Knowledge (XXG)

Semiorder

Source đź“ť

583: 568: 20: 1889:. In fact, every semiorder is quasitransitive, and quasitransitivity is invariant to adding all pairs of incomparable items. Removing all non-vertical red lines from the topmost image results in a Hasse diagram for a relation that is still quasitransitive, but violates both axiom 2 and 3; this relation might no longer be useful as a preference ordering. 1675:. Not every partial order leads to a semiorder in this way, however: The first of the semiorder axioms listed above follows automatically from the axioms defining a partial order, but the others do not. A partial order that includes four elements forming two two-element chains would lead to a relation 1720:
Every strict weak ordering < is also a semi-order. More particularly, transitivity of < and transitivity of incomparability with respect to < together imply the above axiom 2, while transitivity of incomparability alone implies axiom 3. The semiorder shown in the top image is not a strict
1058:
Conversely, every finite partial order that avoids the two forbidden four-point orderings described above can be given utility values making it into a semiorder. Therefore, rather than being a consequence of a definition in terms of utility, these forbidden orderings, or equivalent systems of
2239:, Theorem 3 describes a more general situation in which the threshold for comparability between two utilities is a function of the utility rather than being identically 1; however, this does not lead to a different class of orderings. 1146:
For orderings on infinite sets of elements, the orderings that can be defined by utility functions and the orderings that can be defined by forbidden four-point orders differ from each other. For instance, if a semiorder
1707:
that violates the second semiorder axiom, and a partial order that includes four elements forming a three-element chain and an unrelated item would violate the third semiorder axiom (cf. pictures in section
2191:
steps from the first semiorder to the second one, in such a way that each step of the path adds or removes a single order relation and each intermediate state in the path is itself a semiorder.
1083:
elements is given only in terms of the order relation between its pairs of elements, obeying these axioms, then it is possible to construct a utility function that represents the order in time
1983: 1863: 516: 966: 896: 767: 697: 422:. Set a numerical threshold (which may be normalized to 1) such that utilities within that threshold of each other are declared incomparable, and define a binary relation 832: 1595: 1560: 1236: 1705: 1268: 1177: 1117: 548: 1673: 1647: 1528: 1502: 1476: 1424: 1398: 1372: 1294: 1621: 1320: 992: 922: 793: 723: 653: 627: 466: 440: 1450: 1346: 2189: 2169: 2145: 2122: 2102: 2082: 2062: 2003: 1915: 1747: 1137: 1081: 1052: 1032: 1012: 852: 416: 392: 365: 345: 325: 305: 285: 265: 245: 225: 205: 185: 165: 145: 125: 105: 1807: 39:
is a type of ordering for items with numerical scores, where items with widely differing scores are compared by their scores and where scores within a given
3771: 2015: 3754: 2033:
Among all partial orders with a fixed number of elements and a fixed number of comparable pairs, the partial orders that have the largest number of
3804: 3284: 3120: 27:
of a semiorder. Two items are comparable when their vertical coordinates differ by at least one unit (the spacing between solid blue lines).
3601: 3076:, Theory and Decision Library. Series B: Mathematical and Statistical Methods, vol. 36, Dordrecht: Kluwer Academic Publishers Group, 1923: 3737: 3596: 3081: 1186:
then there do not exist sufficiently many sufficiently well-spaced real-numbers for it to be representable by a utility function.
3591: 1597:
is a partial order that has been constructed in this way from a semiorder. Then the semiorder may be recovered by declaring that
2291:
and the definition of incomparability, while each of the remaining two is equivalent to one of the above prohibition properties.
3227: 3309: 3035: 1809:, so every semiorder is an example of an interval order. A relation is a semiorder if, and only if, it can be obtained as an 83:
The original motivation for introducing semiorders was to model human preferences without assuming that incomparability is a
3628: 3548: 3222: 1562:
defined in this way meets the three requirements of a partial order that it be reflexive, antisymmetric, and transitive.
3413: 3342: 2859: 550:
forms a semiorder. If, instead, objects are declared comparable whenever their utilities differ, the result would be a
3316: 3304: 3267: 3242: 3217: 3171: 3140: 1721:
weak ordering, since the rightmost vertex is incomparable to its two closest left neighbors, but they are comparable.
3247: 3237: 3613: 3113: 3586: 3252: 3518: 3145: 1886: 2805:
Jamison, Dean T.; Lau, Lawrence J. (October 1977), "The nature of equilibrium with semiordered preferences",
1816: 3766: 3749: 48: 2041: 63:, in which items with equal scores may be tied but there is no margin of error. They are a special case of 3678: 3294: 3809: 3656: 3491: 3482: 3351: 3186: 3150: 3106: 2766:
Jamison, Dean T.; Lau, Lawrence J. (Sep–Nov 1975), "Semiorders and the Theory of Choice: A Correction",
596: 3232: 2549:
Chandon, J.-L.; Lemaire, J.; Pouget, J. (1978), "DĂ©nombrement des quasi-ordres sur un ensemble fini",
3744: 3703: 3693: 3683: 3428: 3391: 3381: 3361: 3346: 2598: 471: 60: 2967:
Proof Techniques in Graph Theory (Proc. Second Ann Arbor Graph Theory Conf., Ann Arbor, Mich., 1968)
2551:
Centre de Mathématique Sociale. École Pratique des Hautes Études. Mathématiques et Sciences Humaines
3671: 3582: 3528: 3487: 3477: 3366: 3299: 3262: 3027: 2288: 2195: 927: 857: 728: 658: 84: 3710: 3563: 3472: 3462: 3403: 3321: 3052: 3006: 2882: 2822: 2783: 2754: 2537: 2199: 805: 207:
is halfway between the two of them. Then, a person who desires more of the material would prefer
3783: 3623: 3257: 1568: 1533: 1209: 3720: 3698: 3558: 3543: 3523: 3326: 3077: 2696: 2664: 2632: 2515: 1678: 1241: 1150: 1086: 551: 521: 1652: 1626: 1507: 1481: 1455: 1403: 1377: 1351: 1273: 3533: 3386: 3044: 2998: 2940: 2911: 2874: 2814: 2775: 2746: 2708: 2676: 2644: 2610: 2575: 2529: 2495: 2034: 1600: 1299: 971: 901: 772: 702: 632: 606: 445: 395: 371: 3091: 3018: 2974: 2954: 2923: 2894: 2847: 2722: 2688: 2656: 2624: 2589: 2558: 2507: 554:, for which incomparability of objects (based on equality of numbers) would be transitive. 3715: 3498: 3376: 3371: 3356: 3181: 3166: 3087: 3014: 2970: 2962: 2950: 2919: 2890: 2843: 2734: 2718: 2684: 2652: 2620: 2585: 2554: 2520: 2503: 2027: 1882: 1878: 1054:. So it is impossible to have a three-point linear order with a fourth incomparable point. 425: 40: 3272: 2151:: if two semiorders on the same set differ from each other by the addition or removal of 1429: 1325: 3633: 3618: 3608: 3467: 3445: 3423: 2986: 2855: 2203: 2174: 2154: 2130: 2107: 2087: 2067: 2047: 1988: 1918: 1900: 1874: 1810: 1750: 1732: 1190:
supplies a precise characterization of the semiorders that may be defined numerically.
