471: 5459: 5455: 5451: 5445: 5442: 5430: 5426: 5422: 5416: 5413: 5401: 5397: 5393: 5387: 5384: 5372: 5366: 5362: 5358: 5357: 5349: 5346: 5341: 5335: 5331: 5330: 5322: 5319: 5314: 5308: 5304: 5300: 5296: 5292: 5285: 5282: 5269: 5262: 5259: 5246: 5239: 5236: 5231: 5225: 5223: 5219: 5214: 5210: 5203: 5201: 5199: 5195: 5190: 5186: 5182: 5178: 5174: 5170: 5166: 5159: 5156: 5151: 5145: 5141: 5140: 5133: 5130: 5125: 5119: 5115: 5114: 5106: 5103: 5098: 5094: 5087: 5084: 5072: 5068: 5064: 5060: 5056: 5052: 5051: 5046: 5039: 5036: 5024: 5018: 5014: 5013: 5005: 5003: 4999: 4996: 4991: 4988: 4983: 4979: 4973: 4970: 4965: 4959: 4955: 4954: 4946: 4943: 4930: 4926: 4922: 4916: 4913: 4908: 4902: 4900: 4896: 4891: 4885: 4882: 4877: 4873: 4866: 4863: 4858: 4857: 4852: 4845: 4842: 4837: 4836: 4831: 4824: 4821: 4816: 4810: 4807: 4802: 4801:The Telegraph 4798: 4791: 4788: 4776: 4772: 4771: 4766: 4759: 4756: 4744: 4740: 4739:WikiChip Fuse 4736: 4729: 4726: 4714: 4710: 4706: 4699: 4696: 4684: 4680: 4679: 4674: 4667: 4664: 4659: 4653: 4650: 4645: 4639: 4636: 4631: 4625: 4622: 4617: 4611: 4608: 4603: 4597: 4594: 4589: 4583: 4580: 4575: 4569: 4566: 4561: 4555: 4552: 4547: 4541: 4538: 4533: 4527: 4524: 4519: 4513: 4510: 4506: 4502: 4498: 4494: 4490: 4486: 4482: 4475: 4472: 4460: 4456: 4449: 4446: 4434: 4427: 4420: 4417: 4412: 4406: 4403: 4398: 4392: 4389: 4384: 4380: 4373: 4370: 4365: 4361: 4354: 4351: 4346: 4345: 4340: 4333: 4330: 4318: 4314: 4310: 4304: 4301: 4289: 4285: 4281: 4275: 4272: 4260: 4256: 4255:eejournal.com 4252: 4246: 4243: 4231: 4227: 4223: 4217: 4214: 4202: 4198: 4197: 4192: 4185: 4182: 4170: 4166: 4162: 4155: 4152: 4147: 4141: 4138: 4133: 4127: 4124: 4119: 4113: 4110: 4098: 4094: 4087: 4084: 4079: 4075: 4068: 4065: 4060: 4056: 4049: 4046: 4034: 4030: 4026: 4020: 4017: 4012: 4008: 4002: 3999: 3986: 3982: 3976: 3973: 3968: 3964: 3960: 3956: 3952: 3948: 3942: 3939: 3934: 3928: 3924: 3923: 3916: 3913: 3908: 3904: 3900: 3896: 3892: 3885: 3882: 3877: 3873: 3869: 3865: 3861: 3854: 3851: 3846: 3840: 3836: 3835: 3828: 3825: 3820: 3816: 3812: 3808: 3804: 3800: 3796: 3789: 3786: 3781: 3777: 3773: 3769: 3765: 3761: 3755: 3752: 3747: 3746: 3741: 3734: 3731: 3726: 3722: 3715: 3712: 3707: 3701: 3697: 3696: 3688: 3686: 3682: 3677: 3673: 3669: 3665: 3658: 3655: 3650: 3644: 3641: 3636: 3632: 3626: 3623: 3618: 3612: 3610: 3606: 3601: 3595: 3592: 3587: 3583: 3579: 3575: 3571: 3567: 3561: 3558: 3553: 3547: 3543: 3542: 3535: 3532: 3527: 3521: 3518: 3513: 3507: 3504: 3499: 3498: 3493: 3487: 3484: 3479: 3475: 3471: 3470: 3463: 3460: 3455: 3449: 3446: 3441: 3435: 3432: 3427: 3421: 3418: 3413: 3407: 3404: 3399: 3393: 3389: 3388: 3381: 3378: 3373: 3367: 3363: 3362: 3355: 3352: 3347: 3341: 3338: 3333: 3327: 3323: 3322: 3315: 3312: 3307: 3303: 3299: 3295: 3294: 3286: 3283: 3278: 3274: 3270: 3266: 3262: 3258: 3257: 3249: 3246: 3241: 3237: 3233: 3226: 3219: 3217: 3215: 3213: 3211: 3207: 3195: 3191: 3189:9783540342588 3185: 3181: 3177: 3176: 3168: 3165: 3160: 3156: 3152: 3148: 3144: 3138: 3135: 3122: 3118: 3117: 3112: 3106: 3104: 3100: 3087: 3083: 3077: 3074: 3062: 3058: 3057: 3052: 3045: 3042: 3029: 3025: 3021: 3014: 3012: 3008: 2996: 2992: 2985: 2983: 2979: 2967: 2963: 2957: 2954: 2949: 2945: 2938: 2935: 2930: 2923: 2917: 2914: 2902: 2895: 2893: 2889: 2884: 2878: 2875:. CRC Press. 