Knowledge

Semisimple module

Source 📝

418:
if it is semisimple as a left module over itself. Surprisingly, a left-semisimple ring is also right-semisimple and vice versa. The left/right distinction is therefore unnecessary, and one can speak of semisimple rings without ambiguity.
1074:
is zero. Every ring that is semisimple as a module over itself has zero Jacobson radical, but not every ring with zero Jacobson radical is semisimple as a module over itself. A J-semisimple ring is semisimple if and only if it is an
1029: 1038:. These and many other nice examples are discussed in more detail in several noncommutative ring theory texts, including chapter 3 of Lam's text, in which they are described as nonartinian simple rings. The 497: 630: 571: 1342: 951: 1292: 1233: 1199: 1178: 1266: 444: 1318: 84:
is initially understood via its largest semisimple quotient. The structure of Artinian semisimple rings is well understood by the
1280: 1213: 785: 85: 778: 346: 196: 101: 762: 644: 402: 582: 1360: 232: 228: 224: 126: 544: 1365: 1035: 774: 431: 114: 1099: 423: 350: 77: 73: 1336: 1104: 1066: 1051: 926:. The problem is that the ring may be "too big", that is, not (left/right) Artinian. In fact, if 700: 391: 57: 31: 1042:
for the Weyl algebras is well studied and differs significantly from that of semisimple rings.
1324: 1314: 1288: 1262: 1229: 1195: 1174: 640: 398: 372: 1306: 1221: 1071: 713: 693: 686: 636: 41: 1243: 1284: 1258: 1239: 1217: 1187: 1170: 736: 732: 717: 682: 650:
Semisimple rings are of particular interest to algebraists. For example, if the base ring
685:. From the above properties, a ring is semisimple if and only if it is Artinian and its 161: 89: 1354: 1076: 1039: 858: 721: 678: 380: 130: 81: 45: 938: 729: 725: 383: 204: 69: 1310: 917: 203:
The most basic example of a semisimple module is a module over a field, i.e., a
93: 37: 17: 1250: 1225: 1024:{\displaystyle A=\mathbf {Q} {\langle x,y\rangle }/\langle xy-yx-1\rangle \ ,} 755: 671: 335: 65: 1328: 658:-modules would automatically be semisimple. Furthermore, every simple (left) 314: 1070:) if the intersection of the maximal left ideals is zero, that is, if the 213:
of integers is not a semisimple module over itself, since the submodule
696: 56:
is a type of module that can be understood easily from its parts. A
474: 461: 903:), the row-finite, column-finite, infinite matrices over a field 60:
that is a semisimple module over itself is known as an Artinian
492:{\displaystyle 0\to A\xrightarrow {f} B\xrightarrow {g} C\to 0} 937:
Classic examples of simple, but not semisimple, rings are the
394:, and every semiprimitive ring is isomorphic to such an image. 739:
0; and being isomorphic to a finite direct product of fields.
197:
Semisimple representation § Equivalent characterizations
643:. Since "projective" implies "flat", a semisimple ring is a 401:
of a semisimple module is not only semiprimitive, but also
147:
is semisimple; i.e., a direct sum of irreducible modules.
716:, the four following properties are equivalent: being a 117:
over a (not necessarily commutative) ring is said to be
930:
is a simple ring with a minimal left/right ideal, then
1303:
Representing finite groups: a semisimple introduction
954: 692:
If an Artinian semisimple ring contains a field as a
585: 547: 447: 438:-modules splits. That is, for a short exact sequence 349:
and semisimple if and only if it is Artinian and its
635:
In particular, any module over a semisimple ring is