1140: 1122: 1066: 1037: 1017: 997: 837: 401: 377: 350: 330: 310: 290: 270: 250: 230: 210: 190: 170: 150: 130: 110: 90: 68: 52: 2615: 1756: 3798: 3732: 3688: 3666: 3538: 3408: 3396: 3201: 2945: 2915: 2834:
Kim, K. H.; Roush, F. W. (1978), "Enumeration of isomorphism classes of semiorders",
2713: 2680: 2648: 2499: 2044:: in any finite semiorder that is not a total order, there exists a pair of elements 1204: 64: 44: 24: 2699:; Trotter, W. T. (1992), "Linear extensions of semiorders: a maximization problem", 2541: 3553: 3435: 3418: 3336: 3176: 3129: 2730: 796: 574: 32: 3759: 3452: 3331: 3196: 2799:, Stanford University, Institute for Mathematical Studies in the Social Sciences 1183: 1180: 419: 247:, but would not have a preference between the other two pairs. In this example, 2486:
Avery, Peter (1992), "An algorithmic proof that semiorders are representable",
3727: 3661: 3502: 2982: 1063:, can be taken as a combinatorial definition of semiorders. If a semiorder on 3778: 3651: 2580: 1530:) follows from the second semiorder axiom. Therefore, the binary relation 795:. Therefore, it is impossible to have two mutually incomparable two-point 3573: 3440: 3191: 2635:(1970), "Intransitive indifference with unequal indifference intervals", 603:
Whenever two disjoint pairs of elements are comparable, for instance as
588:
Forbidden: three linearly ordered points and a fourth incomparable point
3056: 3010: 2886: 2826: 2787: 2758: 2667:(1973), "Interval representations for interval orders and semiorders", 2533: 1348:. Of the axioms that a partial order is required to obey, reflexivity ( 655:, there must be an additional comparison among these elements, because 582: 567: 370:
To model this mathematically, suppose that objects are given numerical
2797:
Semiorders, Revealed Preference, and the Theory of the Consumer Demand
19: 2902:
Rabinovitch, Issie (1977), "The Scott-Suppes theorem on semiorders",
367:
are comparable, so incomparability does not obey the transitive law.
3048: 3002: 2878: 2818: 2779: 2750: 2124:
in between 1/3 and 2/3 of the linear extensions of the semiorder.
1060: 187:
by the smallest amount that is perceptible as a difference, while
72: 71:, and can be characterized among the partial orders by additional 18: 2801:. Presented at the World Economics Congress, Cambridge, Sep 1970. 2287:, p. 181) used four axioms, the first two of which combine 3102: 3098: 2363:", Sen's remark on p.314 is likely to mean the latter property. 2339:, Section 10, p. 314) Since Luce modelled indifference between 2008:
1, 1, 3, 19, 183, 2371, 38703, 763099, 17648823, ... (sequence
1374:) follows automatically from this definition. Antisymmetry (if 2566:
Dean, R. A.; Keller, Gordon (1968), "Natural partial orders",
595:
A semiorder, defined from a utility function as above, is a
2989:(1958), "Foundational aspects of theories of measurement", 2010: 1452:) follows from the first semiorder axiom. Transitivity (if 2931:
Rabinovitch, Issie (1978), "The dimension of semiorders",
2836:
Journal of Combinatorics, Information &System Sciences
147:
represent three quantities of the same material, and that
2251: 2249: 2247: 2245: 2171:
order relations, then it is possible to find a path of
3074:
Semiorders: Properties, representations, applications
2220: 2218: 2177: 2157: 2133: 2110: 2090: 2070: 2050: 1991: 1926: 1903: 1819: 1759: 1735: 1681: 1655: 1629: 1603: 1571: 1536: 1510: 1484: 1458: 1432: 1406: 1380: 1354: 1328: 1302: 1276: 1244: 1212: 1153: 1125: 1089: 1069: 1040: 1020: 1000: 974: 930: 904: 860: 840: 808: 775: 731: 705: 661: 635: 609: 524: 474: 448: 428: 404: 380: 353: 333: 313: 293: 273: 253: 233: 213: 193: 173: 153: 133: 113: 93: 2421: 854:
must be comparable to at least one of them, because
287:
are incomparable in the preference ordering, as are