2874: 2873: 2865: 2862: 2857: 2851: 2848:. CRC Press. 2847: 2846: 2838: 2835: 2830: 2824: 2820: 2819: 2811: 2808: 2803: 2797: 2794:. CRC Press. 2793: 2792: 2784: 2781: 2776: 2772: 2768: 2764: 2760: 2756: 2752: 2745: 2743: 2739: 2734: 2730: 2726: 2722: 2718: 2714: 2710: 2703: 2700: 2695: 2691: 2687: 2681: 2677: 2673: 2669: 2668: 2660: 2657: 2642: 2638: 2634: 2629: 2624: 2620: 2616: 2609: 2602: 2600: 2596: 2591: 2587: 2583: 2579: 2575: 2571: 2567: 2560: 2557: 2552: 2551: 2544: 2542: 2538: 2533: 2529: 2525: 2519: 2515: 2511: 2507: 2506: 2498: 2496: 2492: 2487: 2483: 2479: 2475: 2471: 2467: 2464:(4): 040801. 2463: 2459: 2455: 2448: 2445: 2440: 2433: 2431: 2429: 2427: 2425: 2421: 2409: 2405: 2399: 2396: 2384: 2380: 2376: 2372: 2368: 2364: 2360: 2353: 2351: 2347: 2340: 2335: 2332: 2330: 2327: 2325: 2322: 2320: 2317: 2314: 2311: 2308: 2305: 2303: 2300: 2298: 2295: 2293: 2290: 2287: 2284: 2282: 2279: 2277: 2274: 2270: 2267: 2265: 2264:Foundry model 2262: 2261: 2260: 2257: 2253: 2250: 2249: 2248: 2245: 2241: 2238: 2237: 2236: 2233: 2231: 2228: 2226: 2223: 2221: 2218: 2217: 2212: 2209: 2205: 2197: 2195: 2188: 2184: 2183:sulfuric acid 2180: 2176: 2172: 2169: 2165: 2161: 2157: 2153: 2150: 2146: 2142: 2138: 2134: 2133: 2132: 2128: 2120: 2118: 2114: 2112: 2108: 2104: 2100: 2098: 2094: 2090: 2086: 2082: 2077: 2070: 2062: 2060: 2058: 2051: 2047: 2039: 2037: 2033: 2029: 2025: 2018: 2016: 2014: 2010: 2009: 2003: 2001: 1997: 1992: 1988: 1984: 1981: 1976: 1971: 1965: 1961: 1956: 1954: 1950: 1943: 1942:Wafer testing 1935: 1933: 1931: 1927: 1922: 1918: 1917:reflectometry 1914: 1910: 1902: 1900: 1896: 1893: 1889: 1884: 1880: 1876: 1875: 1870: 1865: 1863: 1859: 1855: 1851: 1847: 1843: 1839: 1838: 1829: 1828:standard cell 1824: 1819: 1811: 1809: 1805: 1801: 1795: 1791: 1782: 1778: 1770: 1767: 1759: 1757: 1755: 1751: 1747: 1743: 1739: 1733: 1729: 1721: 1719: 1715: 1713: 1708: 1695: 1691: 1689: 1685: 1684: 1679: 1675: 1671: 1667: 1663: 1662:logic devices 1659: 1655: 1651: 1645: 1637: 1635: 1631: 1629: 1625: 1621: 1617: 1613: 1609: 1605: 1597: 1593: 1588: 1583: 1579: 1575: 1571: 1568: 1565: 1564:plasma ashing 1560: 1556: 1555: 1550: 1549: 1544: 1540: 1537: 1534: 1530: 1526: 1522: 1519: 1516: 1512: 1508: 1504: 1500: 1496: 1492: 1488: 1484: 1481: 1480: 1479: 1475: 1467: 1465: 1463: 1459: 1455: 1451: 1447: 1443: 1439: 1433: 1429: 1421: 1419: 1416: 1412: 1408: 1407:contamination 1404: 1400: 1396: 1392: 1388: 1382: 1374: 1368: 1364: 1362: 