Knowledge

Serial module

Source 📝

1531:, which not only forces the right and left ideals to be linearly ordered, but also requires that there be only finitely many ideals in the chains of left and right ideals. Because of this historical precedent, some authors include the Artinian condition or finite composition length condition in their definitions of uniserial modules and rings. 1471:
This result, due to Facchini, has been extended to infinite direct sums of uniserial modules by Příhoda in 2006. This extension involves the so-called quasismall uniserial modules. These modules were defined by Nguyen Viet Dung and Facchini, and their existence was proved by Puninski. The weak form
699:
This section will deal mainly with Noetherian serial rings and their subclass, Artinian serial rings. In general, rings are first broken down into indecomposable rings. Once the structure of these rings are known, the decomposable rings are direct products of the indecomposable ones. Also, for
850:
to the upper triangular matrices over a division ring (note the similarity to the structure of Noetherian serial rings in the preceding paragraph). A complete description of structure in the case of a circle quiver is beyond the scope of this article, but can be found in
555:
module over a serial ring is a direct sum of cyclic uniserial submodules (and hence is serial). If additionally the ring is assumed to be Noetherian, the finitely presented and finitely generated modules coincide, and so all finitely generated modules are serial.
845:
Artinian serial ring structure is classified in cases depending on the quiver structure. It turns out that the quiver structure for a basic, indecomposable, Artinian serial ring is always a circle or a line. In the case of the line quiver, the ring is
780:
In 1975, Kirichenko and Warfield independently and simultaneously published analyses of the structure of Noetherian, non-Artinian serial rings. The results were the same however the methods they used were very different from each other. The study of
1472:
of the Krull-Schmidt Theorem holds not only for uniserial modules, but also for several other classes of modules (biuniform modules, cyclically presented modules over serial rings, kernels of morphisms between indecomposable
430:
Since rings with unity always have a maximal right ideal, a right uniserial ring is necessarily local. As noted before, a finitely generated right ideal can be generated by a single element, and so right uniserial rings are
563:. Being uniserial is preserved for quotients of rings and modules, but never for products. A direct summand of a serial module is not necessarily serial, as was proved by Puninski, but direct summands of 1629:
of the module. In a module with finite composition length, this has the effect of forcing the composition factors to be isomorphic, hence the "homogeneous" adjective. It turns out that a serial ring
1246: 1200: 764: 214: 494: 153: 113: 1619: 175:
if it is a right serial module over itself. Left uniserial and left serial rings are defined in a similar way, and are in general distinct from their right-sided counterparts.
1103: 1077: 988: 962: 793:
defined on serial rings were important tools. The core result states that a right Noetherian, non-Artinian, basic, indecomposable serial ring can be described as a type of
654: 1458: 1383: 1048: 933: 1284: 243: 1304: 548:
is an Artinian principal ideal ring. Nakayama showed that Artinian serial rings have this property on their modules, and that the converse is not true
294:
Following the common ring theoretic convention, if a left/right dependent condition is given without mention of a side (for example, uniserial, serial,
1542:
to refer to an Artinian serial ring. Nakayama showed that all modules over such rings are serial. Artinian serial rings are sometimes called
1527:
was used to mean "Artinian principal ideal ring" even as recently as the 1970s. Köthe's paper also required a uniserial ring to have a unique
1812: 267:
A partial alphabetical list of important contributors to the theory of serial rings includes the mathematicians Keizo Asano, I. S. Cohen,
