Knowledge (XXG)

Afshar experiment

Source đź“ť

2965: 1216:
interference pattern is actually very low: "Because this signal (disruption) from the second, middle picture is small (equivalently, it only affects a very small portion of the photons), the contrast V is also very small, and goes to zero for infinitely thin wires." He also argues that the experiment can be understood with classical electrodynamics and has "nothing to do with quantum mechanics".
1004: 1012: 996: 1255:
which-path information when both pinholes are open. But this experiment is still subject to Motl's objection that the 2 beams have a sub-microscopic diffraction pattern created by the convergence of the beams before the slits; the result would have been the measuring of which slit was open before the wires were ever reached.
1047:. A grid of thin wires is placed just before the lens (Fig. 2) so that the wires lie in the dark fringes of an interference pattern which is produced by the dual pinhole setup. If one of the pinholes is blocked, the interference pattern will no longer be formed, and the grid of wires causes appreciable 1184:
Reitzner performed numerical simulations, published in a preprint, of Afshar's arrangement and obtained the same results that Afshar obtained experimentally. From this he argues that the photons exhibit wave behavior, including high fringe visibility but no which-way information, up to the point they
1051:
in the light and blocks some of it from detection by the corresponding photon detector. However, when both pinholes are open, the effect of the wires is negligible, comparable to the case in which there are no wires placed in front of the lens (Fig. 3), because the wires lie in the dark fringes of an
1241:
Argues that Afshar's claim to violate complementarity is a simple logical inconsistency: by setting up the experiment so that photons are spatially coherent over the two pinholes, the pinholes are necessarily indistinguishable by those photons. “In other words, Afshar et al. claim in one breath to
1199:
Unruh, like Kastner, proceeds by setting up an arrangement that he feels is equivalent but simpler. The size of the effect is larger so that it is easier to see the flaw in the logic. In Unruh's view that flaw is, in the case that an obstacle exists at the position of the dark fringes, "drawing the
1035:
refocuses the light so that the image of each pinhole falls on separate photon-detectors (Fig. 1). With pinhole 2 closed, a photon that goes through pinhole 1 impinges only on photon detector 1. Similarly, with pinhole 1 closed, a photon that goes through pinhole 2 impinges only on photon detector
1228:
Steuernagel makes a quantitative analysis of the various transmitted, refracted, and reflected modes in a setup that differs only slightly from Afshar's. He concludes that the Englert-Greenberger duality relation is strictly satisfied, and in particular that the fringe visibility for thin wires is
1101:
A number of scientists have published criticisms of Afshar's interpretation of his results, some of which reject the claims of a violation of complementarity, while differing in the way they explain how complementarity copes with the experiment. For example, one paper contests Afshar's core claim,
1125:
and applying Afshar's logic to it to expose its flaw. She proposes that Afshar's experiment is equivalent to preparing an electron in a spin-up state and then measuring its sideways spin. This does not imply that one has found out the up-down spin state and the sideways spin state of any electron
1060:
Afshar's conclusion is that, when both pinholes are open, the light exhibits wave-like behavior when going past the wires, since the light goes through the spaces between the wires but avoids the wires themselves, but also exhibits particle-like behavior after going through the lens, with photons
1254:
Afshar's coauthors Eduardo Flores and Ernst Knoesel criticize Kastner's setup and propose an alternative experimental setup. By removing the lens of Afshar and causing two beams to overlap at a small angle, Flores et al. aimed to show that conservation of momentum guarantee the preservation of
1106:
is violated. The researchers re-ran the experiment, using a different method for measuring the visibility of the interference pattern than that used by Afshar, and found no violation of complementarity, concluding "This result demonstrates that the experiment can be perfectly explained by the
1215:
Motl's criticism, published in his blog, is based on an analysis of Afshar's actual setup, instead of proposing a different experiment like Unruh and Kastner. In contrast to Unruh and Kastner, he believes that which-way information always exists, but argues that the measured contrast of the
1200:
inference that IF the particle was detected in detector 1, THEN it must have come from path 1. Similarly, IF it were detected in detector 2, then it came from path 2." In other words, he accepts the existence of an interference pattern but rejects the existence of which-way information.
1036:
2. With both pinholes open, Afshar claims, citing Wheeler in support, that pinhole 1 remains correlated to photon Detector 1 (and vice versa for pinhole 2 to photon Detector 2), and therefore that which-way information is preserved when both pinholes are open.
1185:
hit the detector: "In other words the two-peaked distribution is an interference pattern and the photon behaves as a wave and exhibits no particle properties until it hits the plate. As a result a which-way information can never be obtained in this way."
974:
feature article generated many responses, including various letters to the editor that appeared in the August 7 and August 14, 2004 issues, arguing against the conclusions being drawn by Afshar. The results were published in a
114: 1229:
small. Like some of the other critics, he emphasizes that inferring an interference pattern is not the same as measuring one: "Finally, the greatest weakness in the analysis given by Afshar is the
1242:
have set up the experiment so that pinholes A and B are inherently indistinguishable by certain photons , and in another breath to have distinguished pinholes A and B with those same photons.”
960:. The results were first presented at a seminar at Harvard in March 2004. The experiment was featured as the cover story in the July 24, 2004 edition of the popular science magazine 2092:
E. Flores and E. Knoesel (2007). "Why Kastner analysis does not apply to a modified Afshar experiment". In Roychoudhuri, Chandrasekhar; Kracklauer, Al F; Creath, Katherine (eds.).
1653: 1356: 1162: 2209: 976: 2762: 1272: 936:
The experiment has been analyzed and repeated by a number of investigators. There are several theories that explain the effect without violating complementarity.