1355: 1352: 1345: 1341: 1338: 1335: 1331: 1327: 1324:leads of the 1323: 1319: 1316: 1313: 1310: 1309: 1307: 1304: 1301: 1297: 1293: 1289: 1285: 1282: 1279: 1278: 1277: 1274: 1270: 1266: 1263: 1259: 1255: 1252: 1248: 1245: 1242: 1238: 1234: 1233:Wafer bonding 1231: 1228: 1224: 1220: 1217: 1214: 1210: 1207: 1203: 1200: 1199: 1198: 1195: 1190: 1186: 1182: 1181:Wafer testing 1179: 1176: 1173: 1170: 1166: 1163: 1159: 1153: 1150: 1149: 1148: 1145: 1143: 1140: 1137: 1134: 1132: 1128: 1127: 1125: 1122: 1121:Plasma ashing 1119: 1116: 1111: 1108: 1107: 1106: 1103: 1098: 1095: 1094: 1092: 1089: 1086: 1083: 1078: 1075: 1074: 1072: 1069: 1063: 1060: 1059: 1058: 1055: 1046: 1043: 1042: 1040: 1037: 1034: 1031: 1030: 1028: 1025: 1024: 1022: 1018: 1015: 1014: 1013: 1010: 1007: 1003: 1000: 995: 992: 989: 986: 983: 980: 979: 978: 975: 973: 970: 965: 963: 960: 957: 954: 952:Spin cleaning 951: 948: 946: 943: 941: 938: 935: 931: 927: 923: 922: 920: 919: 917: 916: 915: 913: 909: 905: 897:List of steps 896: 894: 892: 887: 884: 872: 868: 864: 860: 856: 852: 848: 844: 840: 835: 833: 828: 826: 823:demonstrated 822: 817: 815: 814:10 nm process 811: 807: 801: 798: 796: 792: 788: 785: 781: 777: 773: 769: 765: 761: 757: 749: 747: 744: 738: 734: 732: 728: 724: 719: 716: 713: 709: 706: 704: 700: 696: 692: 688: 683: 681: 677: 673: 669: 665: 661: 657: 653: 649: 644: 642: 634: 630: 626: 622: 621:Frank Wanlass 618: 617:Chih-Tang Sah 614: 610: 602: 599: 595: 591: 587: 583: 575: 573: 571: 567: 563: 559: 558:10 nm process 553: 551: 547: 546:90 nm process 543: 539: 535: 531: 527: 523: 519: 515: 510: 508: 503: 498: 494: 489: 487: 485: 481: 477: 473: 468: 466: 461: 459: 455: 450: 447: 443: 439: 435: 431: 426: 424: 420: 416: 412: 408: 404: 400: 396: 392: 388: 384: 380: 376: 372: 361: 356: 354: 349: 347: 342: 341: 339: 338: 332: 329: 327: 324: 322: 321:Semiconductor 319: 317: 314: 312: 309: 306: 302: 299: 297: 294: 292: 289: 287: 284: 283: 280: 279: 272: 266: 265: 262: 261: 254: 248: 245: 239: 236: 230: 227: 221: 218: 212: 209: 203: 200: 194: 191: 185: 182: 176: 173: 167: 164: 158: 155: 152: 149: 146: 143: 140: 137: 134: 131: 128: 125: 122: 119: 113: 110: 104: 101: 95: 92: 86: 83: 77: 74: 68: 67: 65: 64: 60: 59:process nodes 55: 52: 51: 47: 43: 42: 39: 34:Semiconductor 31: 26: 21: 7241:. CRC Press. 7238: 7223: 7202: 7191: 7180: 7164:. Elsevier. 7160: 7153: 7143:February 17, 7141:. Retrieved 7136: 7127: 7116: 7105: 7094: 7083: 7072: 7061:. Retrieved 7052: 7043: 7032:. Retrieved 7020: 7008: 6997:. Retrieved 6990:the original 6977: 6966:. Retrieved 6955: 6945: 6920:. Retrieved 6901: 6874:. Retrieved 6857:(1): 66–71. 6854: 6850: 6840: 6826: 6812: 6770:(21): 5049. 6767: 6763: 6753: 6725: 6720: 6714: 6700: 6680: 6674: 6654: 6648: 6639: 6610: 6594:. Springer. 