3644: 3572: 3511: 3281: 3210: 3159: 2860:"Semiorders and a theory of utility discrimination" 2737:(Sep 1973), "Semiorders and the Theory of Choice", 2183: 2163: 2139: 2116: 2096: 2076: 2056: 1997: 1977: 1909: 1857: 1801: 1741: 1699: 1667: 1641: 1615: 1589: 1554: 1522: 1496: 1470: 1444: 1418: 1392: 1366: 1340: 1314: 1288: 1262: 1230: 1171: 1131: 1111: 1075: 1046: 1026: 1006: 986: 960: 916: 890: 846: 826: 787: 761: 717: 691: 647: 621: 542: 510: 460: 434: 410: 386: 359: 339: 319: 299: 279: 259: 239: 219: 199: 179: 159: 139: 119: 99: 59:) as a model of human preference. They generalize 2518:(1989), "Semiorders and the 1/3–2/3 conjecture", 1978:{\displaystyle {\frac {1}{n+1}}{\binom {2n}{n}},} 1966: 1948: 2795:Jamison, Dean T.; Lau, Lawrence J. (July 1970), 2457: 2445: 573:Forbidden: two mutually incomparable two-point 2969:, Academic Press, New York, pp. 139–146, 1729:The semiorder defined from a utility function 3114: 2601:(1997), "Well-graded families of relations", 1179:(as defined by forbidden orders) includes an 8: 398:that maps the objects to be compared (a set 47:. Semiorders were introduced and applied in 2433: 2272: 2268: 75:, or by two forbidden four-item suborders. 3772:Positive cone of a partially ordered group 3121: 3107: 3099: 3028:"Choice Functions and Revealed Preference" 2406: 2372: 2255: 2944: 2933:Journal of Combinatorial Theory, Series A 2712: 2614: 2579: 2176: 2156: 2132: 2109: 2089: 2069: 2049: 1990: 1965: 1947: 1945: 1927: 1925: 1902: 1840: 1827: 1818: 1758: 1734: 1680: 1654: 1628: 1602: 1570: 1535: 1509: 1483: 1457: 1431: 1405: 1379: 1353: 1327: 1301: 1275: 1243: 1211: 1152: 1124: 1100: 1088: 1068: 1039: 1019: 999: 973: 929: 903: 859: 839: 807: 802:If three elements form a linear ordering 774: 730: 704: 660: 634: 608: 523: 473: 447: 427: 403: 379: 352: 332: 312: 292: 272: 252: 232: 212: 192: 172: 152: 132: 112: 92: 16:Numerical ordering with a margin of error 3755:Positive cone of an ordered vector space 2410: 2324: 2312: 1187: 2469: 2214: 2005:labeled items is given by the sequence 1858:{\displaystyle (\ell _{i},\ell _{i}+1)} 2300: 2267:This result is typically credited to 1897:The number of distinct semiorders on 7: 2422:Chandon, Lemaire & Pouget (1978) 2284: 2236: 2224: 56: 2336: 1749:may equivalently be defined as the 599:with the following two properties: 3282:Properties & Types ( 2904:Journal of Mathematical Psychology 2669:Journal of Mathematical Psychology 2637:Journal of Mathematical Psychology 2355:", while Sen modelled it as "both 1985:while the number of semiorders on 1952: 1885:and found to be a special case of 14: 3738:Positive cone of an ordered field 2040:Semiorders are known to obey the 3592:Ordered topological vector space 3072:Pirlot, M.; Vincke, Ph. (1997), 2202:, and are a special case of the 1917:unlabeled items is given by the 1194:Relation to other kinds of order 581: 566: 2965:(1969), "Indifference graphs", 2568:Canadian Journal of Mathematics 1877:, semi-orders were examined by 1709: 511:{\displaystyle u(x)\leq u(y)-1} 3805:Properties of binary relations 3036:The Review of Economic Studies 1852: 1820: 1796: 1787: 1781: 1772: 1766: 1760: 1694: 1682: 1584: 1572: 1549: 1537: 1257: 1245: 1225: 1213: 1166: 1154: 1106: 1093: 994:, in either case showing that 955: 949: 940: 934: 885: 879: 870: 864: 756: 750: 741: 735: 686: 680: 671: 665: 537: 525: 499: 493: 484: 478: 1: 3549:Series-parallel partial order 3026:Sen, Amartya K. (July 1971), 2991:The Journal of Symbolic Logic 2616:10.1016/S0012-365X(96)00095-7 2458:Doignon & Falmagne (1997) 2446:Fishburn & Trotter (1992) 961:{\displaystyle u(z)\geq u(x)} 891:{\displaystyle u(z)\leq u(x)} 762:{\displaystyle u(w)\geq u(y)} 692:{\displaystyle u(w)\leq u(y)} 87:. For instance, suppose that 35:, a branch of mathematics, a 3228:Cantor's isomorphism theorem 2946:10.1016/0097-3165(78)90030-4 2916:10.1016/0022-2496(77)90030-x 2714:10.1016/0012-365X(92)90036-F 2681:10.1016/0022-2496(73)90007-2 2649:10.1016/0022-2496(70)90062-3 2500:10.1016/0196-6774(92)90010-A 2127:The set of semiorders on an 3268:Szpilrajn extension theorem 3243:Hausdorff maximal principle 3218:Boolean prime ideal theorem 827:{\displaystyle w<x<y} 442:on the objects, by setting 3826: 3614:Topological vector lattice 834:, then every fourth point 3136: 2269:Scott & Suppes (1958) 2198:of semiorders are called 2026:Any finite semiorder has 1893:Combinatorial enumeration 1887:quasitransitive relations 1869:Quasitransitive relations 1813:of unit length intervals 1753:defined by the intervals 1590:{\displaystyle (X,\leq )} 1565:Conversely, suppose that 1555:{\displaystyle (X,\leq )} 1231:{\displaystyle (X,\leq )} 3223:Cantor–Bernstein theorem 2407:Dean & Keller (1968) 2393:more general, to adding 2373:Jamison & Lau (1970) 1700:{\displaystyle (X,<)} 1263:{\displaystyle (X,<)} 1172:{\displaystyle (X,<)} 1112:{\displaystyle O(n^{2})} 543:{\displaystyle (X,<)} 3767:Partially ordered group 3587:Specialization preorder 1668:{\displaystyle x\neq y} 1642:{\displaystyle x\leq y} 1523:{\displaystyle x\leq z} 1497:{\displaystyle y\leq z} 1471:{\displaystyle