2410: 380: 881: 2933: 1103: 952:
Shahriar Afshar's experimental work was done initially at the Institute for Radiation-Induced Mass Studies (IRIMS) in Boston and later reproduced at
2945: 2259: 588: 132: 1452:
S. S. Afshar (2005). Roychoudhuri, Chandrasekhar; Creath, Katherine (eds.). "Violation of the principle of complementarity, and its implications".
44: 925:
takes through the apparatus, while simultaneously allowing interference between the paths to be observed. According to Afshar, this violates the
2629: 2202: 1285: 361: 2563: 544: 2176: 2486: 1126:
simultaneously. Applied to Afshar's experiment: "Nevertheless, even with the grid removed, since the photon is prepared in a superposition
1115: 467: 1300: 1110:
Below is a synopsis of papers by several critics highlighting their main arguments and the disagreements they have amongst themselves:
1085: 2232: 2195: 127: 1364: 2342: 216: 2609: 2604: 323: 303: 2900: 2327: 2139: 874: 171: 2584: 293: 2999: 2912: 1194: 563: 1015:
Fig.3 Experiment with wire grid and both pinholes open. The wires lie in the dark fringes and thus block very little light
2890: 2667: 2589: 2372: 2242: 1290: 603: 341: 241: 2624: 2134: 1767:
V. Jacques; et al. (2008). "Illustration of quantum complementarity using single photons interfering on a grating".
356: 2994: 2989: 2558: 2553: 2524: 2237: 1917: 1264: 1062: 941: 539: 534: 505: 137: 2599: 318: 308: 2692: 1222: 573: 2509: 490: 2968: 2730: 2538: 1509: 1170: 867: 519: 2461: 2392: 1878: 902:
in quantum mechanics, devised and carried out by Shahriar Afshar in 2004. In the experiment, light generated by a
438: 2752: 2619: 2543: 2504: 2435: 2285: 1268: 926: 524: 485: 413: 336: 196: 1065:
to the extent that it shows both wave and particle characteristics in the same experiment for the same photons.
2819: 2799: 2789: 2779: 2735: 2310: 1564: 967: 608: 2928: 2514: 2476: 2440: 777: 495: 453: 403: 351: 117: 2839: 2614: 2594: 2519: 2430: 2387: 2039: 1769: 1711: 1396: 1020: 980: 911: 899: 782: 500: 408: 328: 298: 261: 2864: 2377: 2357: 251: 236: 2280: 2023: 163: 2895: 2824: 2769: 2499: 2322: 2058: 1968: 1788: 1730: 1672: 1573: 1528: 1473: 1415: 1325: 1040: 915: 812: 568: 480: 206: 1143: 2880: 2849: 2794: 2774: 2682: 2639: 2494: 2420: 2347: 2337: 2249: 1454: 957: 667: 475: 393: 221: 201: 153: 2809: 2707: 2415: 2362: 2254: 2115: 2097: 2074: 2048: 1987: 1804: 1778: 1746: 1720: 1688: 1662: 1589: 1544: 1518: 1489: 1463: 1431: 1405: 1209: 1122: 953: 388: 313: 246: 158: 2940: 2166: 1394:
S. S. Afshar; E. Flores; K. F. McDonald; E. Knoesel (2007). "Paradox in wave-particle duality".
2950: 2859: 2829: 2757: 2720: 2715: 2697: 2662: 2652: 2367: 2332: 2315: 2218: 2172: 1630: 930: 822: 797: 737: 732: 632: 598: 578: 176: 35: 914:. In addition, a grid of thin wires is placed just before the lens on the dark fringes of an 2677: 2672: 2529: 2425: 2107: 2066: 1835: 1796: 1738: 1680: 1620: 1581: 1536: 1481: 1423: 1295: 827: 817: 807: 707: 687: 672: 642: 510: 398: 1892: 1709:
O. Steuernagel (2007). "Afshar's experiment does not show a violation of complementarity".
2907: 2834: 2814: 2784: 2747: 2742: 2647: 2471: 852: 722: 702: 448: 288: 1800: 2062: 1972: 1792: 1734: 1676: 1577: 1532: 1477: 1419: 1140:
a 'which-way' measurement (the term traditionally attached to the slit-basis observable
1052:
interference pattern. The effect is not dependent on the light intensity (photon flux).
979:
conference proceedings in 2005. A follow-up paper was published in a scientific journal
2885: 2854: 2844: 2466: 2456: 2290: 1260: 1061:
going to a correlated photo-detector. Afshar argues that this behavior contradicts the
1003: 937: 787: 747: 727: 697: 677: 627: 593: 443: 433: 226: 2983: 2804: 2657: 2548: 2382: 2352: 2305: 2119: 2078: 1922: 1897: 1692: 1593: 1548: 1493: 1330: 1205: 1032: 962: 907: 847: 842: 772: 742: 712: 583: 529: 256: 231: 1960: 1750: 1562:
J. Zheng; C. Zheng (2011). "Variant simulation system using quaternion structures".
2687: 2300: 2295: 1808: 1435: 1011: 837: 832: 767: 752: 717: 211: 1121:
Kastner's criticism, published in a peer-reviewed paper, proceeds by setting up a
1651:
R. Kastner (2005). "Why the Afshar experiment does not refute complementarity?".
1585: 2725: 1684: 1190: 1169:
Daniel Reitzner, Research Center for Quantum Information, Institute of Physics,
1048: 995: 802: 757: 692: 647: 2070: 1507:
S. S. Afshar (2006). "Violation of Bohr's complementarity: One slit or both?".
17: 2144: 2008: 1742: 1427: 1174: 792: 762: 682: 657: 652: 637: 1634: 109:{\displaystyle i\hbar {\frac {d}{dt}}|\Psi \rangle ={\hat {H}}|\Psi \rangle } 2579: 2275: 283: 1357:"Waving Copenhagen Good-bye: Were the founders of Quantum Mechanics wrong?" 1164:), because it cannot tell us 'which slit the photon actually went through.' 1840: 1823: 1625: 1608: 2102: 1992: 1725: 1667: 1523: 1468: 1410: 1178: 662: 921:
Afshar claimed that the experiment gives information about which path a
2111: 1540: 1485: 1043:
one can observe that there are regions that the photons avoid, called
922: 2187: 1263:
adopts Afshar's interpretation of the experiment to support his own
2053: 1007:
Fig.2 Experiment with obstructing wire grid and one pinhole covered
1783: 1114:
Ruth Kastner, Committee on the History and Philosophy of Science,
1024: 994: 906:
passes through two closely spaced pinholes, and is refocused by a
903: 2168:
The Quantum Handshake: Entanglement, Nonlocality and Transactions
2191: 1855: 1221:
Ole Steuernagel, School of Physics, Astronomy and Mathematics,
2037:
Andrew Knight (2020). "No Paradox in Wave-Particle Duality".
1149: 1068:
Afshar asserts that there is simultaneously high visibility
1238:
Andrew Knight, Department of Physics, New York University
1986:
D. Reitzner (2007). "Comment on Afshar's experiments".
1856:"Institute for Radiation-Induced Mass Studies (IRIMS)" 910:
so that the image of each pinhole falls on a separate
1146: 47: 1019:
The experiment uses a setup similar to that for the
2921: 2873: 2706: 2638: 2572: 2485: 2449: 2403: 2268: 2225: 1654:
Studies in History and Philosophy of Modern Physics
1076:(corresponding to which-path information), so that 1072:of interference as well as high distinguishability 1156: 108: 1704: 1702: 1107:Copenhagen interpretation of quantum mechanics." 1031:pinholes (not slits). After the dual pinholes, a 944:of quantum mechanics over other interpretations. 940:claims the experiment provides evidence for the 1824:"Quantum histories and quantum complementarity" 1609:"Quantum Histories and Quantum Complementarity" 1762: 1760: 1233:that an interference pattern must be present." 999:Fig.1 Experiment without obstructing wire grid 2203: 1965:APS Meeting, March 13–17, Baltimore, Maryland 1646: 1644: 875: 8: 1447: 1445: 1389: 1387: 1385: 1383: 1381: 1350: 1348: 1023:. In Afshar's variant, light generated by a 966:endorsed by professor John G. Cramer of the 103: 77: 1961:"The Afshar Experiment and Complementarity" 1319: 1317: 1315: 2210: 2196: 2188: 1946:Mathematical foundations of quantum theory 1458:. The Nature of Light: What Is a Photon?. 1039:When the light acts as a wave, because of 882: 868: 26: 2101: 2052: 1991: 1839: 1782: 1724: 1666: 1624: 1522: 1467: 1409: 1208:, Former Assistant Professor of Physics, 1148: 1147: 1145: 1130:, the measurement at the final screen at 95: 84: 83: 69: 54: 46: 1010: 1002: 1311: 51: 34: 2094:The Nature of Light: What Are Photons? 2171:. Springer Verlag. pp. 111–112. 7: 1116:University of Maryland, College Park 1104:Englert–Greenberger duality relation 2096:. Vol. 6664. pp. 66640O. 1286:Wheeler's delayed choice experiment 2009:"Shahriar Afshar – Quantum Rebel?" 1918:"Quantum rebel wins over doubters" 1027:passes through two closely spaced 414:Sum-over-histories (path integral) 100: 74: 30:Part of a series of articles about 25: 2964: 2963: 983:in January 2007 and featured in 2140:Analog Science Fiction and Fact 2024:"Violation of complementarity?" 1301:Wheeler–Feynman absorber theory 2913:Relativistic quantum mechanics 1801:10.1088/1367-2630/10/12/123009 1607:Georgiev, Danko (2012-01-26). 