6590: 6583: 6548: 6538: 6527: 6518: 6483: 6473: 6438: 6427: 6418: 6408: 6388: 6382: 6368: 6354: 6340: 6314: 6308: 6298: 6289: 6263: 6257: 6237: 6230: 6210: 6204: 6184: 6177: 6157: 6150: 6139: 6130: 6104: 6098: 6071: 6062: 6050:. Retrieved 6043:the original 6030: 6026: 6013: 5992: 5985: 5965: 5958: 5944: 5924: 5917: 5908: 5898: 5878: 5871: 5851: 5844: 5828:. Elsevier. 5824: 5817: 5797: 5790: 5770: 5763: 5747:. Springer. 5743: 5736: 5716: 5709: 5698:. Retrieved 5689: 5680: 5660: 5654: 5644:November 23, 5642:. Retrieved 5638: 5628: 5617:. Retrieved 5609:Chip History 5608: 5599: 5588:. Retrieved 5579: 5558: 5549: 5538:. Retrieved 5529: 5520: 5509:. Retrieved 5505:the original 5500: 5491: 5482: 5473: 5462:. Retrieved 5453: 5444: 5433:. Retrieved 5424: 5415: 5404:. Retrieved 5395: 5386: 5374:. Retrieved 5355: 5348: 5328: 5321: 5294: 5284: 5272:. Retrieved 5261: 5249:. Retrieved 5238: 5212: 5175:(1): 60–66. 5172: 5168: 5158: 5138: 5132: 5112: 5105: 5096: 5086: 5074:. Retrieved 5054: 5048: 5038: 5026:. Retrieved 5011: 4990: 4981: 4972: 4952: 4945: 4935:December 16, 4933:. Retrieved 4924: 4915: 4884: 4875: 4865: 4854: 4844: 4838:(Interview). 4833: 4823: 4809: 4800: 4790: 4779:. Retrieved 4768: 4758: 4747:. Retrieved 4738: 4728: 4718:25 September 4716:. Retrieved 4708: 4698: 4687:. Retrieved 4676: 4666: 4652: 4638: 4624: 4610: 4596: 4582: 4568: 4554: 4540: 4526: 4512: 4504: 4487:(6): 20–29. 4484: 4480: 4474: 4462:. Retrieved 4458: 4448: 4436:. Retrieved 4432: 4419: 4405: 4391: 4382: 4372: 4363: 4353: 4342: 4332: 4321:. Retrieved 4312: 4303: 4292:. Retrieved 4283: 4274: 4263:. Retrieved 4254: 4245: 4234:. Retrieved 4226:wccftech.com 4225: 4216: 4205:. Retrieved 4194: 4184: 4173:. Retrieved 4164: 4154: 4140: 4126: 4112: 4100:. Retrieved 4096: 4086: 4077: 4067: 4058: 4048: 4037:. Retrieved 4028: 4019: 4011:Chip History 4010: 4001: 3989:. Retrieved 3985:the original 3975: 3950: 3941: 3921: 3915: 3898: 3894: 3884: 3867: 3863: 3853: 3833: 3827: 3802: 3798: 3788: 3763: 3754: 3743: 3733: 3724: 3714: 3694: 3667: 3657: 3643: 3635:Chip History 3634: 3625: 3594: 3569: 3560: 3540: 3534: 3520: 3506: 3495: 3486: 3468: 3462: 3448: 3434: 3420: 3406: 3386: 3380: 3360: 3354: 3340: 3320: 3314: 3297: 3291: 3285: 3260: 3254: 3248: 3235: 3231: 3198:. Retrieved 3174: 3167: 3150: 3137: 3125:. Retrieved 3114: 3090:. Retrieved 3076: 3065:. Retrieved 3054: 3044: 3032:. Retrieved 3023: 2998:. Retrieved 2994: 2970:. Retrieved 2956: 2947: 2937: 2916: 2904:. Retrieved 2871: 2864: 2844: 2837: 2817: 2810: 2790: 2783: 2758: 2754: 2716: 2712: 2702: 2666: 2659: 2648:. Retrieved 2621:(3): 70–74. 2618: 2614: 2573: 2569: 2559: 2549: 2504: 2461: 2457: 2447: 2441:. CRC Press. 