1523:(literally "one-series") during investigations of rings over which all modules are direct sums of cyclic submodules. For this reason, 1896: 1878: 1857: 1830: 1794: 1535: 302:) then it is assumed the condition holds on both the left and right. Unless otherwise specified, each ring in this article is a 288: 2014:
Příhoda, Pavel (2004), "Weak Krull-Schmidt theorem and direct sum decompositions of serial modules of finite Goldie dimension",
551:
The most general result, perhaps, on the modules of a serial ring is attributed to Drozd and Warfield: it states that every
2078:
Puninski, Gennadi (2001b), "Some model theory over a nearly simple uniserial domain and decompositions of serial modules",
855:). To paraphrase the result as it appears there: A basic Artinian serial ring whose quiver is a circle is a homomorphic 2100:
Puninski, Gennadi (2001c), "Some model theory over an exceptional uniserial ring and decompositions of serial modules",
2036:
Příhoda, Pavel (2006), "A version of the weak Krull-Schmidt theorem for infinite direct sums of uniserial modules",
1205: 1159: 719: 552: 184: 664: 504: 442: 571: 605: 2151: 1956:
Köthe, Gottfried (1935), "Verallgemeinerte Abelsche Gruppen mit hyperkomplexem Operatorenring. (German)",
118: 78: 54: 1564: 1109: 991: 362:
and thus is directly indecomposable. It is also easy to see that every finitely generated submodule of
335: 160: 2156: 1497: 860: 831: 798: 790: 527: 35: 1082: 1056: 967: 941: 856: 671: 597:
is a uniserial ring, and all Artinian principal ideal rings are serial rings, as is illustrated by
331: 628: 351: 2003: 1866: 1528: 1249: 39: 1553:
for a serial module with the additional property that for any two finitely generated submodules
1516: 559:
Being right serial is preserved under direct products of rings and modules, and preserved under
284: 1388: 1313: 1001: 886: 1892: 1874: 1853: 1826: 1808: 1790: 701: 587: 378: 343: 1269: 2129: 2109: 2087: 2065: 2045: 2023: 1993: 1985: 1965: 1943: 1921: 1626: 1543: 1473: 847: 805: 535: 531: 520: 280: 222: 24: 1289: 782: 681: 598: 303: 1493: 688: 594: 593:
Many examples of serial rings can be gleaned from the structure sections above. Every
542: 392: 359: 272: 2092: 2145: 2134: 1509: 609: 583: 560: 410: 307: 295: 276: 179: 2028: 936: 771: 678: 661: 657: 1948: 1784: 2120:
Warfield, Robert B. Jr. (1975), "Serial rings and finitely presented modules.",
1264: 1051: 794: 777:. This is why the results are phrased in terms of indecomposable, basic rings. 250: 50: 2113: 2070: 2049: 1998: 1512:
has "chain" as its namesake, but it is in general not related to chain rings.
786: 623: 396: 299: 1926: 1912:
Eisenbud, David; Griffith, Phillip (1971), "The structure of serial rings",
268: 46: 17: 1823:
Endomorphism rings and direct sum decompositions in some classes of modules
1633:
is a finite direct sum of homogeneously serial right ideals if and only if
1852:, Mathematical Surveys and Monographs, 65. American Mathematical Society, 1850:
Rings and things and a fine array of twentieth century associative algebra
1843:, Grundlehren der Mathematischen Wissenschaften, No. 191. Springer-Verlag 171:
if it is uniserial as a right module over itself, and likewise called a
2007: 1969: 813: 260:
has been used differently from the above definition: for clarification
217: 1989: 1934:
Facchini, Alberto (1996), "Krull-Schmidt fails for serial modules",
1645:
matrix ring over a local serial ring. Such rings are also known as
261: 2056:
Puninski, G. T. (2002), "Artinian and Noetherian serial rings.",
530:(which are a special case of serial rings) are direct sums of 994:
notion can be defined: the modules are said to have the same
523:, which is a stronger condition than being a semilocal ring. 1766: 1670: 1976:
Nakayama, Tadasi (1941), "On Frobeniusean algebras. II.",
700:
semiperfect rings such as serial rings, the basic ring is
1500:. By the same token, uniserial modules have been called 1807:, Research Notes in Mathematics, vol. 44, Pitman, 16:"Chain ring" redirects here. For the bicycle part, see 716:
is known, the theory of Morita equivalence gives that
1567: 1391: 1316: 1292: 1272: 1208: 1162: 1085: 1059: 1004: 970: 944: 889: 722: 631: 567:
direct sums of uniserial modules are serial modules.