1267:of quantum mechanics over the 1195:University of British Columbia 1157:{\displaystyle {\mathcal {O}}} 1086:wave-particle duality relation 1055: 564:Relativistic quantum mechanics 96: 89: 70: 1: 2891:Quantum statistical mechanics 2668:Quantum differential calculus 2590:Delayed-choice quantum eraser 2373:Symmetry in quantum mechanics 1291:Delayed choice quantum eraser 604:Quantum statistical mechanics 1586:10.1080/09500340.2011.636152 1361:Harvard Seminar Announcement 1265:transactional interpretation 1063:principle of complementarity 942:transactional interpretation 2693:Quantum stochastic calculus 2683:Quantum measurement problem 2605:Mach–Zehnder interferometer 2135:"A farewell to Copenhagen?" 1685:10.1016/j.shpsb.2005.04.006 1223:University of Hertfordshire 574:Quantum information science 3016: 2071:10.1007/s10701-020-00379-9 1948:. Elsevier. pp. 9–48. 1510:AIP Conference Proceedings 1273:many-worlds interpretation 1193:, Professor of Physics at 1171:Slovak Academy of Sciences 956:, while he was there as a 2959: 2753:Quantum complexity theory 2731:Quantum cellular automata 2436:Path integral formulation 1879:Afshar's Quantum Bomshell 1828:ISRN Mathematical Physics 1743:10.1007/s10701-007-9153-5 1613:ISRN Mathematical Physics 1428:10.1007/s10701-006-9102-8 1269:Copenhagen interpretation 927:complementarity principle 2820:Quantum machine learning 2800:Quantum key distribution 2790:Quantum image processing 2780:Quantum error correction 2630:Wheeler's delayed choice 1565:Journal of Modern Optics 968:University of Washington 609:Quantum machine learning 362:Wheeler's delayed-choice 2736:Quantum finite automata 1933:(subscription required) 1822:D. D. Georgiev (2012). 1341:(subscription required) 1056:Afshar's interpretation 319:Leggett–Garg inequality 2840:Quantum neural network 2040:Foundations of Physics 1959:R. E. Kastner (2006). 1944:Wheeler, John (1978). 1916:Chown, Marcus (2007). 1770:New Journal of Physics 1712:Foundations of Physics 1397:Foundations of Physics 1324:Chown, Marcus (2004). 1158: 1021:double-slit experiment 1016: 1008: 1000: 981:Foundations of Physics 912:single-photon detector 900:double-slit experiment 898:is a variation of the 110: 3000:Philosophy of physics 2865:Quantum teleportation 2393:Wave–particle duality 2133:J. G. Cramer (2005). 1893:"Bohr is still wrong" 1891:J. G. Cramer (2004). 1355:S. S. Afshar (2004). 1159: 1014: 1006: 998: 304:Elitzur–Vaidman 294:Davisson–Germer 111: 2896:Quantum field theory 2825:Quantum metamaterial 2770:Quantum cryptography 2500:Consistent histories 1144: 1041:quantum interference 916:interference pattern 569:Quantum field theory 481:Consistent histories 118:Schrödinger equation 45: 2995:Physics experiments 2990:Quantum measurement 2881:Quantum fluctuation 2850:Quantum programming 2810:Quantum logic gates 2795:Quantum information 2775:Quantum electronics 2250:Classical mechanics 2165:Cramer, JG (2015). 2063:2020FoPh...50.1723K 1973:2006APS..MARD40011K 1841:10.5402/2012/327278 1793:2008NJPh...10l3009J 1735:2007FoPh...37.1370S 1677:2005SHPMP..36..649K 1626:10.5402/2012/327278 1578:2012JMOp...59..484Z 1533:2006AIPC..810..294A 1478:2005SPIE.5866..229A 1455:Proceedings of SPIE 1420:2007FoPh...37..295A 958:visiting researcher 357:Stern–Gerlach 154:Classical mechanics 2934:in popular culture 2716:Quantum algorithms 2564:Von Neumann–Wigner 2544:Objective collapse 2255:Old quantum theory 1210:Harvard University 1154: 1123:thought experiment 1097:Specific criticism 1017: 1009: 1001: 991:Experimental setup 987:in February 2007. 954:Harvard University 545:Von Neumann–Wigner 525:Objective-collapse 324:Mach–Zehnder 314:Leggett inequality 309:Franck–Hertz 159:Old quantum theory 106: 2977: 2976: 2951:Quantum mysticism 2929:Schrödinger's cat 2860:Quantum simulator 2830:Quantum metrology 2758:Quantum computing 2721:Quantum amplifier 2698:Quantum spacetime 2663:Quantum cosmology 2653:Quantum chemistry 2368:Scattering theory 2316:Zero-point energy 2311:Degenerate levels 2219:Quantum mechanics 2178:978-3-319-24642-0 2112:10.1117/12.730965 2047:(11): 1723–1727. 2007:W. Unruh (2004). 1541:10.1063/1.2158731 1486:10.1117/12.638774 931:quantum mechanics 896:Afshar experiment 892: 891: 599:Scattering theory 579:Quantum computing 352:Schrödinger's cat 284:Bell's inequality 92: 67: 36:Quantum mechanics 16:(Redirected from 3007: 2967: 2966: 2678:Quantum geometry 2673:Quantum dynamics 2530:Superdeterminism 2426:Matrix mechanics 2281:Bra–ket notation 2212: 2205: 2198: 2189: 2183: 2182: 2162: 2156: 2155: 2153: 2152: 2143:. Archived from 2130: 2124: 2123: 2105: 2103:quant-ph/0702210 2089: 2083: 2082: 2056: 2034: 2028: 2027: 2022:L. Motl (2004). 