2438: 2412:. Retrieved 2407: 2398: 2386:. Retrieved 2366: 2362: 2192: 2130: 2115: 2110: 2101: 2072: 2057:wafer dicing 2053: 2034: 2030: 2026: 2022: 2019:Device yield 2006: 2004: 1993: 1989: 1985: 1972: 1957: 1948: 1945: 1913:ellipsometry 1906: 1897: 1891: 1872: 1866: 1845: 1841: 1835: 1833: 1812:Interconnect 1806: 1802: 1780: 1774: 1771:Metal layers 1735: 1716: 1709: 1696: 1692: 1681: 1669: 1665: 1647: 1632: 1601: 1581: 1577: 1569: 1552: 1546: 1538: 1520: 1482: 1477: 1452:cylindrical 1442:pure silicon 1435: 1384: 1358: 1320:(plates the 1288:Wire bonding 1286:IC bonding: 1276:IC packaging 1269:wafer dicing 1138:Laser anneal 900: 888: 843:10 nanometer 839:14 nanometer 837:As of 2019, 836: 829: 818: 802: 799: 789: 753: 750:21st century 739: 735: 720: 717: 714: 710: 707: 684: 671: 667: 658:division of 645: 611:technology, 606: 603:20th century 570:7 nm process 554: 529: 526:process node 525: 521: 511: 501: 499: 495: 493: 490:Feature size 484:Lam Research 469: 462: 451: 427: 377:, typically 370: 369: 273: ~ 2025 255: â€“ 2022 246: â€“ 2020 237: â€“ 2018 228: â€“ 2016 219: â€“ 2014 210: â€“ 2012 201: â€“ 2010 192: â€“ 2009 183: â€“ 2007 174: â€“ 2005 165: â€“ 2003 156: â€“ 2001 150: â€“ 1999 144: â€“ 1996 138: â€“ 1993 132: â€“ 1990 126: â€“ 1987 120: â€“ 1984 111: â€“ 1981 102: â€“ 1977 93: â€“ 1974 84: â€“ 1971 75: â€“ 1968 33: 6052:26 February 5247:. AspenCore 4196:ExtremeTech 3991:18 February 3034:October 21, 2388:November 9, 2324:Passivation 2179:nitric acid 1996:scan chains 1936:Device test 1837:of aluminum 1650:transistors 1576:transistor 1548:photoresist 1543:lithography 1395:pressurized 1387:micrometres 1361:Wright etch 1326:lead frames 1227:PCMCIA card 1213:dicing tape 1164:production) 1099:Evaporation 1057:Wet etching 1047:Thermal ALE 1017:Dry etching 921:Wet cleans 883:3 nanometer 873:is TSMC's 5 867:5 nanometer 863:7 nanometer 703:Middle East 586:Moore's law 538:micrometers 500:A specific 311:Moore's law 154:130 nm 148:180 nm 142:250 nm 136:350 nm 130:600 nm 124:800 nm 109:1.5 ÎĽm 38:fabrication 7272:Categories 7063:2020-12-18 7053:eesemi.com 7034:2018-09-25 6999:2020-10-23 6968:2020-04-12 6922:2023-01-22 6876:2021-11-16 5700:2020-10-14 5639:PCMag Asia 5619:2020-10-14 5590:2020-10-14 5540:2019-05-26 5511:2019-05-26 5464:2019-05-26 5435:2019-05-26 5406:2019-05-26 4781:2019-10-12 4749:2019-04-07 4689:2019-05-31 4481:IEEE Micro 4323:2019-08-17 4294:2019-08-17 4265:2019-07-09 4236:2019-07-09 4207:2019-07-09 4175:2019-07-09 4039:2017-11-19 4029:AnySilicon 3200:2019-07-21 3092:20 October 3067:2020-11-07 2972:2020-10-20 2650:2021-11-01 2414:2023-01-21 2369:(1): 1–8. 2341:References 2149:phosphorus 2139:, such as 2125:See also: 2081:lead frame 1750:capacitors 1557:focuses a 1539:Patterning 1483:Deposition 1472:See also: 1468:Processing 1436:A typical 1391:cleanrooms 1354:IC testing 1096:Sputtering 1044:Plasma ALE 1004:(in which 962:Megasonics 701:, and the 691:California 672:fabricated 656:Autonetics 580:See also: 534:nanometers 507:die shrink 434:clean room 417:material. 