445: 245:. This ring is always serial, and is uniserial when 225: 187: 121: 81: 314:
Properties of uniserial and serial rings and modules
515:is a local, uniserial module. This indicates that 1694: 1613: 1452: 1377: 1298: 1278: 1240: 1194: 1097: 1071: 1042: 982: 956: 927: 859:of a "blow-up" of a basic, indecomposable, serial 758: 648: 488: 237: 208: 147: 107: 1496:, which are by definition commutative, uniserial 1484:Right uniserial rings can also be referred to as 417:is assumed to be Artinian or Noetherian, then End 57:. This means simply that for any two submodules 1546:, and they have a well-developed module theory. 534:. Later, Cohen and Kaplansky determined that a 1869:; Gubareni, Nadiya; Kirichenko, V. V. (2004), 1241:{\displaystyle V_{1}\oplus \dots \oplus V_{t}} 1195:{\displaystyle U_{1}\oplus \dots \oplus U_{n}} 838:on and above the diagonal, and entries from J( 1480:Notes on alternate, similar and related terms 1152:non-zero uniserial right modules over a ring 366:can be generated by a single element, and so 8: 1671:Hazewinkel, Gubareni & Kirichenko (2004) 759:{\displaystyle R\cong \mathrm {End} _{B}(P)} 291:, P. Příhoda, G. Puninski, and R. Warfield. 1665:References for each author can be found in 2102:Journal of the London Mathematical Society 1803:Chatters, A. W.; Hajarnavis, C.R. (1980), 1783:Frank W. Anderson; Kent R. Fuller (1992), 1767:Hazewinkel, Gubareni & Kirichenko 2004 526:Köthe showed that the modules of Artinian 209:{\displaystyle \mathbb {Z} /n\mathbb {Z} } 2133: 2091: 2069: 2027: 1997: 1947: 1925: 1666: 1594: 1571: 1566: 1444: 1425: 1409: 1399: 1390: 1369: 1350: 1334: 1324: 1315: 1291: 1271: 1232: 1213: 1207: 1186: 1167: 1161: 1084: 1058: 1034: 1015: 1003: 969: 943: 919: 900: 888: 741: 730: 721: 633: 632: 630: 489:{\displaystyle R=\oplus _{i=1}^{n}e_{i}R} 477: 467: 456: 444: 224: 202: 201: 193: 189: 188: 186: 139: 126: 120: 99: 86: 80: 1742: 1730: 852: 1682: 1658: 1754: 1718: 1706: 812:) is nonzero. This matrix ring is a 586:is trivially uniserial, and likewise 7: 1871:Algebras, rings and modules. Vol. 1. 1519:and Keizo Asano introduced the term 318:It is immediate that in a uniserial 148:{\displaystyle N_{2}\subseteq N_{1}} 108:{\displaystyle N_{1}\subseteq N_{2}} 867:A decomposition uniqueness property 1614:{\displaystyle A/J(A)\cong B/J(B)} 1476:, couniformly presented modules.) 737: 734: 731: 574:holds in Noetherian serial rings. 541:has this property for its modules 178:An easy motivating example is the 14: 1647:primary decomposable serial rings 708:is a serial ring with basic ring 604:More exotic examples include the 439:necessarily factors in the form 1786:Rings and Categories of Modules 1492:. This latter term alludes to 1108:The following weak form of the 704:to the original ring. Thus if 2029:10.1016/j.jalgebra.2004.06.027 1891:, Kluwer Academic Publishers, 1873:, Kluwer Academic Publishers, 