x\leq y} 1419:{\displaystyle y\leq x} 1393:{\displaystyle x\leq y} 1367:{\displaystyle x\leq x} 1289:{\displaystyle x\leq y} 49:mathematical psychology 3253:Kruskal's tree theorem 3248:Knaster–Tarski theorem 3238:Dushnik–Miller theorem 2581:10.4153/CJM-1968-055-7 2411:Kim & Roush (1978) 2384:since it is transitive 2196:incomparability graphs 2185: 2165: 2141: 2118: 2098: 2078: 2058: 1999: 1979: 1911: 1859: 1803: 1743: 1701: 1669: 1643: 1617: 1616:{\displaystyle x<y} 1591: 1556: 1524: 1498: 1472: 1446: 1420: 1394: 1368: 1342: 1316: 1315:{\displaystyle x<y} 1290: 1264: 1232: 1184:totally ordered subset 1173: 1133: 1113: 1077: 1048: 1028: 1008: 988: 987:{\displaystyle w<z} 962: 918: 917:{\displaystyle z<y} 892: 848: 828: 789: 788:{\displaystyle y<x} 763: 719: 718:{\displaystyle w<z} 693: 649: 648:{\displaystyle y<z} 623: 622:{\displaystyle w<x} 544: 512: 462: 461:{\displaystyle x<y} 436: 412: 388: 361: 341: 321: 301: 281: 261: 241: 221: 201: 181: 161: 141: 121: 101: 28: 2599:Falmagne, Jean-Claude 2516:Brightwell, Graham R. 2488:Journal of Algorithms 2186: 2166: 2142: 2119: 2104:appears earlier than 2099: 2079: 2059: 2000: 1980: 1912: 1860: 1804: 1744: 1702: 1670: 1644: 1618: 1592: 1557: 1525: 1499: 1473: 1447: 1421: 1395: 1369: 1343: 1317: 1291: 1265: 1233: 1174: 1134: 1114: 1078: 1049: 1029: 1009: 989: 963: 919: 893: 849: 829: 790: 764: 720: 694: 650: 624: 597:partially ordered set 545: 513: 463: 437: 413: 389: 362: 342: 322: 302: 282: 262: 242: 222: 202: 182: 162: 142: 122: 102: 61:strict weak orderings 22: 3745:Ordered vector space 2701:Discrete Mathematics 2603:Discrete Mathematics 2597:Doignon, Jean-Paul; 2175: 2155: 2131: 2108: 2088: 2068: 2048: 1989: 1924: 1901: 1817: 1757: 1733: 1679: 1653: 1627: 1601: 1569: 1534: 1508: 1482: 1456: 1430: 1404: 1378: 1352: 1326: 1300: 1274: 1242: 1210: 1151: 1123: 1087: 1067: 1038: 1018: 998: 972: 928: 902: 858: 838: 806: 773: 729: 703: 659: 633: 607: 552:strict weak ordering 522: 472: 446: 435:{\displaystyle <} 426: 402: 378: 351: 331: 311: 291: 271: 251: 231: 211: 191: 171: 151: 131: 111: 91: 3583:Alexandrov topology 3529:Lexicographic order 3488:Well-quasi-ordering 2200:indifference graphs 1445:{\displaystyle x=y} 1341:{\displaystyle x=y} 85:transitive relation 3564:Transitive closure 3524:Converse/Transpose 3233:Dilworth's theorem 2697:Fishburn, Peter C. 2665:Fishburn, Peter C. 2633:Fishburn, Peter C. 2534:10.1007/BF00353656 2434:Rabinovitch (1978) 2397:symmetric relation 2273:Rabinovitch (1977) 2181: 2161: 2137: 2114: 2094: 2074: 2054: 2042:1/3–2/3 conjecture 1995: 1975: 1907: 1855: 1799: 1739: 1697: 1665: 1639: 1613: 1587: 1552: 1520: 1494: 1468: 1442: 1416: 1390: 1364: 1338: 1312: 1286: 1270:by declaring that 1260: 1228: 1169: 1139:is an instance of 1129: 1109: 1073: 1044: 1024: 1004: 984: 958: 914: 888: 844: 824: 785: 759: 715: 689: 645: 619: 540: 508: 458: 432: 408: 384: 357: 337: 317: 297: 277: 257: 237: 217: 197: 177: 157: 137: 117: 97: 29: 3792: 3791: 3750:Partially ordered 3559:Symmetric closure 3544:Reflexive closure 3287: 2553:(62): 61–80, 83, 2256:Brightwell (1989) 2184:{\displaystyle k} 2164:{\displaystyle k} 2140:{\displaystyle n} 2117:{\displaystyle y} 2097:{\displaystyle x} 2077:{\displaystyle y} 2057:{\displaystyle x} 2035:linear extensions 1998:{\displaystyle n} 1964: 1943: 1910:{\displaystyle n} 1742:{\displaystyle u} 1238:from a semiorder 1203:One may define a 1132:{\displaystyle O} 1076:{\displaystyle n} 1047:{\displaystyle y} 1027:{\displaystyle w} 1014:is comparable to 1007:{\displaystyle z} 847:{\displaystyle z} 411:{\displaystyle X} 387:{\displaystyle u} 360:{\displaystyle z} 340:{\displaystyle x} 320:{\displaystyle z} 300:{\displaystyle y} 280:{\displaystyle y} 260:{\displaystyle x} 240:{\displaystyle z} 220:{\displaystyle x} 200:{\displaystyle y} 180:{\displaystyle z} 160:{\displaystyle x} 140:{\displaystyle z} 120:{\displaystyle y} 100:{\displaystyle x} 3817: 3534:Linear extension 3283: 3263:Mirsky's theorem 3123: 3116: 3109: 3100: 3094: 3059: 3032: 3021: 2977: 2963:Roberts, Fred S. 2957: 2948: 2926: 2897: 2864: 2850: 2829: 2813:(7): 1595–1605, 2800: 2790: 2774:(5–6): 979–980, 2761: 2735:Lau, Lawrence J. 2731:Jamison, Dean T. 2725: 2716: 2691: 2659: 2627: 2618: 2592: 2583: 2561: 2544: 2510: 2473: 2467: 2461: 2455: 2449: 2443: 2437: 2431: 2425: 2419: 2413: 2404: 2398: 2391: 2385: 2382: 2376: 2370: 2364: 2334: 2328: 2322: 2316: 2310: 2304: 2298: 2292: 2282: 2276: 2265: 2259: 2253: 2240: 2234: 2228: 2222: 2190: 2188: 2187: 2182: 2170: 2168: 2167: 2162: 2147:-element set is 2146: 2144: 2143: 2138: 2123: 2121: 2120: 2115: 2103: 2101: 2100: 2095: 2083: 2081: 2080: 2075: 2063: 2061: 2060: 2055: 2037:are semiorders. 