2019: 2013: 2012: 2004: 1998: 1997: 1995: 1993:quant-ph/0701152 1983: 1977: 1976: 1956: 1950: 1949: 1941: 1935: 1934: 1931: 1913: 1907: 1906: 1888: 1882: 1876: 1870: 1869: 1867: 1866: 1852: 1846: 1845: 1843: 1819: 1813: 1812: 1786: 1764: 1755: 1754: 1728: 1726:quant-ph/0512123 1706: 1697: 1696: 1670: 1668:quant-ph/0502021 1648: 1639: 1638: 1628: 1604: 1598: 1597: 1559: 1553: 1552: 1526: 1524:quant-ph/0701039 1504: 1498: 1497: 1471: 1469:quant-ph/0701027 1449: 1440: 1439: 1413: 1411:quant-ph/0702188 1391: 1376: 1375: 1373: 1372: 1363:. Archived from 1352: 1343: 1342: 1339: 1321: 1296:Weak measurement 1249:Specific support 1163: 1161: 1160: 1155: 1153: 1152: 1084:> 1, and the 884: 877: 870: 511:Superdeterminism 164:Bra–ket notation 115: 113: 112: 107: 99: 94: 93: 85: 73: 68: 66: 55: 27: 21: 3015: 3014: 3010: 3009: 3008: 3006: 3005: 3004: 2980: 2979: 2978: 2973: 2955: 2941:Wigner's friend 2917: 2908:Quantum gravity 2869: 2855:Quantum sensing 2835:Quantum network 2815:Quantum machine 2785:Quantum imaging 2748:Quantum circuit 2743:Quantum channel 2702: 2648:Quantum biology 2634: 2610:Elitzur–Vaidman 2585:Davisson–Germer 2568: 2520:Hidden-variable 2510:de Broglie–Bohm 2487:Interpretations 2481: 2445: 2399: 2286:Complementarity 2264: 2221: 2216: 2186: 2179: 2164: 2163: 2159: 2150: 2148: 2132: 2131: 2127: 2091: 2090: 2086: 2036: 2035: 2031: 2021: 2020: 2016: 2006: 2005: 2001: 1985: 1984: 1980: 1958: 1957: 1953: 1943: 1942: 1938: 1932: 1915: 1914: 1910: 1890: 1889: 1885: 1877: 1873: 1864: 1862: 1854: 1853: 1849: 1821: 1820: 1816: 1766: 1765: 1758: 1708: 1707: 1700: 1650: 1649: 1642: 1606: 1605: 1601: 1561: 1560: 1556: 1506: 1505: 1501: 1451: 1450: 1443: 1393: 1392: 1379: 1370: 1368: 1354: 1353: 1346: 1340: 1326:"Quantum Rebel" 1323: 1322: 1313: 1309: 1282: 1251: 1142: 1141: 1138:never really is 1136: 1099: 1094: 1058: 993: 950: 888: 859: 858: 857: 622: 614: 613: 559: 558:Advanced topics 551: 550: 549: 501:Hidden-variable 491:de Broglie–Bohm 470: 468:Interpretations 460: 459: 458: 428: 420: 419: 418: 376: 368: 367: 366: 333: 289:CHSH inequality 278: 270: 269: 268: 197:Complementarity 191: 183: 182: 181: 149: 120: 59: 43: 42: 23: 22: 18:Shahriar Afshar 15: 12: 11: 5: 3013: 3011: 3003: 3002: 2997: 2992: 2982: 2981: 2975: 2974: 2972: 2971: 2960: 2957: 2956: 2954: 2953: 2948: 2943: 2938: 2937: 2936: 2925: 2923: 2919: 2918: 2916: 2915: 2910: 2905: 2904: 2903: 2893: 2888: 2886:Casimir effect 2883: 2877: 2875: 2871: 2870: 2868: 2867: 2862: 2857: 2852: 2847: 2845:Quantum optics 2842: 2837: 2832: 2827: 2822: 2817: 2812: 2807: 2802: 2797: 2792: 2787: 2782: 2777: 2772: 2767: 2766: 2765: 2755: 2750: 2745: 2740: 2739: 2738: 2728: 2723: 2718: 2712: 2710: 2704: 2703: 2701: 2700: 2695: 2690: 2685: 2680: 2675: 2670: 2665: 2660: 2655: 2650: 2644: 2642: 2636: 2635: 2633: 2632: 2627: 2622: 2620:Quantum eraser 2617: 2612: 2607: 2602: 2597: 2592: 2587: 2582: 2576: 2574: 2570: 2569: 2567: 2566: 2561: 2556: 2551: 2546: 2541: 2536: 2535: 2534: 2533: 2532: 2517: 2512: 2507: 2502: 2497: 2491: 2489: 2483: 2482: 2480: 2479: 2474: 2469: 2464: 2459: 2453: 2451: 2447: 2446: 2444: 2443: 2438: 2433: 2428: 2423: 2418: 2413: 2407: 2405: 2401: 2400: 2398: 2397: 2396: 2395: 2390: 2380: 2375: 2370: 2365: 2360: 2355: 2350: 2345: 2340: 2335: 2330: 2325: 2320: 2319: 2318: 2313: 2308: 2303: 2293: 2291:Density matrix 2288: 2283: 2278: 2272: 2270: 2266: 2265: 2263: 2262: 2257: 2252: 2247: 2246: 2245: 2235: 2229: 2227: 2223: 2222: 2217: 2215: 2214: 2207: 2200: 2192: 2185: 2184: 2177: 2157: 2125: 2084: 2029: 2014: 1999: 1978: 1951: 1936: 1908: 1883: 1881:Science Friday 1871: 1847: 1814: 1777:(12): 123009. 1756: 1698: 1661:(4): 649–658. 1640: 1599: 1554: 1499: 1441: 1404:(2): 295–305. 1377: 1344: 1338:(2457): 30–35. 