391:NAND flash 305:multi-gate 286:Half-nodes 226:10 nm 217:14 nm 208:22 nm 199:28 nm 190:32 nm 181:45 nm 172:65 nm 163:90 nm 82:10 ÎĽm 73:20 ÎĽm 25:clean room 6957:AnandTech 6931:cite book 6764:Materials 5376:8 January 5274:8 January 5251:8 January 5230:"Epitaxy" 5189:244560651 5076:8 January 5028:8 January 4770:AnandTech 4709:TSMC Blog 4678:AnandTech 4464:April 19, 4459:TechRadar 4438:April 18, 4433:intel.com 4344:AnandTech 3967:110840307 3586:109383925 3056:AnandTech 2775:213026336 2733:252555815 2623:CiteSeerX 2486:2166-2746 2313:SEMI font 2220:Deathnium 2177:, fuming 2160:phosphine 2097:Flip-chip 2076:bondwires 2063:Packaging 1909:metrology 1892:etch back 1883:damascene 1616:oxidation 1381:Cleanroom 1334:soldering 1296:flip chip 1258:flip chip 1253:packages) 1223:smartcard 945:RCA clean 819:In 2011, 810:7 nm 646:In 1963, 446:7 nm 271:2 nm 253:3 nm 244:5 nm 235:7 nm 118:1 ÎĽm 100:3 ÎĽm 91:6 ÎĽm 7057:Archived 7025:Archived 6962:Archived 6871:26263093 6804:33182434 6510:25926459 6465:23881959 6332:35956689 6281:32122636 5694:Archived 5613:Archived 5584:Archived 5534:Archived 5458:Archived 5429:Archived 5400:Archived 4929:Archived 4775:Archived 4743:Archived 4683:Archived 4397:"FinFET" 4317:Archived 4288:Archived 4259:Archived 4230:Archived 4201:Archived 4169:Archived 4102:22 April 4033:Archived 3780:70599233 3745:EE Times 3242:: 12–15. 3194:Archived 3121:Archived 3086:Archived 3061:Archived 3028:Archived 3024:PC Gamer 2966:Archived 2641:Archived 2637:30883737 2590:25469704 2383:12369827 2213:See also 2145:antimony 1973:The fab 1850:tungsten 1781:back end 1585:against 1444:that is 1332:to make 855:SK Hynix 780:Broadcom 776:Qualcomm 326:Industry 7288:MOSFETs 6795:7664900 6772:Bibcode 6575:1589266 6122:1194426 5059:Bibcode 4925:Reuters 4876:Reuters 4501:6700881 3807:Bibcode 3265:Bibcode 2694:3240442 2532:2482339 2466:Bibcode 2288:(LOCOS) 2141:arsenic 2137:dopants 2008:corners 1777:created 1754:Qimonda 1658:epitaxy 1654:silicon 1620:silicon 1578:sources 1554:stepper 1521:Removal 1497:(ECD), 1493:(CVD), 1489:(PVD), 1336:easier) 1105:Epitaxy 1006:dopants 926:acetone 784:fabless 723:bipolar 576:History 419:Silicon 291:Density 264:Future 7168:  6912:  6869:  6802:  6792:  6741:  6688:  6662:  6598:  6573:  6563:  6508:  6498:  6463:  6453:  6396:  6330:  6279:  6245:  6218:  6192:  6165:  6120:  6086:  5973:  5932:  5886:  5859:  5832:  5805:  5778:  5751:  5724:  5668:  5367:  5336:  5309:  5187:  5146:  5120:  5019:  4960:  4499:  3965:  3929:  3841:  3778:  3702:  3584:  3548:  3394:  3368:  3328:  3186:  3127:6 July 3000:22 May 2906:22 May 2879:  2852:  2825:  2798:  2773:  2731:  2692:  2682:  2635:  2625:  2588:  2530:  2520:  2484:  2381:  2252:FinFET 2235:MOSFET 2185:, and 2168:silane 2156:arsine 2147:, and 2111:before 2085:solder 1998:or a " 1980:eFUSEs 1582:drains 1574:doping 1535:(CMP). 