2013: 2004: 2002: 2001: 1996: 1984: 1982: 1981: 1976: 1971: 1970: 1969: 1960: 1951: 1944: 1942: 1928: 1916: 1914: 1913: 1908: 1864: 1862: 1861: 1856: 1845: 1844: 1832: 1831: 1808: 1806: 1805: 1802:{\displaystyle } 1800: 1748: 1746: 1745: 1740: 1706: 1704: 1703: 1698: 1674: 1672: 1671: 1666: 1648: 1646: 1645: 1640: 1622: 1620: 1619: 1614: 1596: 1594: 1593: 1588: 1561: 1559: 1558: 1553: 1529: 1527: 1526: 1521: 1503: 1501: 1500: 1495: 1477: 1475: 1474: 1469: 1451: 1449: 1448: 1443: 1425: 1423: 1422: 1417: 1399: 1397: 1396: 1391: 1373: 1371: 1370: 1365: 1347: 1345: 1344: 1339: 1321: 1319: 1318: 1313: 1296:whenever either 1295: 1293: 1292: 1287: 1269: 1267: 1266: 1261: 1237: 1235: 1234: 1229: 1178: 1176: 1175: 1170: 1138: 1136: 1135: 1130: 1118: 1116: 1115: 1110: 1105: 1104: 1082: 1080: 1079: 1074: 1053: 1051: 1050: 1045: 1033: 1031: 1030: 1025: 1013: 1011: 1010: 1005: 993: 991: 990: 985: 967: 965: 964: 959: 923: 921: 920: 915: 897: 895: 894: 889: 853: 851: 850: 845: 833: 831: 830: 825: 794: 792: 791: 786: 768: 766: 765: 760: 724: 722: 721: 716: 698: 696: 695: 690: 654: 652: 651: 646: 628: 626: 625: 620: 585: 570: 549: 547: 546: 541: 517: 515: 514: 509: 467: 465: 464: 459: 441: 439: 438: 433: 417: 415: 414: 409: 396:utility function 393: 391: 390: 385: 366: 364: 363: 358: 346: 344: 343: 338: 326: 324: 323: 318: 306: 304: 303: 298: 286: 284: 283: 278: 266: 264: 263: 258: 246: 244: 243: 238: 226: 224: 223: 218: 206: 204: 203: 198: 186: 184: 183: 178: 166: 164: 163: 158: 146: 144: 143: 138: 126: 124: 123: 118: 106: 104: 103: 98: 3825: 3824: 3820: 3819: 3818: 3816: 3815: 3814: 3795: 3794: 3793: 3788: 3784:Young's lattice 3640: 3568: 3507: 3357:Heyting algebra 3305:Boolean algebra 3277: 3258:Laver's theorem 3206: 3172:Boolean algebra 3167:Binary relation 3155: 3132: 3127: 3084: 3071: 3068: 3066:Further reading 3063: 3049:10.2307/2296384 3030: 3025: 3003:10.2307/2964389 2987:Suppes, Patrick 2981: 2961: 2930: 2901: 2879:10.2307/1905751 2862: 2856:Luce, R. Duncan 2854: 2833: 2819:10.2307/1913952 2804: 2794: 2780:10.2307/1911339 2765: 2751:10.2307/1913813 2729: 2695: 2663: 2631: 2596: 2565: 2548: 2514: 2485: 2481: 2476: 2468: 2464: 2456: 2452: 2444: 2440: 2432: 2428: 2420: 2416: 2405: 2401: 2392: 2388: 2383: 2379: 2371: 2367: 2335: 2331: 2325:Fishburn (1970) 2323: 2319: 2313:Fishburn (1973) 2311: 2307: 2299: 2295: 2283: 2279: 2266: 2262: 2254: 2243: 2235: 2231: 2223: 2216: 2212: 2204:interval graphs 2173: 2172: 2153: 2152: 2129: 2128: 2106: 2105: 2086: 2085: 2066: 2065: 2046: 2045: 2030:at most three. 2028:order dimension 2024: 2019: 2009: 1987: 1986: 1953: 1946: 1932: 1922: 1921: 1919:Catalan numbers 1899: 1898: 1895: 1883:Lawrence J. Lau 1879:Dean T. Jamison 1871: 1836: 1823: 1815: 1814: 1755: 1754: 1731: 1730: 1727: 1725:Interval orders 1718: 1677: 1676: 1651: 1650: 1625: 1624: 1599: 1598: 1567: 1566: 1532: 1531: 1506: 1505: 1480: 1479: 1454: 1453: 1428: 1427: 1402: 1401: 1376: 1375: 1350: 1349: 1324: 1323: 1298: 1297: 1272: 1271: 1240: 1239: 1208: 1207: 1201: 1196: 1188:Fishburn (1973) 1149: 1148: 1121: 1120: 1096: 1085: 1084: 1065: 1064: 1036: 1035: 1016: 1015: 996: 995: 970: 969: 926: 925: 900: 899: 856: 855: 836: 835: 804: 803: 771: 770: 727: 726: 701: 700: 657: 656: 631: 630: 605: 604: 593: 592: 591: 590: 589: 586: 578: 577: 571: 560: 520: 519: 470: 469: 444: 443: 424: 423: 400: 399: 376: 375: 349: 348: 329: 328: 309: 308: 289: 288: 269: 268: 249: 248: 229: 228: 209: 208: 189: 188: 169: 168: 167:is larger than 149: 148: 129: 128: 109: 108: 89: 88: 81: 69:interval orders 53:Duncan Luce 41:margin of error 17: 12: 11: 5: 3823: 3821: 3813: 3812: 3807: 3797: 3796: 3790: 3789: 3787: 3786: 3781: 3776: 3775: 3774: 3764: 3763: 3762: 3757: 3752: 3742: 3741: 3740: 3730: 3725: 3724: 3723: 3718: 3711:Order morphism 3708: 3707: 3706: 3696: 3691: 3686: 3681: 3676: 3675: 3674: 3664: 3659: 3654: 3648: 3646: 3642: 3641: 3639: 3638: 3637: 3636: 3631: 3629:Locally convex 3626: 3621: 3611: 3609:Order topology 3606: 3605: 3604: 3602:Order topology 3599: 3589: 3579: 3577: 3570: 3569: 3567: 3566: 3561: 3556: 3551: 3546: 3541: 3536: 3531: 3526: 3521: 3515: 3513: 3509: 3508: 3506: 3505: 3495: 3485: 3480: 3475: 3470: 3465: 3460: 3455: 3450: 3449: 3448: 