1789:, Springer, pp. 347–349, 1695:Chatters & Hajarnavis 1980 1608: 1602: 1585: 1579: 1441: 1435: 1429: 1418: 1406: 1392: 1366: 1360: 1354: 1343: 1331: 1317: 1098:{\displaystyle V\rightarrow U} 1089: 1072:{\displaystyle U\rightarrow V} 1063: 1031: 1024: 1012: 1005: 983:{\displaystyle V\rightarrow U} 974: 957:{\displaystyle U\rightarrow V} 948: 916: 909: 897: 890: 753: 747: 643: 637: 163:of uniserial modules. A ring 1: 2093:10.1016/s0022-4049(00)00140-7 1949:10.1090/s0002-9947-96-01740-0 797:over a Noetherian, uniserial 2135:10.1016/0021-8693(75)90074-5 649:{\displaystyle \mathbb {F} } 1887:Puninski, Gennadi (2001a), 1805:Rings with chain conditions 1551:homogeneously serial module 1534:Expanding on Köthe's work, 770:is some finitely generated 435:rings. A right serial ring 2173: 1821:Facchini, Alberto (1998), 1540:generalized uniserial ring 879:are said to have the same 570:It has been verified that 287:, H. Kuppisch, I. Murase, 15: 2114:10.1112/s0024610701002344 2050:10.1080/00927870500455049 1841:Algebra. II. Ring theory. 1453:{\displaystyle _{e}=_{e}} 1378:{\displaystyle _{m}=_{m}} 1043:{\displaystyle _{e}=_{e}} 928:{\displaystyle _{m}=_{m}} 606:upper triangular matrices 395:which is very close to a 330:and 0 are simultaneously 2058:J. Math. Sci. (New York) 1637:is isomorphic to a full 1255:-modules if and only if 326:, all submodules except 155:. A module is called a 2071:10.1023/A:1014906008243 1936:Trans. Amer. Math. Soc. 1927:10.2140/pjm.1971.36.109 1549:Warfield used the term 1279:{\displaystyle \sigma } 1156:. Then the direct sums 712:, and the structure of 1615: 1454: 1379: 1300: 1280: 1242: 1196: 1099: 1073: 1044: 984: 958: 929: 760: 650: 490: 239: 238:{\displaystyle n>1} 210: 149: 109: 2080:J. Pure Appl. Algebra 1978:Annals of Mathematics 1825:, Birkhäuser Verlag, 1616: 1504:, and serial modules 1490:right valuation rings 1455: 1380: 1301: 1299:{\displaystyle \tau } 1281: 1243: 1197: 1110:Krull-Schmidt theorem 1100: 1074: 1050:, if there exists an 1045: 985: 959: 930: 761: 651: 572:Jacobson's conjecture 528:principal ideal rings 491: 399:in the sense that End 377:It is known that the 306:, and each module is 240: 211: 150: 110: 1848:Faith, Carl (1999), 1839:Faith, Carl (1976), 1565: 1389: 1314: 1290: 1270: 1263:and there exist two 1206: 1160: 1083: 1057: 1002: 968: 942: 935:, if there exists a 887: 861:quasi-Frobenius ring 720: 629: 590:are serial modules. 443: 411:maximal right ideals 279:, Phillip Griffith, 223: 185: 169:right uniserial ring 119: 79: 1867:Hazewinkel, Michiel 1508:. The notion of a 1079:and an epimorphism 964:and a monomorphism 472: 1999:10338.dmlcz/140501 1970:10.1007/bf01201343 1611: 1529:composition series 1450: 1375: 1296: 1276: 1238: 1192: 1095: 1069: 1040: 980: 954: 925: 834:with entries from 830:, and consists of 756: 646: 588:semisimple modules 561:quotients of rings 553:finitely