1310: 1308: 1305: 1304: 1303: 1298: 1293: 1288: 1281: 1278: 1277: 1276: 1261:John G. Cramer 1257: 1256: 1250: 1247: 1246: 1245: 1244: 1243: 1236: 1235: 1234: 1219: 1218: 1217: 1203: 1202: 1201: 1188: 1187: 1186: 1167: 1166: 1165: 1151: 1134: 1098: 1095: 1093: 1090: 1057: 1054: 992: 989: 949: 946: 938:John G. Cramer 890: 889: 887: 886: 879: 872: 864: 861: 860: 856: 855: 850: 845: 840: 835: 830: 825: 820: 815: 810: 805: 800: 795: 790: 785: 780: 775: 770: 765: 760: 755: 750: 745: 740: 735: 730: 725: 720: 715: 710: 705: 700: 695: 690: 685: 680: 675: 670: 665: 660: 655: 650: 645: 640: 635: 630: 624: 623: 620: 619: 616: 615: 612: 611: 606: 601: 596: 594:Density matrix 591: 586: 581: 576: 571: 566: 560: 557: 556: 553: 552: 548: 547: 542: 537: 532: 527: 522: 517: 516: 515: 514: 513: 498: 493: 488: 483: 478: 472: 471: 466: 465: 462: 461: 457: 456: 451: 446: 441: 436: 430: 429: 426: 425: 422: 421: 417: 416: 411: 406: 401: 396: 391: 385: 384: 383: 377: 374: 373: 370: 369: 365: 364: 359: 354: 348: 347: 346: 345: 344: 342:Delayed-choice 337:Quantum eraser 332: 331: 326: 321: 316: 311: 306: 301: 296: 291: 286: 280: 279: 276: 275: 272: 271: 267: 266: 265: 264: 254: 249: 244: 239: 234: 229: 227:Quantum number 224: 219: 214: 209: 204: 199: 193: 192: 189: 188: 185: 184: 180: 179: 174: 168: 167: 166: 161: 156: 150: 147: 146: 143: 142: 141: 140: 135: 130: 122: 121: 116: 105: 102: 98: 91: 88: 82: 79: 76: 72: 65: 62: 58: 53: 50: 39: 38: 32: 31: 24: 14: 13: 10: 9: 6: 4: 3: 2: 3012: 3001: 2998: 2996: 2993: 2991: 2988: 2987: 2985: 2970: 2962: 2961: 2958: 2952: 2949: 2947: 2944: 2942: 2939: 2935: 2932: 2931: 2930: 2927: 2926: 2924: 2920: 2914: 2911: 2909: 2906: 2902: 2899: 2898: 2897: 2894: 2892: 2889: 2887: 2884: 2882: 2879: 2878: 2876: 2872: 2866: 2863: 2861: 2858: 2856: 2853: 2851: 2848: 2846: 2843: 2841: 2838: 2836: 2833: 2831: 2828: 2826: 2823: 2821: 2818: 2816: 2813: 2811: 2808: 2806: 2805:Quantum logic 2803: 2801: 2798: 2796: 2793: 2791: 2788: 2786: 2783: 2781: 2778: 2776: 2773: 2771: 2768: 2764: 2761: 2760: 2759: 2756: 2754: 2751: 2749: 2746: 2744: 2741: 2737: 2734: 2733: 2732: 2729: 2727: 2724: 2722: 2719: 2717: 2714: 2713: 2711: 2709: 2705: 2699: 2696: 2694: 2691: 2689: 2686: 2684: 2681: 2679: 2676: 2674: 2671: 2669: 2666: 2664: 2661: 2659: 2658:Quantum chaos 2656: 2654: 2651: 2649: 2646: 2645: 2643: 2641: 2637: 2631: 2628: 2626: 2625:Stern–Gerlach 2623: 2621: 2618: 2616: 2613: 2611: 2608: 2606: 2603: 2601: 2598: 2596: 2593: 2591: 2588: 2586: 2583: 2581: 2578: 2577: 2575: 2571: 2565: 2562: 2560: 2559:Transactional 2557: 2555: 2552: 2550: 2549:Quantum logic 2547: 2545: 2542: 2540: 2537: 2531: 2528: 2527: 2526: 2523: 2522: 2521: 2518: 2516: 2513: 2511: 2508: 2506: 2503: 2501: 2498: 2496: 2493: 2492: 2490: 2488: 2484: 2478: 2475: 2473: 2470: 2468: 2465: 2463: 2460: 2458: 2455: 2454: 2452: 2448: 2442: 2439: 2437: 2434: 2432: 2429: 2427: 2424: 2422: 2419: 2417: 2414: 2412: 2409: 2408: 2406: 2402: 2394: 2391: 2389: 2386: 2385: 2384: 2383:Wave function 2381: 2379: 2376: 2374: 2371: 2369: 2366: 2364: 2361: 2359: 2358:Superposition 2356: 2354: 2353:Quantum state 2351: 2349: 2346: 2344: 2341: 2339: 2336: 2334: 2331: 2329: 2326: 2324: 2321: 2317: 2314: 2312: 2309: 2307: 2306:Excited state 2304: 2302: 2299: 2298: 2297: 2294: 2292: 2289: 2287: 2284: 2282: 2279: 2277: 2274: 2273: 2271: 2267: 2261: 2258: 2256: 2253: 2251: 2248: 2244: 2241: 2240: 2239: 2236: 2234: 2231: 2230: 2228: 2224: 2220: 2213: 2208: 2206: 2201: 2199: 2194: 2193: 2190: 2180: 2174: 2170: 2169: 2161: 2158: 2147:on 2004-12-08 2146: 2142: 2141: 2136: 2129: 2126: 2121: 2117: 2113: 2109: 2104: 2099: 2095: 2088: 2085: 2080: 2076: 2072: 2068: 2064: 2060: 2055: 2050: 2046: 2042: 2041: 2033: 2030: 2025: 2018: 2015: 2010: 2003: 2000: 1994: 1989: 1982: 1979: 1974: 1970: 1966: 1962: 1955: 1952: 1947: 1940: 1937: 1929: 1925: 1924: 1923:New Scientist 1919: 1912: 1909: 1904: 1900: 1899: 1898:New Scientist 1894: 1887: 1884: 1880: 1875: 1872: 1861: 1857: 1851: 1848: 1842: 1837: 1833: 1829: 1825: 1818: 1815: 1810: 1806: 1802: 1798: 1794: 1790: 1785: 1780: 1776: 1772: 1771: 1763: 1761: 1757: 1752: 1748: 