1531:) and 1458:boules 1454:ingots 1422:Wafers 1322:copper 1314:Baking 1093:(PVD) 1073:(CVD) 1041:(ALE) 1035:(DRIE) 1029:(RIE) 879:  875:  851:Micron 832:GAAFET 743:BCDMOS 699:Europe 676:MOSFET 664:Boeing 637:  609:MOSFET 596:, and 562:FinFET 301:Device 106:  36:device 7028:(PDF) 7017:(PDF) 6993:(PDF) 6986:(PDF) 6906:(PDF) 6897:(PDF) 6571:S2CID 6506:S2CID 6461:S2CID 6328:S2CID 6277:S2CID 6118:S2CID 6046:(PDF) 6023:(PDF) 5997:(PDF) 5185:S2CID 4497:S2CID 4429:(PDF) 3963:S2CID 3776:S2CID 3582:S2CID 3238:(3). 3228:(PDF) 2925:(PDF) 2771:S2CID 2729:S2CID 2690:S2CID 2644:(PDF) 2633:S2CID 2611:(PDF) 2586:S2CID 2528:S2CID 2379:S2CID 1949:yield 1879:low-Îş 1788:or a 1666:prior 1624:LOCOS 1515:LOCOS 1507:oxide 1448:into 1446:grown 1438:wafer 1411:FOUPs 1328:with 1302:(TAB) 1260:BGA ( 1251:WLCSP 1177:(CMP) 1152:LOCOS 1112:(MBE) 1087:(ALD) 821:Intel 764:Intel 731:LDMOS 687:Texas 662:(now 518:CHMOS 465:FOUPs 411:wafer 7166:ISBN 7145:2024 7137:CNET 6937:link 6910:ISBN 6867:PMID 6800:PMID 6739:ISBN 6686:ISBN 6660:ISBN 6596:ISBN 6561:ISBN 6529:IEEE 6496:ISBN 6451:ISBN 6394:ISBN 6243:ISBN 6216:ISBN 6190:ISBN 6163:ISBN 6141:IEEE 6084:ISBN 6054:2024 5971:ISBN 5930:ISBN 5884:ISBN 5857:ISBN 5830:ISBN 5803:ISBN 5776:ISBN 5749:ISBN 5722:ISBN 5666:ISBN 5646:2023 5378:2024 5365:ISBN 5334:ISBN 5307:ISBN 5276:2024 5253:2024 5144:ISBN 5118:ISBN 5078:2024 5030:2024 5017:ISBN 4958:ISBN 4937:2019 4720:2023 4713:TSMC 4466:2018 4440:2018 4104:2018 3993:2024 3927:ISBN 3839:ISBN 3700:ISBN 3546:ISBN 3497:IEEE 3392:ISBN 3366:ISBN 3326:ISBN 3184:ISBN 3129:2019 3094:2020 3036:2020 3002:2022 2908:2022 2877:ISBN 2850:ISBN 2823:ISBN 2796:ISBN 2680:ISBN 2518:ISBN 2482:ISSN 2390:2015 2240:CMOS 2206:and 2158:and 2093:RoHS 2089:lead 2048:and 1926:dies 1846:vias 1766:BEOL 1730:and 1698:(HfO 1644:FEOL 1580:and 1559:mask 1430:and 1415:SMIF 1413:and 1241:MEMS 1239:and 841:and 778:and 768:TSMC 754:The 729:and 727:CMOS 695:Asia 689:and 619:and 613:CMOS 566:TSMC 514:HMOS 482:and 472:ASML 454:dies 395:DRAM 393:and 296:CMOS 6859:doi 6790:PMC 6780:doi 6731:doi 6553:doi 6488:doi 6443:doi 6320:doi 6269:doi 6110:doi 6076:doi 6035:doi 6001:doi 5299:doi 5177:doi 5067:doi 5055:146 4489:doi 3955:doi 3903:doi 3872:doi 3868:470 3815:doi 3803:237 3768:doi 3672:doi 3574:doi 3474:doi 3302:doi 3273:doi 3155:doi 2763:doi 2721:doi 2672:doi 2578:doi 2510:doi 2474:doi 2371:doi 1964:die 1960:5nm 1915:or 1854:CVD 1784:SiO 1606:in 1529:dry 1527:or 1525:wet 1330:tin 1298:or 1225:or 1162:LED 932:or 847:UMC 795:AMD 705:. 629:RCA 623:at 568:'s 532:in 524:or 7274:: 7135:. 7055:. 7051:. 7019:. 6960:. 6954:. 6933:}} 6929:{{ 6899:. 6885:^ 6865:. 6853:. 6849:. 6798:. 6788:. 6778:. 6768:13 6766:. 6762:. 6737:. 6638:. 6624:^ 6569:. 6559:. 6547:. 6526:. 6504:. 6494:. 6482:. 6459:. 6449:. 6437:. 6417:. 6326:. 6275:. 6138:. 6116:. 6082:. 6070:. 6031:86 6029:. 6025:. 5907:. 5692:. 5688:. 5637:. 5611:. 5607:. 5582:. 5578:. 5567:^ 5557:. 5532:. 5528:. 5499:. 5481:. 5456:. 5452:. 5427:. 5423:. 5398:. 5394:. 5359:. 5305:. 5293:. 5221:^ 5211:. 5197:^ 5183:. 5173:35 5171:. 5167:. 5095:. 5065:. 5053:. 5047:. 5001:^ 4980:. 4923:. 