presented 505:idempotent element 486: 452: 358:is also clearly a 283:, V.V Kirichenko, 235: 206: 145: 105: 1980:, Second Series, 1942:(11): 4561–4575, 1814:978-0-273-08446-4 1544:Nakayama algebras 1506:semichain modules 1486:right chain rings 1474:injective modules 702:Morita equivalent 532:cyclic submodules 427:is a local ring. 379:endomorphism ring 344:maximal submodule 173:right serial ring 2164: 2138: 2137: 2116: 2096: 2095: 2074: 2073: 2052: 2044:(4): 1479–1487, 2032: 2031: 2010: 2001: 1972: 1952: 1951: 1930: 1929: 1914:Pacific J. Math. 1901: 1883: 1862: 1844: 1835: 1817: 1799: 1770: 1764: 1758: 1752: 1746: 1740: 1734: 1728: 1722: 1716: 1710: 1704: 1698: 1692: 1686: 1680: 1674: 1667:Puninski (2001a) 1663: 1627:Jacobson radical 1625:(−) denotes the 1620: 1618: 1617: 1612: 1598: 1575: 1536:Tadashi Nakayama 1459: 1457: 1456: 1451: 1449: 1448: 1439: 1438: 1414: 1413: 1404: 1403: 1384: 1382: 1381: 1376: 1374: 1373: 1364: 1363: 1339: 1338: 1329: 1328: 1305: 1303: 1302: 1297: 1285: 1283: 1282: 1277: 1247: 1245: 1244: 1239: 1237: 1236: 1218: 1217: 1201: 1199: 1198: 1193: 1191: 1190: 1172: 1171: 1104: 1102: 1101: 1096: 1078: 1076: 1075: 1070: 1049: 1047: 1046: 1041: 1039: 1038: 1020: 1019: 989: 987: 986: 981: 963: 961: 960: 955: 934: 932: 931: 926: 924: 923: 905: 904: 806:Jacobson radical 765: 763: 762: 757: 746: 745: 740: 655: 653: 652: 647: 636: 599:semisimple rings 536:commutative ring 521:semiperfect ring 495: 493: 492: 487: 482: 481: 471: 466: 409:has at most two 244: 242: 241: 236: 215: 213: 212: 207: 205: 197: 192: 154: 152: 151: 146: 144: 143: 131: 130: 114: 112: 111: 106: 104: 103: 91: 90: 29:uniserial module 25:abstract algebra 2172: 2171: 2167: 2166: 2165: 2163: 2162: 2161: 2142: 2141: 2119: 2099: 2077: 2055: 2035: 2013: 1990:10.2307/1968984 1975: 1955: 1933: 1911: 1908: 1906:Primary Sources 1899: 1886: 1881: 1865: 1860: 1847: 1838: 1833: 1820: 1815: 1802: 1797: 1782: 1779: 1774: 1773: 1765: 1761: 1753: 1749: 1741: 1737: 1729: 1725: 1717: 1713: 1705: 1701: 1693: 1689: 1681: 1677: 1664: 1660: 1655: 1641: ×  1563: 1562: 1517:Gottfried Köthe 1494:valuation rings 1482: 1440: 1421: 1405: 1395: 1387: 1386: 1365: 1346: 1330: 1320: 1312: 1311: 1288: 1287: 1268: 1267: 1228: 1209: 1204: 1203: 1182: 1163: 1158: 1157: 1143: 1134: 1127: 1118: 1081: 1080: 1055: 1054: 1030: 1011: 1000: 999: 966: 965: 940: 939: 915: 896: 885: 884: 869: 821: 729: 718: 717: 697: 627: 626: 617: 580: 512: 501: 473: 441: 440: 422: 404: 386: 316: 304:ring with unity 275:, A. Facchini, 221: 220: 183: 182: 135: 122: 117: 116: 95: 82: 77: 76: 70: 63: 51:totally ordered 21: 12: 11: 5: 2170: 2168: 2160: 2159: 2154: 2144: 2143: 2140: 2139: 2128:(2): 187–222, 2117: 2108:(2): 311–326, 2097: 2086:(3): 319–337, 2075: 2053: 2033: 2011: 1973: 1953: 1931: 1907: 1904: 1903: 1902: 1897: 1884: 1879: 1863: 1858: 1845: 1836: 1831: 1818: 1813: 1800: 1795: 1778: 1775: 1772: 1771: 