1301:Sengupta, Ambar (2012). "Induced Representations". 792:is semisimple if and only if it is (isomorphic to) 422:A semisimple ring may be characterized in terms of 1216:, vol. 131 (2nd ed.), Berlin, New York: 1023: 624: 565: 491: 99:For a group-theory analog of the same notion, see 662:-module is isomorphic to a minimal left ideal of 538:is known as a section. From this it follows that 1090:, is J-semisimple, but not artinian semisimple. 922:One should beware that despite the terminology, 895:An example of a semisimple non-unital ring is M 8: 1012: 988: 979: 967: 1341:: CS1 maint: location missing publisher ( 983: 966: 961: 953: 584: 546: 446: 153:is the sum of its irreducible submodules. 1147: 1135: 1116: 1079:, so semisimple rings are often called 625:{\displaystyle B\cong f(A)\oplus s(C).} 390:. The image of this homomorphism is a 194:For the proof of the equivalences, see 88:, which exhibits these rings as finite 1334: 1210:A First Course in Noncommutative Rings 7: 338:of semisimple modules is semisimple. 1123: 1086:For example, the ring of integers, 924:not all simple rings are semisimple 1257:(3rd ed.), Berlin, New York: 1169:(2nd ed.), Berlin, New York: 25: 1034:which is a simple noncommutative 761:is semisimple if and only if the 430:is semisimple if and only if any 64:. Some important rings, such as 27:Direct sum of irreducible modules 962: 566:{\displaystyle B\cong A\oplus C} 140:, the following are equivalent: 1194:(2nd ed.), W. H. Freeman, 1305:. New York. pp. 235–248. 616: 610: 601: 595: 483: 451: 207:. On the other hand, the ring 1: 1281:Graduate Texts in Mathematics 1214:Graduate Texts in Mathematics 870:is a positive integer, and M 414:A ring is said to be (left-) 371:can also be thought of as a 281:is a semisimple module over 258:if, for any field extension 223:Semisimple is stronger than 80:, are semisimple rings. An 40:, especially in the area of 1311:10.1007/978-1-4614-1231-1_8 779:group representation theory 750:is a finite group of order 242:be an algebra over a field 54:completely reducible module 1382: 1165:Bourbaki, Nicolas (2012), 1049: 915: 677:Semisimple rings are both 516:such that the composition 133:(irreducible) submodules. 29: 1226:10.1007/978-1-4419-8616-0 1081:artinian semisimple rings 888:matrices with entries in 777:, an important result in 534:is the identity. The map 233:indecomposable submodules 220:is not a direct summand. 102:Semisimple representation 786:Wedderburn–Artin theorem 654:is semisimple, then all 645:von Neumann regular ring 172:, there is a complement 86:Artin–Wedderburn theorem 1208:Lam, Tsit-Yuen (2001), 576:or in more exact terms 225:completely decomposable 1025: 880:) denotes the ring of 626: 567: 493: 164:: for every submodule 1275:Pierce, R.S. (1982), 1026: 627: 568: 494: 256:absolutely semisimple 246:. Then a left module 1277:Associative Algebras 1083:to avoid confusion. 952: 583: 545: 445: 432:short exact sequence 363:A semisimple module 331:are also semisimple. 123:completely reducible 1150:, p. 133, VIII 1058:Jacobson semisimple 1046:Jacobson semisimple 478: 465: 434:of left (or right) 424:homological algebra 403:von Neumann regular 156:Every submodule of 78:characteristic zero 1105:Semisimple algebra 1052:Semiprimitive ring 1021: 701:semisimple algebra 622: 563: 489: 392:semiprimitive ring 358:Endomorphism rings 347:finitely generated 309:is semisimple and 32:Semisimple algebra 1294:978-1-4757-0165-4 1235:978-0-387-95325-0 1201:978-0-7167-1933-5 1180:978-3-540-35315-7 1056:A ring is called 1017: 775:Maschke's theorem 699:, it is called a 479: 466: 426:: namely, a ring 399:endomorphism ring 379:into the ring of 373:ring homomorphism 50:semisimple module 16:(Redirected from 1373: 1346: 1340: 1332: 1297: 1271: 1246: 1204: 1192:Basic algebra II 1188:Jacobson, Nathan 1183: 1151: 1145: 1139: 1133: 1127: 1121: 1072:Jacobson radical 1030: 1028: 1027: 1022: 1015: 987: 982: 965: 847: 788:, a unital ring 769:does not divide 714:commutative ring 687:Jacobson radical 631: 629: 628: 623: 572: 570: 569: 564: 533: 515: 498: 496: 495: 490: 470: 457: 410:Semisimple rings 330: 295: 280: 219: 212: 189: 42:abstract algebra 21: 1381: 1380: 1376: 1375: 1374: 1372: 1371: 1370: 1351: 1350: 1349: 1333: 1321: 1300: 1295: 1285:Springer-Verlag 1274: 1269: 1259:Springer-Verlag 1249: 1236: 1218:Springer-Verlag 1207: 1202: 1186: 1181: 1171:Springer-Verlag 1164: 1160: 1155: 1154: 1146: 1142: 1134: 1130: 1122: 1118: 1113: 1096: 1054: 1048: 950: 949: 934:is semisimple. 