3438: 3433: 3432: 3431: 3426: 3421: 3416: 3414:Chain-complete 3406: 3401: 3400: 3399: 3394: 3389: 3384: 3379: 3369: 3364: 3359: 3354: 3349: 3339: 3334: 3329: 3324: 3319: 3314: 3313: 3312: 3302: 3297: 3291: 3289: 3279: 3278: 3276: 3275: 3270: 3265: 3260: 3255: 3250: 3245: 3240: 3235: 3230: 3225: 3220: 3214: 3212: 3208: 3207: 3205: 3204: 3199: 3194: 3189: 3184: 3179: 3174: 3169: 3163: 3161: 3157: 3156: 3154: 3153: 3148: 3143: 3137: 3134: 3133: 3128: 3126: 3125: 3118: 3111: 3103: 3097: 3096: 3082: 3067: 3064: 3062: 3061: 3043:(3): 307–317, 3023: 2997:(2): 113–128, 2979: 2959: 2928: 2910:(2): 209–212, 2899: 2873:(2): 178–191, 2852: 2831: 2802: 2792: 2763: 2745:(5): 901–912, 2727: 2693: 2661: 2629: 2609:(1–3): 35–44, 2594: 2563: 2546: 2528:(4): 369–380, 2512: 2494:(1): 144–147, 2482: 2480: 2477: 2475: 2474: 2470:Roberts (1969) 2462: 2450: 2438: 2426: 2414: 2399: 2386: 2377: 2365: 2329: 2317: 2305: 2293: 2277: 2260: 2241: 2229: 2227:, p. 179. 2213: 2211: 2208: 2180: 2160: 2136: 2113: 2093: 2073: 2053: 2023: 2020: 2007: 1994: 1974: 1968: 1963: 1959: 1956: 1950: 1941: 1938: 1935: 1931: 1906: 1894: 1891: 1875:Amartya K. Sen 1870: 1867: 1854: 1851: 1848: 1843: 1839: 1835: 1830: 1826: 1822: 1811:interval order 1798: 1795: 1792: 1789: 1786: 1783: 1780: 1777: 1774: 1771: 1768: 1765: 1762: 1751:interval order 1738: 1726: 1723: 1717: 1714: 1696: 1693: 1690: 1687: 1684: 1664: 1661: 1658: 1638: 1635: 1632: 1612: 1609: 1606: 1586: 1583: 1580: 1577: 1574: 1551: 1548: 1545: 1542: 1539: 1519: 1516: 1513: 1493: 1490: 1487: 1467: 1464: 1461: 1441: 1438: 1435: 1415: 1412: 1409: 1389: 1386: 1383: 1363: 1360: 1357: 1337: 1334: 1331: 1311: 1308: 1305: 1285: 1282: 1279: 1259: 1256: 1253: 1250: 1247: 1227: 1224: 1221: 1218: 1215: 1200: 1199:Partial orders 1197: 1195: 1192: 1168: 1165: 1162: 1159: 1156: 1141:big O notation 1128: 1108: 1103: 1099: 1095: 1092: 1072: 1056: 1055: 1043: 1023: 1003: 983: 980: 977: 957: 954: 951: 948: 945: 942: 939: 936: 933: 913: 910: 907: 887: 884: 881: 878: 875: 872: 869: 866: 863: 843: 823: 820: 817: 814: 811: 800: 784: 781: 778: 758: 755: 752: 749: 746: 743: 740: 737: 734: 714: 711: 708: 688: 685: 682: 679: 676: 673: 670: 667: 664: 644: 641: 638: 618: 615: 612: 587: 580: 579: 572: 565: 564: 563: 562: 561: 559: 556: 539: 536: 533: 530: 527: 507: 504: 501: 498: 495: 492: 489: 486: 483: 480: 477: 457: 454: 451: 431: 407: 383: 372:utility values 356: 336: 316: 296: 276: 256: 236: 216: 196: 176: 156: 136: 116: 96: 80: 79:Utility theory 77: 65:partial orders 15: 13: 10: 9: 6: 4: 3: 2: 3822: 3811: 3808: 3806: 3803: 3802: 3800: 3785: 3782: 3780: 3777: 3773: 3770: 3769: 3768: 3765: 3761: 3758: 3756: 3753: 3751: 3748: 3747: 3746: 3743: 3739: 3736: 3735: 3734: 3733:Ordered field 3731: 3729: 3726: 3722: 3719: 3717: 3714: 3713: 3712: 3709: 3705: 3702: 3701: 3700: 3697: 3695: 3692: 3690: 3689:Hasse diagram 3687: 3685: 3682: 3680: 3677: 3673: 3670: 3669: 3668: 3667:Comparability 3665: 3663: 3660: 3658: 3655: 3653: 3650: 3649: 3647: 3643: 3635: 3632: 3630: 3627: 3625: 3622: 3620: 3617: 3616: 3615: 3612: 3610: 3607: 3603: 3600: 3598: 3595: 3594: 3593: 3590: 3588: 3584: 3581: 3580: 3578: 3575: 3571: 3565: 3562: 3560: 3557: 3555: 3552: 3550: 3547: 3545: 3542: 3540: 3539:Product order 3537: 3535: 3532: 3530: 3527: 3525: 3522: 3520: 3517: 3516: 3514: 3512:Constructions 3510: 3504: 3500: 3496: 3493: 3489: 3486: 3484: 3481: 3479: 3476: 3474: 3471: 3469: 3466: 3464: 3461: 3459: 3456: 3454: 3451: 3447: 3444: 3443: 3442: 3439: 3437: 3434: 3430: 3427: 3425: 3422: 3420: 3417: 3415: 3412: 3411: 3410: 3409:Partial order 3407: 3405: 3402: 3398: 3397:Join and meet 3395: 3393: 3390: 3388: 3385: 3383: 3380: 3378: 3375: 3374: 3373: 3370: 3368: 3365: 3363: 3360: 3358: 3355: 3353: 3350: 3348: 3344: 3340: 3338: 3335: 3333: 3330: 3328: 3325: 3323: 3320: 3318: 3315: 3311: 3308: 3307: 3306: 3303: 3301: 3298: 3296: 3295:Antisymmetric 3293: 3292: 3290: 3286: 3280: 3274: 3271: 3269: 3266: 3264: 3261: 3259: 3256: 3254: 3251: 3249: 3246: 3244: 3241: 3239: 3236: 3234: 3231: 3229: 3226: 3224: 3221: 3219: 3216: 3215: 3213: 3209: 3203: 3202:Weak ordering 3200: 3198: 3195: 3193: 3190: 3188: 3187:Partial order 3185: 3183: 3180: 3178: 3175: 3173: 3170: 3168: 3165: 3164: 3162: 3158: 3152: 3149: 3147: 3144: 3142: 3139: 3138: 3135: 3131: 3124: 3119: 3117: 3112: 3110: 3105: 3104: 3101: 3093: 3089: 3085: 3083:0-7923-4617-3 3079: 3075: 3070: 3069: 3065: 3058: 3054: 3050: 3046: 3042: 3038: 3037: 3029: 3024: 