1759: 1747: 1735: 1723: 1711: 1699: 1687: 1675: 1657: 1656: 1654: 1651: 1610: 1607: 1604: 1601: 1597: 1593: 1590: 1587: 1584: 1581: 1578: 1574: 1570: 1538:used the term 1515:In the 1930s, 1481: 1478: 1447: 1443: 1437: 1434: 1431: 1428: 1424: 1420: 1417: 1412: 1408: 1402: 1398: 1394: 1372: 1368: 1362: 1359: 1356: 1353: 1349: 1345: 1342: 1337: 1333: 1327: 1323: 1319: 1306:of 1, 2, ..., 1295: 1275: 1235: 1231: 1227: 1224: 1221: 1216: 1212: 1189: 1185: 1181: 1178: 1175: 1170: 1166: 1139: 1132: 1123: 1116: 1094: 1091: 1088: 1068: 1065: 1062: 1037: 1033: 1029: 1026: 1023: 1018: 1014: 1010: 1007: 979: 976: 973: 953: 950: 947: 922: 918: 914: 911: 908: 903: 899: 895: 892: 881:monogeny class 868: 865: 817: 785:, Noetherian, 755: 752: 749: 744: 739: 736: 733: 728: 725: 696: 693: 689:Sylow subgroup 665:characteristic 645: 642: 639: 635: 613: 595:valuation ring 579: 576: 543:if and only if 510: 499: 485: 480: 476: 470: 465: 462: 459: 455: 451: 448: 418: 400: 393:semilocal ring 382: 360:uniform module 315: 312: 234: 231: 228: 204: 200: 196: 191: 142: 138: 134: 129: 125: 102: 98: 94: 89: 85: 68: 61: 13: 10: 9: 6: 4: 3: 2: 2169: 2158: 2155: 2153: 2152:Module theory 2150: 2149: 2147: 2136: 2131: 2127: 2123: 2118: 2115: 2111: 2107: 2103: 2098: 2094: 2089: 2085: 2081: 2076: 2072: 2067: 2064:: 2330–2347, 2063: 2059: 2054: 2051: 2047: 2043: 2039: 2038:Comm. Algebra 2034: 2030: 2025: 2021: 2017: 2012: 2009: 2005: 2000: 1995: 1991: 1987: 1983: 1979: 1974: 1971: 1967: 1963: 1959: 1954: 1950: 1945: 1941: 1937: 1932: 1928: 1923: 1919: 1915: 1910: 1909: 1905: 1900: 1898:0-7923-7187-9 1894: 1890: 1885: 1882: 1880:1-4020-2690-0 1876: 1872: 1868: 1864: 1861: 1859:0-8218-0993-8 1855: 1851: 1846: 1842: 1837: 1834: 1832:3-7643-5908-0 1828: 1824: 1819: 1816: 1810: 1806: 1801: 1798: 1796:0-387-97845-3 1792: 1788: 1787: 1781: 1780: 1776: 1768: 1763: 1760: 1756: 1751: 1748: 1744: 1743:Warfield 1975 1739: 1736: 1732: 1731:Nakayama 1941 1727: 1724: 1720: 1715: 1712: 1708: 1703: 1700: 1696: 1691: 1688: 1684: 1679: 1676: 1672: 1668: 1662: 1659: 1652: 1650: 1648: 1644: 1640: 1636: 1632: 1628: 1624: 1605: 1599: 1595: 1591: 1588: 1582: 1576: 1572: 1568: 1560: 1556: 1552: 1547: 1545: 1541: 1537: 1532: 1530: 1526: 1522: 1518: 1513: 1511: 1510:catenary ring 1507: 1503: 1502:chain modules 1499: 1495: 1491: 1487: 1479: 1477: 1475: 1469: 1467: 1464:= 1, 2, ..., 1463: 1445: 1432: 1426: 1422: 1415: 1410: 1400: 1396: 1370: 1357: 1351: 1347: 1340: 1335: 1325: 1321: 1309: 1293: 1273: 1266: 1262: 1258: 1254: 1251: 1233: 1229: 1225: 1222: 1219: 1214: 1210: 1187: 1183: 1179: 1176: 1173: 1168: 1164: 1155: 1151: 1147: 1142: 1138: 1131: 1126: 1122: 1115: 1111: 1106: 1092: 1086: 1066: 1060: 1053: 1035: 1027: 1021: 1016: 1008: 997: 996:epigeny class 993: 977: 971: 951: 945: 938: 920: 912: 906: 901: 893: 882: 878: 874: 866: 864: 862: 858: 854: 853:Puninski 2002 849: 843: 841: 837: 833: 