1744: 1740: 1736: 1732: 1727: 1722: 1718: 1714: 1713: 1705: 1703: 1699: 1694: 1690: 1686: 1682: 1678: 1674: 1669: 1664: 1660: 1656: 1655: 1647: 1645: 1641: 1636: 1632: 1627: 1622: 1618: 1614: 1610: 1603: 1600: 1595: 1591: 1587: 1583: 1579: 1575: 1571: 1567: 1566: 1558: 1555: 1550: 1546: 1542: 1538: 1534: 1530: 1525: 1520: 1516: 1512: 1511: 1503: 1500: 1495: 1491: 1487: 1483: 1479: 1475: 1470: 1465: 1461: 1457: 1456: 1448: 1446: 1442: 1437: 1433: 1429: 1425: 1421: 1417: 1412: 1407: 1403: 1399: 1398: 1390: 1388: 1386: 1384: 1382: 1378: 1367:on 2012-03-05 1366: 1362: 1358: 1351: 1349: 1345: 1337: 1333: 1332: 1331:New Scientist 1327: 1320: 1318: 1316: 1312: 1306: 1302: 1299: 1297: 1294: 1292: 1289: 1287: 1284: 1283: 1279: 1274: 1270: 1266: 1262: 1259: 1258: 1253: 1252: 1248: 1240: 1239: 1237: 1232: 1227: 1226: 1224: 1220: 1214: 1213: 1211: 1207: 1204: 1198: 1197: 1196: 1192: 1189: 1183: 1182: 1180: 1176: 1172: 1168: 1139: 1133: 1129: 1124: 1120: 1119: 1117: 1113: 1112: 1111: 1108: 1105: 1096: 1091: 1089: 1088:is violated. 1087: 1083: 1079: 1075: 1071: 1066: 1064: 1053: 1050: 1046: 1042: 1037: 1034: 1030: 1026: 1022: 1013: 1005: 997: 990: 988: 986: 985:New Scientist 982: 978: 973: 972:New Scientist 969: 965: 964: 963:New Scientist 959: 955: 947: 945: 943: 939: 934: 932: 928: 924: 919: 917: 913: 909: 905: 901: 897: 885: 880: 878: 873: 871: 866: 865: 863: 862: 854: 851: 849: 846: 844: 841: 839: 836: 834: 831: 829: 826: 824: 821: 819: 816: 814: 811: 809: 806: 804: 801: 799: 796: 794: 791: 789: 786: 784: 781: 779: 776: 774: 771: 769: 766: 764: 761: 759: 756: 754: 751: 749: 746: 744: 741: 739: 736: 734: 731: 729: 726: 724: 721: 719: 716: 714: 711: 709: 706: 704: 701: 699: 696: 694: 691: 689: 686: 684: 681: 679: 676: 674: 671: 669: 666: 664: 661: 659: 656: 654: 651: 649: 646: 644: 641: 639: 636: 634: 631: 629: 626: 625: 618: 617: 610: 607: 605: 602: 600: 597: 595: 592: 590: 587: 585: 584:Quantum chaos 582: 580: 577: 575: 572: 570: 567: 565: 562: 561: 555: 554: 546: 543: 541: 540:Transactional 538: 536: 533: 531: 530:Quantum logic 528: 526: 523: 521: 518: 512: 509: 508: 507: 504: 503: 502: 499: 497: 494: 492: 489: 487: 484: 482: 479: 477: 474: 473: 469: 464: 463: 455: 452: 450: 447: 445: 442: 440: 437: 435: 432: 431: 424: 423: 415: 412: 410: 407: 405: 402: 400: 397: 395: 392: 390: 387: 386: 382: 379: 378: 372: 371: 363: 360: 358: 355: 353: 350: 349: 343: 340: 339: 338: 335: 334: 330: 327: 325: 322: 320: 317: 315: 312: 310: 307: 305: 302: 300: 297: 295: 292: 290: 287: 285: 282: 281: 274: 273: 263: 260: 259: 258: 257:Wave function 255: 253: 250: 248: 245: 243: 240: 238: 237:Superposition 235: 233: 230: 228: 225: 223: 220: 218: 215: 213: 210: 208: 205: 203: 200: 198: 195: 194: 187: 186: 178: 175: 173: 170: 169: 165: 162: 160: 157: 155: 152: 151: 145: 144: 139: 136: 134: 131: 129: 126: 125: 124: 123: 119: 86: 80: 63: 60: 56: 48: 41: 40: 37: 33: 29: 28: 19: 2688:Quantum mind 2600:Franck–Hertz 2462:Klein–Gordon 2411:Formulations 2404:Formulations 2333:Interference 2323:Entanglement 2301:Ground state 2296:Energy level 2269:Fundamentals 2233:Introduction 2167: 2160: 2149:. Retrieved 2145:the original 2138: 2128: 2093: 2087: 2044: 2038: 2032: 2017: 2002: 1981: 1964: 1954: 1945: 1939: 1927: 1921: 1911: 1902: 1896: 1886: 1874: 1863:. Retrieved 1859: 1850: 1831: 1827: 1817: 1774: 1768: 1716: 1710: 1658: 1652: 1616: 1612: 1602: 1569: 1563: 1557: 1514: 1508: 1502: 1459: 1453: 1401: 1395: 1369:. Retrieved 1365:the original 1360: 1335: 1329: 1230: 1137: 1131: 1127: 1109: 1100: 1081: 1077: 1073: 1069: 1067: 1059: 1045:dark fringes 1044: 1038: 1028: 1018: 984: 971: 961: 951: 935: 920: 895: 893: 439:Klein–Gordon 375:Formulations 212:Energy level 207:Entanglement 190:Fundamentals 177:Interference 128:Introduction 2946:EPR paradox 2726:Quantum bus 2595:Double-slit 2573:Experiments 2539:Many-worlds 2477:Schrödinger 2441:Phase space 2431:Schrödinger 2421:Interaction 2378:Uncertainty 2348:Nonlocality 2343:Measurement 2338:Decoherence 2328:Hamiltonian 1930:(2591): 13. 1905:(2461): 26. 1719:(9): 1370. 1517:: 294–299. 