3020: 3016: 3012: 3008: 3004: 3000: 2996: 2992: 2988: 2984: 2980: 2976: 2972: 2968: 2964: 2960: 2956: 2952: 2947: 2942: 2938: 2934: 2929: 2925: 2921: 2917: 2913: 2909: 2905: 2900: 2896: 2892: 2888: 2884: 2880: 2876: 2872: 2868: 2861: 2857: 2853: 2849: 2845: 2841: 2837: 2832: 2828: 2824: 2820: 2816: 2812: 2808: 2803: 2798: 2793: 2789: 2785: 2781: 2777: 2773: 2769: 2764: 2760: 2756: 2752: 2748: 2744: 2740: 2736: 2732: 2728: 2724: 2720: 2715: 2710: 2706: 2702: 2698: 2694: 2690: 2686: 2682: 2678: 2674: 2670: 2666: 2662: 2658: 2654: 2650: 2646: 2642: 2638: 2634: 2630: 2626: 2622: 2617: 2612: 2608: 2604: 2600: 2595: 2591: 2587: 2582: 2577: 2573: 2569: 2564: 2560: 2556: 2552: 2547: 2543: 2539: 2535: 2531: 2527: 2523: 2522: 2517: 2513: 2509: 2505: 2501: 2497: 2493: 2489: 2484: 2483: 2478: 2471: 2466: 2463: 2459: 2454: 2451: 2447: 2442: 2439: 2435: 2430: 2427: 2423: 2418: 2415: 2412: 2408: 2403: 2400: 2396: 2390: 2387: 2381: 2378: 2374: 2369: 2366: 2362: 2358: 2354: 2350: 2346: 2342: 2338: 2333: 2330: 2326: 2321: 2318: 2314: 2309: 2306: 2302: 2297: 2294: 2290: 2286: 2281: 2278: 2274: 2271:; see, e.g., 2270: 2264: 2261: 2257: 2252: 2250: 2248: 2246: 2242: 2238: 2233: 2230: 2226: 2221: 2219: 2215: 2209: 2207: 2205: 2201: 2197: 2192: 2178: 2158: 2150: 2134: 2125: 2111: 2091: 2071: 2051: 2043: 2038: 2036: 2031: 2029: 2022:Other results 2021: 2017: 2012: 2006: 1992: 1972: 1961: 1957: 1954: 1939: 1936: 1933: 1929: 1920: 1904: 1892: 1890: 1888: 1884: 1880: 1876: 1873:According to 1868: 1866: 1849: 1846: 1841: 1837: 1833: 1828: 1824: 1812: 1793: 1790: 1784: 1778: 1775: 1769: 1763: 1752: 1736: 1724: 1722: 1715: 1713: 1711: 1691: 1688: 1685: 1662: 1659: 1656: 1636: 1633: 1630: 1610: 1607: 1604: 1581: 1578: 1575: 1563: 1546: 1543: 1540: 1517: 1514: 1511: 1491: 1488: 1485: 1465: 1462: 1459: 1439: 1436: 1433: 1413: 1410: 1407: 1387: 1384: 1381: 1361: 1358: 1355: 1335: 1332: 1329: 1309: 1306: 1303: 1283: 1280: 1277: 1254: 1251: 1248: 1222: 1219: 1216: 1206: 1205:partial order 1198: 1193: 1191: 1189: 1185: 1182: 1163: 1160: 1157: 1144: 1142: 1126: 1101: 1097: 1090: 1070: 1062: 1041: 1021: 1001: 981: 978: 975: 952: 946: 943: 937: 931: 911: 908: 905: 882: 876: 873: 867: 861: 841: 821: 818: 815: 812: 809: 801: 798: 797:linear orders 782: 779: 776: 753: 747: 744: 738: 732: 712: 709: 706: 683: 677: 674: 668: 662: 642: 639: 636: 616: 613: 610: 602: 601: 600: 598: 584: 576: 575:linear orders 569: 557: 555: 553: 534: 531: 528: 505: 502: 496: 490: 487: 481: 475: 455: 452: 449: 429: 421: 405: 397: 381: 374:, by letting 373: 368: 354: 334: 314: 294: 274: 254: 234: 214: 194: 174: 154: 134: 114: 94: 86: 78: 76: 74: 70: 66: 62: 58: 54: 50: 46: 42: 38: 34: 26: 25:Hasse diagram 21: 3810:Order theory 3576:& Orders 3554:Star product 3483:Well-founded 3457: 3436:Prefix order 3392:Distributive 3382:Complemented 3352:Foundational 3317:Completeness 3273:Zorn's lemma 3177:Cyclic order 3160:Key concepts 3130:Order theory 3073: 3040: 3034: 2994: 2990: 2966: 2939:(1): 50–61, 2936: 2932: 2907: 2903: 2870: 2867:Econometrica 2866: 2842:(2): 58–61, 2839: 2835: 2810: 2807:Econometrica 2806: 2796: 2771: 2768:Econometrica 2767: 2742: 2739:Econometrica 2738: 2707:(1): 25–40, 2704: 2700: 2672: 2668: 2640: 2636: 2606: 2602: 2571: 2567: 2550: 2525: 2519: 2491: 2487: 2465: 2453: 2441: 2429: 2417: 2402: 2394: 2389: 2380: 2368: 2360: 2356: 2352: 2348: 2347:as "neither 2344: 2340: 2332: 2320: 2308: 2301:Avery (1992) 2296: 2280: 2263: 2232: 2193: 2148: 2126: 2039: 2032: 2025: 1896: 1872: 1728: 1719: 1564: 1202: 1145: 1119:, where the 1057: 968:would imply 898:would imply 769:would imply 699:would imply 594: 420:real numbers 369: 82: 45:incomparable 36: 33:order theory 30: 3760:Riesz space 3721:Isomorphism 3597:Normal cone 3519:Composition 3453:Semilattice 3362:Homogeneous 3347:Equivalence 3197:Total order 2983:Scott, Dana 2643:: 144–149, 2574:: 535–554, 2237:Luce (1956) 2225:Luce (1956) 2149:well-graded 1716:Weak orders 1710:#Axiomatics 1181:uncountable 43:are deemed 3799:Categories 3728:Order type 3662:Cofinality 3503:Well-order 3478:Transitive 3367:Idempotent 3300:Asymmetric 2675:: 91–105, 2479:References 2285:Luce (1956 2084:such that 558:Axiomatics 3779:Upper set 3716:Embedding 3652:Antichain 3473:Tolerance 3463:Symmetric 3458:Semiorder 3404:Reflexive 3322:Connected 2337:Sen (1971 2289:asymmetry 1838:ℓ 1825:ℓ 1660:≠ 1634:≤ 1623:whenever 1582:≤ 1547:≤ 1515:≤ 1489:≤ 1463:≤ 1411:≤ 1385:≤ 1359:≤ 1281:≤ 1223:≤ 944:≥ 