829: 825: 820: 815: 811: 807: 803: 800: 796: 792: 789:, as well as 788: 784: 778: 776: 773: 769: 750: 742: 726: 723: 715: 711: 707: 703: 694: 692: 690: 686: 683: 680: 676: 673: 669: 666: 663: 659: 640: 625: 621: 616: 611: 610:division ring 607: 602: 600: 596: 591: 589: 585: 584:simple module 577: 575: 573: 568: 566: 562: 557: 554: 549: 547: 544: 540: 537: 533: 529: 524: 522: 518: 514: 506: 502: 483: 478: 474: 468: 463: 460: 457: 453: 449: 446: 438: 434: 428: 426: 421: 416: 412: 408: 403: 398: 394: 390: 385: 380: 375: 373: 372:Bézout module 369: 365: 361: 357: 353: 349: 345: 341: 337: 333: 329: 325: 321: 313: 311: 309: 305: 301: 297: 292: 290: 286: 282: 278: 274: 271:, Yu. Drozd, 270: 265: 263: 259: 254: 252: 248: 232: 229: 226: 219: 198: 194: 181: 180:quotient ring 176: 174: 170: 166: 162: 158: 157:serial module 140: 136: 132: 127: 123: 100: 96: 92: 87: 83: 74: 67: 60: 56: 52: 48: 44: 41: 37: 33: 30: 26: 19: 2125: 2121: 2105: 2101: 2083: 2079: 2061: 2057: 2041: 2037: 2019: 2015: 1981: 1977: 1961: 1957: 1939: 1935: 1917: 1913: 1889:Serial rings 1888: 1870: 1849: 1840: 1822: 1804: 1785: 1762: 1750: 1738: 1726: 1714: 1702: 1690: 1683:Příhoda 2004 1678: 1661: 1646: 1642: 1638: 1634: 1630: 1622: 1558: 1554: 1550: 1548: 1539: 1533: 1524: 1520: 1514: 1505: 1501: 1489: 1485: 1483: 1470: 1465: 1461: 1307: 1265:permutations 1260: 1256: 1252: 1153: 1149: 1145: 1140: 1136: 1129: 1124: 1120: 1113: 1107: 995: 937:monomorphism 880: 876: 872: 871:Two modules 870: 844: 839: 835: 827: 823: 818: 809: 801: 779: 774: 772:progenerator 767: 713: 709: 705: 698: 684: 674: 667: 658:finite field 619: 614: 603: 592: 581: 569: 564: 558: 550: 545: 538: 525: 516: 508: 497: 436: 433:right Bézout 432: 429: 424: 419: 414: 406: 401: 388: 383: 376: 371: 367: 363: 355: 352:local module 347: 339: 327: 323: 319: 317: 293: 281:I. Kaplansky 266: 257: 255: 246: 177: 172: 168: 167:is called a 164: 156: 72: 65: 58: 42: 31: 28: 22: 2157:Ring theory 2022:: 332–341, 1984:(1): 1–21, 1920:: 109–121, 1112:holds. Let 1052:epimorphism 826:) for some 795:matrix ring 787:prime rings 496:where each 336:superfluous 289:T. Nakayama 277:A.W. Goldie 273:D. Eisenbud 251:prime power 159:if it is a 2146:Categories 2122:J. Algebra 2016:J. Algebra 1755:Faith 1976 1719:Köthe 1935 1707:Faith 1999 1460:for every 1310:such that 1250:isomorphic 998:, denoted 883:, denoted 848:isomorphic 783:hereditary 624:group ring 622:, and the 519:is also a 397:local ring 300:Noetherian 161:direct sum 47:submodules 1964:: 31–44, 1777:Textbooks 1589:≅ 1525:uniserial 1521:Einreihig 1427:τ 1352:σ 1294:τ 1274:σ 1226:⊕ 1223:⋯ 1220:⊕ 1180:⊕ 1177:⋯ 1174:⊕ 1090:→ 1064:→ 975:→ 949:→ 842:) below. 