920: 914: 898: 875: 869: 856: 845: 836: 835: 825: 818: 817: 809: 802: 801: 793: 746:is a field and 737:Krull dimension 733:Noetherian ring 718:semisimple ring 709: 581: 580: 543: 542: 517: 503: 443: 442: 412: 360: 322: 302: 291: 282: 276: 267: 214: 208: 177: 125:) if it is the 111: 90:direct products 62:semisimple ring 34: 28: 23: 22: 18:Semisimple ring 15: 12: 11: 5: 1379: 1377: 1369: 1368: 1363: 1353: 1352: 1348: 1347: 1319: 1298: 1293: 1272: 1268:978-0387953854 1267: 1247: 1234: 1205: 1200: 1184: 1179: 1161: 1159: 1156: 1153: 1152: 1140: 1128: 1115: 1114: 1112: 1109: 1108: 1107: 1102: 1095: 1092: 1050:Main article: 1047: 1044: 1032: 1031: 1020: 1014: 1011: 1008: 1005: 1002: 999: 996: 993: 990: 986: 981: 978: 975: 972: 969: 964: 960: 957: 941:, such as the 916:Main article: 913: 910: 909: 908: 896: 893: 871: 865: 852: 841: 831: 827: 823: 815: 811: 807: 799: 795: 782: 763:characteristic 740: 708: 705: 633: 632: 621: 618: 615: 612: 609: 606: 603: 600: 597: 594: 591: 588: 574: 573: 562: 559: 556: 553: 550: 500: 499: 488: 485: 482: 477: 473: 469: 464: 460: 456: 453: 450: 411: 408: 407: 406: 395: 359: 356: 355: 354: 339: 332: 301: 298: 287: 272: 254:is said to be 192: 191: 162:direct summand 154: 148: 110: 107: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1378: 1367: 1364: 1362: 1361:Module theory 1359: 1358: 1356: 1344: 1338: 1330: 1326: 1322: 1320:9781461412311 1316: 1312: 1308: 1304: 1299: 1296: 1290: 1286: 1282: 1278: 1273: 1270: 1264: 1260: 1256: 1252: 1248: 1245: 1241: 1237: 1231: 1227: 1223: 1219: 1215: 1211: 1206: 1203: 1197: 1193: 1189: 1185: 1182: 1176: 1172: 1168: 1167:Algèbre Ch. 8 1163: 1162: 1157: 1149: 1148:Bourbaki 2012 1144: 1141: 1138:, p. 125 1137: 1136:Sengupta 2012 1132: 1129: 1125: 1120: 1117: 1110: 1106: 1103: 1101: 1098: 1097: 1093: 1091: 1089: 1084: 1082: 1078: 1077:artinian ring 1073: 1069: 1068: 1067:semiprimitive 1063: 1059: 1053: 1045: 1043: 1041: 1040:module theory 1037: 1018: 1009: 1006: 1003: 1000: 997: 994: 991: 984: 976: 973: 970: 958: 955: 948: 947: 946: 944: 940: 939:Weyl algebras 935: 933: 929: 925: 919: 911: 906: 902: 894: 891: 887: 883: 879: 874: 868: 864: 860: 859:division ring 855: 851: 848:, where each 844: 840: 834: 830: 822: 814: 806: 798: 791: 787: 783: 780: 776: 772: 768: 764: 760: 757: 753: 749: 745: 741: 738: 734: 731: 727: 723: 719: 715: 711: 710: 706: 704: 702: 698: 695: 690: 688: 684: 680: 675: 673: 669: 665: 661: 657: 653: 648: 646: 642: 638: 619: 613: 607: 604: 598: 592: 589: 586: 579: 578: 577: 560: 557: 554: 551: 548: 541: 540: 539: 537: 532: 528: 524: 520: 514: 510: 506: 502:there exists 486: 480: 475: 471: 467: 462: 458: 454: 448: 441: 440: 439: 437: 433: 429: 425: 420: 417: 409: 404: 400: 396: 393: 389: 385: 384:endomorphisms 382: 381:abelian group 378: 374: 370: 366: 362: 361: 357: 352: 348: 344: 340: 337: 334:An arbitrary 333: 329: 325: 320: 316: 312: 308: 304: 303: 299: 297: 294: 290: 285: 279: 275: 270: 265: 261: 257: 253: 249: 245: 241: 236: 234: 230: 227:, which is a 226: 221: 218: 211: 206: 201: 199: 198: 188: 184: 180: 175: 171: 167: 163: 159: 155: 152: 149: 146: 143: 142: 141: 139: 136:For a module 134: 132: 128: 124: 120: 116: 108: 106: 104: 103: 97: 95: 91: 87: 83: 82:Artinian ring 79: 