1462:: 229–244. 1191:W. G. Unruh 1049:diffraction 828:von Neumann 813:Schrödinger 589:EPR paradox 520:Many-worlds 454:Schrödinger 409:Schrödinger 404:Phase-space 394:Interaction 299:Double-slit 277:Experiments 252:Uncertainty 222:Nonlocality 217:Measurement 202:Decoherence 172:Hamiltonian 2984:Categories 2874:Extensions 2708:Technology 2554:Relational 2505:Copenhagen 2416:Heisenberg 2363:Tunnelling 2226:Background 2151:2004-12-21 2054:2006.05315 1865:2023-09-21 1834:: 327278. 1572:(5): 484. 1371:2013-12-01 1307:References 1206:Luboš Motl 1175:Bratislava 823:Sommerfeld 738:Heisenberg 733:Gutzwiller 673:de Broglie 621:Scientists 535:Relational 486:Copenhagen 389:Heisenberg 247:Tunnelling 148:Background 2580:Bell test 2450:Equations 2276:Born rule 2120:119028739 2079:219559143 1967:: 40011. 1860:irims.org 1784:0807.5079 1693:119438183 1635:2090-4681 1594:121934786 1549:117905639 1494:119375418 1231:inference 1102:that the 1092:Reception 853:Zeilinger 698:Ehrenfest 427:Equations 104:⟩ 101:Ψ 90:^ 78:⟩ 75:Ψ 52:ℏ 2969:Category 2763:Timeline 2515:Ensemble 2495:Bayesian 2388:Collapse 2260:Glossary 2243:Timeline 1751:53056142 1619:: 1–37. 1280:See also 1271:and the 1179:Slovakia 1029:circular 778:Millikan 703:Einstein 688:Davisson 643:Blackett 628:Aharonov 496:Ensemble 476:Bayesian 381:Overview 262:Collapse 242:Symmetry 133:Glossary 2922:Related 2901:History 2640:Science 2472:Rydberg 2238:History 2059:Bibcode 1969:Bibcode 1809:2627030 1789:Bibcode 1731:Bibcode 1673:Bibcode 1574:Bibcode 1529:Bibcode 1474:Bibcode 1436:2161197 1416:Bibcode 948:History 818:Simmons 808:Rydberg 773:Moseley 753:Kramers 743:Hilbert 728:Glauber 723:Feynman 708:Everett 678:Compton 449:Rydberg 138:History 2615:Popper 2175:  2118:  2077:  1807:  1749:  1691:  1633:  1592:  1547:  1492:  1434:  1225:, UK. 970:. The 923:photon 848:Zeeman 843:Wigner 793:Planck 763:Landau 748:Jordan 399:Matrix 329:Popper 2525:Local 2467:Pauli 2457:Dirac 2116:S2CID 2098:arXiv 2075:S2CID 2049:arXiv 1988:arXiv 1805:S2CID 1779:arXiv 1747:S2CID 1721:arXiv 1689:S2CID 1663:arXiv 1590:S2CID 1545:S2CID 1519:arXiv 1490:S2CID 1464:arXiv 1432:S2CID 1406:arXiv 1025:laser 904:laser 803:Raman 788:Pauli 783:Onnes 718:Fermi 693:Debye 683:Dirac 648:Bloch 638:Bethe 506:Local 444:Pauli 434:Dirac 232:State 2173:ISBN 1832:2012 1631:ISSN 1617:2012 1460:5866 1033:lens 977:SPIE 933:. 908:lens 894:The 838:Wien 833:Weyl 798:Rabi 768:Laue 758:Lamb 713:Fock 668:Bose 663:Born 658:Bohr 653:Bohm 633:Bell 2108:doi 2067:doi 1928:197 1903:183 1836:doi 1797:doi 1739:doi 1681:doi 1621:doi 1582:doi 1537:doi 1515:810 1482:doi 1424:doi 1336:183 929:of 2986:: 2137:. 2114:. 2106:. 2073:. 2065:. 2057:. 2045:50 2043:. 1963:. 1926:. 1920:. 1901:. 1895:. 1858:. 1830:. 1826:. 1803:. 1795:. 1787:. 1775:10 1773:. 1759:^ 1745:. 1737:. 1729:. 1717:37 1715:. 1701:^ 1687:. 1679:. 1671:. 1659:36 1657:. 1643:^ 1629:. 1615:. 1611:. 1588:. 1580:. 1570:59 1568:. 1543:. 1535:. 1527:. 1513:. 1488:. 1480:. 1472:. 1444:^ 1430:. 1422:. 1414:. 1402:37 1400:. 1380:^ 1359:. 1347:^ 1334:. 1328:. 1314:^ 1212:. 1181:. 1177:, 1173:, 1118:. 1080:+ 918:. 2211:e 2204:t 2197:v 2181:. 2154:. 2122:. 2110:: 2100:: 2081:. 2069:: 2061:: 2051:: 2026:. 2011:. 1996:. 1990:: 1975:. 1971:: 1868:. 1844:. 1838:: 1811:. 1799:: 1791:: 1781:: 1753:. 1741:: 1733:: 1723:: 1695:. 1683:: 1675:: 1665:: 1637:. 1623:: 1596:. 1584:: 1576:: 1551:. 1539:: 1531:: 1521:: 1496:. 1484:: 1476:: 1466:: 1438:. 1426:: 1418:: 1408:: 1374:. 1275:. 1150:O 1135:2 1132:t 1128:S 1082:D 1078:V 1074:D 1070:V 883:e 876:t 869:v 97:| 87:H 81:= 71:| 64:t 61:d 57:d 49:i 20:)

Index

Shahriar Afshar
Quantum mechanics
Schrödinger equation
Introduction
Glossary
History
Classical mechanics
Old quantum theory
Bra–ket notation
Hamiltonian
Interference
Complementarity
Decoherence
Entanglement
Energy level
Measurement
Nonlocality
Quantum number
State
Superposition
Symmetry
Tunnelling
Uncertainty
Wave function
Collapse
Bell's inequality
CHSH inequality
Davisson–Germer
Double-slit
Elitzur–Vaidman

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