727:≅ 695:Structure 677:having a 656:for some 454:⊕ 332:essential 269:P.M. Cohn 262:see below 258:uniserial 256:The term 133:⊆ 93:⊆ 75:, either 55:inclusion 18:Chainring 1958:Math. Z. 832:matrices 804:, whose 578:Examples 322:-module 296:Artinian 285:G. Köthe 216:for any 45:, whose 2008:1968984 1498:domains 1135:, ..., 1119:, ..., 814:subring 791:quivers 618:  608:over a 423:  405:  387:  346:, then 218:integer 38:over a 2006:  1895:  1877:  1856:  1829:  1811:  1793:  1621:where 990:. The 799:domain 766:where 682:normal 679:cyclic 565:finite 503:is an 413:. If 342:has a 338:. If 308:unital 36:module 2004:JSTOR 1653:Notes 857:image 672:group 662:prime 391:is a 370:is a 350:is a 249:is a 34:is a 1893:ISBN 1875:ISBN 1854:ISBN 1827:ISBN 1809:ISBN 1791:ISBN 1669:and 1557:and 1385:and 1286:and 1248:are 1202:and 992:dual 875:and 816:of M 670:and 582:Any 507:and 334:and 230:> 64:and 49:are 40:ring 27:, a 2130:doi 2110:doi 2088:doi 2084:163 2066:doi 2062:110 2046:doi 2024:doi 2020:281 1994:hdl 1986:doi 1966:doi 1944:doi 1940:348 1922:doi 1488:or 1144:be 660:of 381:End 354:. 115:or 71:of 53:by 23:In 2148:: 2126:37 2124:, 2106:64 2104:, 2082:, 2060:, 2042:34 2040:, 2018:, 2002:, 1992:, 1982:42 1962:39 1960:, 1938:, 1918:36 1916:, 1649:. 1561:, 1468:. 1259:= 1148:+ 1128:, 1105:. 863:. 808:J( 691:. 601:. 374:. 310:. 298:, 264:. 253:. 2132:: 2112:: 2090:: 2068:: 2048:: 2026:: 1996:: 1988:: 1968:: 1946:: 1924:: 1769:. 1757:. 1745:. 1733:. 1721:. 1709:. 1697:. 1685:. 1673:. 1643:n 1639:n 1635:R 1631:R 1623:J 1609:) 1606:B 1603:( 1600:J 1596:/ 1592:B 1586:) 1583:A 1580:( 1577:J 1573:/ 1569:A 1559:B 1555:A 1466:n 1462:i 1446:e 1442:] 1436:) 1433:i 1430:( 1423:V 1419:[ 1416:= 1411:e 1407:] 1401:i 1397:U 1393:[ 1371:m 1367:] 1361:) 1358:i 1355:( 1348:V 1344:[ 1341:= 1336:m 1332:] 1326:i 1322:U 1318:[ 1308:n 1261:t 1257:n 1253:R 1234:t 1230:V 1215:1 1211:V 1188:n 1184:U 1169:1 1165:U 1154:R 1150:t 1146:n 1141:t 1137:V 1133:1 1130:V 1125:n 1121:U 1117:1 1114:U 1093:U 1087:V 1067:V 1061:U 1036:e 1032:] 1028:V 1025:[ 1022:= 1017:e 1013:] 1009:U 1006:[ 978:U 972:V 952:V 946:U 921:m 917:] 913:V 910:[ 907:= 902:m 898:] 894:U 891:[ 877:V 873:U 851:( 840:V 836:V 828:n 824:V 822:( 819:n 810:V 802:V 775:B 768:P 754:) 751:P 748:( 743:B 738:d 735:n 732:E 724:R 714:B 710:B 706:R 687:- 685:p 675:G 668:p 644:] 641:G 638:[ 634:F 620:D 615:n 612:T 546:R 539:R 517:R 513:R 511:i 509:e 500:i 498:e 484:R 479:i 475:e 469:n 464:1 461:= 458:i 450:= 447:R 437:R 425:M 420:R 415:M 407:M 402:R 389:M 384:R 368:M 364:M 356:M 348:M 340:M 328:M 324:M 320:R 247:n 233:1 227:n 203:Z 199:n 195:/ 190:Z 165:R 141:1 137:N 128:2 124:N 101:2 97:N 88:1 84:N 73:M 69:2 66:N 62:1 59:N 43:R 32:M 20:.

Index

Chainring
abstract algebra
module
ring
submodules
totally ordered
inclusion
direct sum
quotient ring
integer
prime power
see below
P.M. Cohn
D. Eisenbud
A.W. Goldie
I. Kaplansky
G. Köthe
T. Nakayama
Artinian
Noetherian
ring with unity
unital
essential
superfluous
maximal submodule
local module
uniform module
endomorphism ring
semilocal ring
local ring

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.