75: 71: 70:finite groups 67: 63: 59: 55: 51: 47: 46:module theory 43: 39: 33: 19: 1302: 1276: 1254: 1209: 1191: 1166: 1143: 1131: 1126:, p. 62 1119: 1087: 1085: 1080: 1065: 1062:J-semisimple 1061: 1057: 1055: 1033: 942: 936: 931: 927: 923: 921: 912:Simple rings 904: 900: 889: 885: 881: 877: 872: 866: 862: 853: 849: 842: 838: 832: 828: 820: 812: 804: 796: 789: 770: 766: 758: 751: 747: 743: 691: 676: 667: 663: 659: 655: 651: 649: 634: 575: 535: 530: 526: 522: 518: 512: 508: 504: 501: 435: 427: 421: 415: 413: 387: 376: 368: 367:over a ring 364: 342: 327: 323: 318: 310: 306: 292: 288: 283: 277: 273: 268: 263: 259: 255: 251: 247: 243: 239: 237: 222: 216: 209: 205:vector space 202: 195: 193: 186: 182: 178: 173: 169: 165: 157: 150: 144: 137: 135: 122: 118: 112: 100: 98: 94:matrix rings 61: 53: 49: 35: 1366:Ring theory 1251:Lang, Serge 918:Simple ring 826:) × ... × M 754:, then the 666:, that is, 66:group rings 38:mathematics 1355:Categories 1158:References 773:. This is 756:group ring 728:; being a 683:Noetherian 672:Kasch ring 670:is a left 641:projective 416:semisimple 336:direct sum 300:Properties 229:direct sum 176:such that 127:direct sum 119:semisimple 109:Definition 30:See also: 1337:cite book 1329:769756134 1111:Citations 1013:⟩ 1007:− 998:− 989:⟨ 980:⟩ 968:⟨ 945:-algebra 861:and each 689:is zero. 637:injective 605:⊕ 590:≅ 558:⊕ 552:≅ 484:→ 452:→ 341:A module 315:submodule 44:known as 1253:(2002), 1190:(1989), 1124:Lam 2001 1094:See also 722:artinian 720:; being 707:Examples 679:Artinian 525: : 507: : 472:→ 459:→ 353:is zero. 1255:Algebra 1244:1838439 784:By the 730:reduced 726:reduced 697:subring 694:central 351:radical 317:, then 1327:  1317:  1291:  1265:  1242:  1232:  1198:  1177:  1036:domain 1016:  712:For a 131:simple 115:module 74:fields 1100:Socle 857:is a 810:) × M 375:from 313:is a 250:over 160:is a 72:over 1343:link 1325:OCLC 1315:ISBN 1289:ISBN 1263:ISBN 1230:ISBN 1196:ISBN 1175:ISBN 1060:(or 884:-by- 724:and 681:and 639:and 397:The 321:and 238:Let 121:(or 58:ring 48:, a 1307:doi 1222:doi 1064:or 765:of 742:If 735:of 386:of 345:is 305:If 262:of 231:of 168:of 129:of 92:of 76:of 68:of 52:or 36:In 1357:: 1339:}} 1335:{{ 1323:. 1313:. 1287:, 1283:, 1279:, 1261:, 1240:MR 1238:, 1228:, 1220:, 1212:, 1173:, 703:. 674:. 647:. 529:→ 521:∘ 511:→ 326:/ 296:. 266:, 235:. 200:. 185:⊕ 181:= 113:A 105:. 96:. 1345:) 1331:. 1309:: 1224:: 1088:Z 1019:, 1010:1 1004:x 1001:y 995:y 992:x 985:/ 977:y 974:, 971:x 963:Q 959:= 956:A 943:Q 932:R 928:R 907:. 905:K 901:K 899:( 897:∞ 892:. 890:D 886:n 882:n 878:D 876:( 873:n 867:i 863:n 854:i 850:D 846:) 843:r 839:D 837:( 833:r 829:n 824:2 821:D 819:( 816:2 813:n 808:1 805:D 803:( 800:1 797:n 794:M 790:R 781:. 771:n 767:K 759:K 752:n 748:G 744:K 668:R 664:R 660:R 656:R 652:R 620:. 617:) 614:C 611:( 608:s 602:) 599:A 596:( 593:f 587:B 561:C 555:A 549:B 536:s 531:C 527:C 523:s 519:g 513:B 509:C 505:s 487:0 481:C 476:g 468:B 463:f 455:A 449:0 436:R 428:R 405:. 388:M 377:R 369:R 365:M 343:M 328:N 324:M 319:N 311:N 307:M 293:A 289:K 286:⊗ 284:F 278:M 274:K 271:⊗ 269:F 264:K 260:F 252:A 248:M 244:K 240:A 217:Z 215:2 210:Z 190:. 187:P 183:N 179:M 174:P 170:M 166:N 158:M 151:M 145:M 138:M 20:)

Index

Semisimple ring
Semisimple algebra
mathematics
abstract algebra
module theory
ring
group rings
finite groups
fields
characteristic zero
Artinian ring
Artin–Wedderburn theorem
direct products
matrix rings
Semisimple representation
module
direct sum
simple
direct summand
Semisimple representation § Equivalent characterizations
vector space
completely decomposable
direct sum
indecomposable submodules
submodule
direct sum
finitely generated
radical
ring homomorphism
abelian group

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