874:≤ 745:≥ 675:≤ 503:− 488:≤ 468:whenever 37:semiorder 3574:Topology 3441:Preorder 3424:Eulerian 3387:Complete 3337:Directed 3327:Covering 3192:Preorder 3151:Category 3146:Glossary 2858:(1956), 2542:86860160 3679:Duality 3657:Cofinal 3645:Related 3624:FrĂ©chet 3501:)  3377:Bounded 3372:Lattice 3345:)  3343:Partial 3211:Results 3182:Lattice 3092:1472236 3057:2296384 3019:0115919 3011:2964389 2975:0252267 2955:0498294 2924:0437404 2895:0078632 2887:1905751 2848:0538212 2827:1913952 2788:1911339 2759:1913813 2723:1171114 2689:0316322 2657:0253942 2625:1468838 2590:0225686 2559:0517680 2508:1146337 2014:in the 2011:A006531 518:. Then 394:be any 67:and of 55: ( 3704:Subnet 3684:Filter 3634:Normed 3619:Banach 3585:& 3492:Better 3429:Strict 3419:Graded 3310:topics 3141:Topics 3090:  3080:  3055:  3017:  3009:  2973:  2953:  2922:  2893:  2885:  2846:  2825:  2786:  2757:  2721:  2687:  2655:  2623:  2588:  2557:  2540:  2506:  1061:axioms 1034:or to 924:while 725:while 327:, but 127:, and 73:axioms 3694:Ideal 3672:Graph 3468:Total 3446:Total 3332:Dense 3053:JSTOR 3031:(PDF) 3007:JSTOR 2883:JSTOR 2863:(PDF) 2823:JSTOR 2784:JSTOR 2755:JSTOR 2538:S2CID 2521:Order 2210:Notes 1504:then 1426:then 418:) to 3285:list 3078:ISBN 2359:and 2351:nor 2343:and 2194:The 2064:and 2016:OEIS 1881:and 1692:< 1649:and 1608:< 1478:and 1400:and 1307:< 1255:< 1164:< 979:< 909:< 819:< 813:< 780:< 710:< 640:< 629:and 614:< 535:< 453:< 430:< 347:and 307:and 267:and 57:1956 23:The 3699:Net 3499:Pre 3045:doi 2999:doi 2941:doi 2912:doi 2875:doi 2815:doi 2776:doi 2747:doi 2709:doi 2705:103 2677:doi 2645:doi 2611:doi 2607:173 2576:doi 2530:doi 2496:doi 2395:any 2361:yRx 2357:xRy 2353:yRx 2349:xRy 1712:). 1322:or 227:to 51:by 31:In 3801:: 3088:MR 3086:, 3051:, 3041:38 3039:, 3033:, 3015:MR 3013:, 3005:, 2995:23 2993:, 2985:; 2971:MR 2951:MR 2949:, 2937:25 2935:, 2920:MR 2918:, 2908:15 2906:, 2891:MR 2889:, 2881:, 2871:24 2869:, 2865:, 2844:MR 2838:, 2821:, 2811:45 2809:, 2782:, 2772:43 2770:, 2753:, 2743:41 2741:, 2733:; 2719:MR 2717:, 2703:, 2685:MR 2683:, 2673:10 2671:, 2653:MR 2651:, 2639:, 2621:MR 2619:, 2605:, 2586:MR 2584:, 2572:20 2570:, 2555:MR 2536:, 2524:, 2504:MR 2502:, 2492:13 2490:, 2409:; 2244:^ 2217:^ 2206:. 1865:. 1143:. 107:, 3497:( 3494:) 3490:( 3341:( 3288:) 3122:e 3115:t 3108:v 3095:. 3060:. 3047:: 3022:. 3001:: 2978:. 2958:. 2943:: 2927:. 2914:: 2898:. 2877:: 2851:. 2840:3 2830:. 2817:: 2791:. 2778:: 2762:. 2749:: 2726:. 2711:: 2692:. 2679:: 2660:. 2647:: 2641:7 2628:. 2613:: 2593:. 2578:: 2562:. 2545:. 2532:: 2526:5 2511:. 2498:: 2472:. 2460:. 2448:. 2436:. 2424:. 2375:. 2345:y 2341:x 2327:. 2315:. 2303:. 2275:. 2258:. 2179:k 2159:k 2135:n 2112:y 2092:x 2072:y 2052:x 2018:) 1993:n 1973:, 1967:) 1962:n 1958:n 1955:2 1949:( 1940:1 1937:+ 1934:n 1930:1 1905:n 1853:) 1850:1 1847:+ 1842:i 1834:, 1829:i 1821:( 1797:] 1794:1 1791:+ 1788:) 1785:x 1782:( 1779:u 1776:, 1773:) 1770:x 1767:( 1764:u 1761:[ 1737:u 1695:) 1689:, 1686:X 1683:( 1663:y 1657:x 1637:y 1631:x 1611:y 1605:x 1585:) 1579:, 1576:X 1573:( 1550:) 1544:, 1541:X 1538:( 1518:z 1512:x 1492:z 1486:y 1466:y 1460:x 1440:y 1437:= 1434:x 1414:x 1408:y 1388:y 1382:x 1362:x 1356:x 1336:y 1333:= 1330:x 1310:y 1304:x 1284:y 1278:x 1258:) 1252:, 1249:X 1246:( 1226:) 1220:, 1217:X 1214:( 1167:) 1161:, 1158:X 1155:( 1127:O 1107:) 1102:2 1098:n 1094:( 1091:O 1071:n 1042:y 1022:w 1002:z 982:z 976:w 956:) 953:x 950:( 947:u 941:) 938:z 935:( 932:u 912:y 906:z 886:) 883:x 880:( 877:u 871:) 868:z 865:( 862:u 842:z 822:y 816:x 810:w 799:. 783:x 777:y 757:) 754:y 751:( 748:u 742:) 739:w 736:( 733:u 713:z 707:w 687:) 684:y 681:( 678:u 672:) 669:w 666:( 663:u 643:z 637:y 617:x 611:w 538:) 532:, 529:X 526:( 506:1 500:) 497:y 494:( 491:u 485:) 482:x 479:( 476:u 456:y 450:x 406:X 382:u 355:z 335:x 315:z 295:y 275:y 255:x 235:z 215:x 195:y 175:z 155:x 135:z 115:y 95:x

Index


Hasse diagram
order theory
margin of error
incomparable
mathematical psychology
Duncan Luce
1956
strict weak orderings
partial orders
interval orders
axioms
transitive relation
utility values
utility function
real numbers
strict weak ordering
Two mutually incomparable two-point linear orders
linear orders
A three-point linear order, with a fourth incomparable point
partially ordered set
linear orders
axioms
big O notation
uncountable
totally ordered subset
Fishburn (1973)
partial order
#Axiomatics
interval order

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