4898:^ 4874:. 4853:. 4832:. 4799:. 4773:. 4767:. 4741:. 4737:. 4711:. 4707:. 4681:. 4675:. 4503:. 4495:. 4485:37 4483:. 4457:. 4431:. 4381:. 4362:. 4341:. 4315:. 4311:. 4286:. 4282:. 4253:. 4224:. 4199:. 4193:. 4167:. 4163:. 4095:. 4076:. 4057:. 4027:. 4009:. 3961:. 3953:. 3949:. 3899:16 3897:. 3893:. 3870:. 3866:. 3862:. 3813:. 3801:. 3797:. 3774:. 3766:. 3762:. 3742:. 3723:. 3684:^ 3666:. 3633:. 3608:^ 3580:. 3572:. 3568:. 3494:. 3298:52 3296:. 3271:. 3261:35 3259:. 3234:. 3230:. 3209:^ 3192:. 3178:. 3145:; 3119:. 3113:. 3102:^ 3059:. 3053:. 3026:. 3022:. 3010:^ 2993:. 2981:^ 2964:. 2946:. 2927:. 2891:^ 2769:. 2759:33 2757:. 2753:. 2741:^ 2727:. 2717:35 2715:. 2711:. 2688:. 2678:. 2639:. 2631:. 2619:56 2617:. 2613:. 2598:^ 2584:. 2574:31 2572:. 2568:. 2540:^ 2526:. 2516:. 2494:^ 2480:. 2472:. 2462:30 2460:. 2456:. 2423:^ 2406:. 2377:. 2367:19 2365:. 2361:. 2349:^ 2181:, 2143:, 1664:, 1294:, 1290:, 1023:) 928:, 857:, 853:, 808:' 725:, 697:, 682:. 674:a 592:, 588:, 584:, 486:. 478:, 474:, 442:10 438:14 385:, 268:00 250:00 241:00 232:00 115:00 97:00 88:00 7147:. 7066:. 7037:. 7002:. 6971:. 6939:) 6925:. 6879:. 6861:: 6855:6 6820:. 6806:. 6782:: 6774:: 6733:: 6721:k 6708:. 6694:. 6668:. 6642:. 6618:. 6604:. 6577:. 6555:: 6532:. 6512:. 6490:: 6467:. 6445:: 6421:. 6402:. 6362:. 6348:. 6334:. 6322:: 6283:. 6271:: 6251:. 6224:. 6144:. 6124:. 6112:: 6092:. 6078:: 6056:. 6037:: 6007:. 6003:: 5979:. 5952:. 5938:. 5911:. 5703:. 5674:. 5648:. 5622:. 5593:. 5561:. 5543:. 5514:. 5485:. 5467:. 5438:. 5409:. 5380:. 5315:. 5301:: 5278:. 5255:. 5232:. 5215:. 5191:. 5179:: 5152:. 5099:. 5080:. 5069:: 5061:: 5032:. 4984:. 4892:. 4878:. 4859:. 4803:. 4784:. 4752:. 4722:. 4692:. 4618:. 4576:. 4562:. 4520:. 4491:: 4468:. 4442:. 4413:. 4399:. 4385:. 4366:. 4347:. 4326:. 4297:. 4268:. 4239:. 4210:. 4178:. 4106:. 4080:. 4061:. 4042:. 4013:. 3995:. 3969:. 3957:: 3935:. 3909:. 3905:: 3878:. 3874:: 3847:. 3821:. 3817:: 3809:: 3782:. 3770:: 3748:. 3727:. 3708:. 3678:. 3674:: 3637:. 3619:. 3588:. 3576:: 3554:. 3528:. 3514:. 3500:. 3480:. 3476:: 3456:. 3442:. 3428:. 3414:. 3400:. 3374:. 3348:. 3334:. 3308:. 3304:: 3279:. 3275:: 3267:: 3236:9 3203:. 3161:. 3157:: 3131:. 3096:. 3070:. 3038:. 3004:. 2975:. 2950:. 2931:. 2910:. 2885:. 2858:. 2831:. 2804:. 2777:. 2765:: 2735:. 2723:: 2696:. 2674:: 2653:. 2592:. 2580:: 2534:. 2512:: 2488:. 2476:: 2468:: 2417:. 2392:. 2373:: 2151:. 1968:0 1798:2 1786:2 1704:2 1700:2 1622:( 1517:. 1456:( 1346:) 1243:) 1215:) 1208:) 1171:. 1019:( 444:/ 440:/ 359:e 352:t 345:v 307:) 303:( 223:0 214:0 205:0 196:0 187:0 178:0 169:0 160:0 79:0 70:0 61:) 57:(

Index


clean room
Semiconductor
device
fabrication


MOSFET scaling
process nodes
20 ÎĽm
10 ÎĽm
6 ÎĽm
3 ÎĽm
1.5 ÎĽm
1 ÎĽm
800 nm
600 nm
350 nm
250 nm
180 nm
130 nm
90 nm
65 nm
45 nm
32 nm
28 nm
22 nm
14 nm
10 nm
7 nm
5 nm
3 nm
2 nm

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