Knowledge (XXG)

Jordan algebra

Source 📝

2083:
of a linear Jordan algebra are used as axioms to define a quadratic Jordan algebra over a field of arbitrary characteristic. There is a uniform description of finite-dimensional simple quadratic Jordan algebras, independent of characteristic: in characteristic not equal to 2 the theory of quadratic
1578:
is played by JBW algebras. These turn out to be JB algebras which, as Banach spaces, are the dual spaces of Banach spaces. Much of the structure theory of von Neumann algebras can be carried over to JBW algebras. In particular the JBW factors—those with center reduced to
1549: 1554:
These axioms guarantee that the Jordan algebra is formally real, so that, if a sum of squares of terms is zero, those terms must be zero. The complexifications of JB algebras are called Jordan C*-algebras or JB*-algebras. They have been used extensively in
1046:
squares can only vanish if each one vanishes individually. In 1932, Jordan attempted to axiomatize quantum theory by saying that the algebra of observables of any quantum system should be a formally real algebra that is commutative
386:. It was soon shown that the algebras were not useful in this context, however they have since found many applications in mathematics. The algebras were originally called "r-number systems", but were renamed "Jordan algebras" by 564:
is special. Related to this, Macdonald's theorem states that any polynomial in three variables, having degree one in one of the variables, and which vanishes in every special Jordan algebra, vanishes in every Jordan algebra.
1348:
classified infinite-dimensional simple (and prime non-degenerate) Jordan algebras. They are either of Hermitian or Clifford type. In particular, the only exceptional simple Jordan algebras are finite-dimensional
1964: 1396: 1078:
ones, which are not themselves direct sums in a nontrivial way. In finite dimensions, the simple formally real Jordan algebras come in four infinite families, together with one exceptional case:
1603:
A Jordan ring is a generalization of Jordan algebras, requiring only that the Jordan ring be over a general ring rather than a field. Alternatively one can define a Jordan ring as a commutative
482: 310: 1164: 672: 1841: 1687: 156: 1567:
to infinite dimensions. Not all JB algebras can be realized as Jordan algebras of self-adjoint operators on a Hilbert space, exactly as in finite dimensions. The exceptional
232: 1801: 1647: 2291: 822: 760: 2025: 551: 1998: 1768: 1741: 1714: 365: 82: 338: 2108: 1591:. Of these the spin factors can be constructed very simply from real Hilbert spaces. All other JWB factors are either the self-adjoint part of a 2905: 2857: 2759: 2733: 2695: 849:
this is the only simple exceptional Jordan algebra up to isomorphism, it is often referred to as "the" exceptional Jordan algebra. Over the
1849: 3035: 2990: 2789: 2492: 1544:{\displaystyle \displaystyle {\|a\circ b\|\leq \|a\|\cdot \|b\|,\,\,\,\|a^{2}\|=\|a\|^{2},\,\,\,\|a^{2}\|\leq \|a^{2}+b^{2}\|.}} 320:. Thus, we may equivalently define a Jordan algebra to be a commutative, power-associative algebra such that for any element 2949: 2931: 2467: 2447: 2982: 2826: 2484: 862: 2821: 2075:
Quadratic Jordan algebras are a generalization of (linear) Jordan algebras introduced by Kevin McCrimmon (
431: 2058: 237: 1587:, all JWB factors can be realised as Jordan algebras of self-adjoint operators on a Hilbert space closed in the 2080: 2070: 1564: 1383: 1189:
The Jordan algebra of 3×3 self-adjoint octonionic matrices, as above (an exceptional Jordan algebra called the
1124: 1027: 582: 414: 1272:
is finite-dimensional over a field of characteristic not 2, this implies that it is a direct sum of subspaces
1372: 1362: 383: 2050: 1588: 39: 2339: 2286: 1387: 387: 46: 2435: 1806: 1652: 615: 93: 2387: 1969:
Jordan simple superalgebras over an algebraically closed field of characteristic 0 were classified by
2609: 2098: 1319: 198: 42: 2816: 2509:
Jordan, Pascual (1933), "Über Verallgemeinerungsmöglichkeiten des Formalismus der Quantenmechanik",
1776: 1622: 2966: 2093: 1604: 1592: 1575: 1210: 403: 185: 2974: 2627: 2547: 2417: 2364: 2318: 1206: 778: 2944:, CBMS Regional Conference Series in Mathematics, vol. 67, American Mathematical Society, 2561:(1977), "Classification of simple Z-graded Lie superalgebras and simple Jordan superalgebras", 719: 2986: 2945: 2927: 2901: 2853: 2785: 2755: 2729: 2691: 2653: 2578: 2488: 2463: 2443: 2356: 2310: 2061:
not equal to 2 the theory of J-structures is essentially the same as that of Jordan algebras.
2054: 1368: 192: 1595:
or its fixed point subalgebra under a period 2 *-antiautomorphism of the von Neumann factor.
2996: 2893: 2871: 2845: 2803: 2765: 2709: 2683: 2661: 2643: 2617: 2570: 2539: 2523: 2399: 2348: 2300: 2161: 2003: 1556: 839: 557: 506: 31: 2915: 2867: 2799: 2705: 2639: 2590: 2502: 2413: 2376: 2330: 2149: 1976: 1746: 1719: 1692: 343: 55: 3019: 3000: 2911: 2889: 2875: 2863: 2841: 2807: 2795: 2769: 2713: 2701: 2679: 2665: 2635: 2597: 2586: 2498: 2476: 2409: 2372: 2326: 846: 2483:, American Mathematical Society Colloquium Publications, vol. 39, Providence, R.I.: 2613: 1583:—are completely understood in terms of von Neumann algebras. Apart from the exceptional 2833: 2781: 2748: 2113: 1584: 1568: 1350: 1205:
complex matrices as algebras of observables. However, the spin factors play a role in
1190: 832: 706: 561: 371: 323: 2648: 2305: 3029: 2527: 2427: 1345: 17: 2981:, Colloquium Publications, vol. 44, With a preface by J. Tits, Providence, RI: 2383: 1616: 1023: 850: 710: 699: 2740: 2717: 2421: 2404: 1063:
are unambiguously defined). He proved that any such algebra is a Jordan algebra.
2883: 2673: 1074:. Every formally real Jordan algebra can be written as a direct sum of so-called 2970: 2103: 2042: 2036: 1560: 906: 702: 496: 85: 1055:) and power-associative (the associative law holds for products involving only 827:
is a 27 dimensional, exceptional Jordan algebra (it is exceptional because the
2897: 2849: 2574: 2558: 2530:(1934), "On an algebraic generalization of the quantum mechanical formalism", 1379: 379: 27:
Not-necessarily-associative commutative algebra satisfying (đ‘„đ‘Š)đ‘„ÂČ=đ‘„(đ‘Šđ‘„ÂČ)
2582: 2360: 2314: 1313:
for totally real Jordan algebras. It was later studied in full generality by
1070:
classified the finite-dimensional formally real Jordan algebras, also called
1007:
defines a derivation. In many important examples, the structure algebra of H(
234:
is independent of how we parenthesize this expression. They also imply that
1197:
Of these possibilities, so far it appears that nature makes use only of the
836: 2657: 2622: 853:
there are three isomorphism classes of simple exceptional Jordan algebras.
674:
Thus the set of all elements fixed by the involution (sometimes called the
2776:
Zhevlakov, K.A.; Slin'ko, A.M.; Shestakov, I.P.; Shirshov, A.I. (1982) .
828: 769: 1973:. They include several families and some exceptional algebras, notably 1038:
A (possibly nonassociative) algebra over the real numbers is said to be
3013: 2551: 2457: 2368: 2322: 1309:) of the three eigenspaces. This decomposition was first considered by 2166: 1843:
becomes a Jordan superalgebra with respect to the graded Jordan brace
1172:
where the right-hand side is defined using the usual inner product on
421:
using the with same underlying addition and a new multiplication, the
2631: 2543: 2352: 2337:
Albert, A. Adrian (1947), "A structure theory for Jordan algebras",
2942:
Jordan algebras in analysis, operator theory, and quantum mechanics
2687: 1959:{\displaystyle \{x_{i},y_{j}\}=x_{i}y_{j}+(-1)^{ij}y_{j}x_{i}\ .} 979:
A simple example is provided by the Hermitian Jordan algebras H(
184:, particularly to avoid confusion with the product of a related 2462:, Monographs and Studies in Mathematics, vol. 21, Pitman, 2138:, pp. 35–36, specifically remark before (56) and theorem 8 2053:
and axioms taking the Jordan inversion as basic operation and
394:), who began the systematic study of general Jordan algebras. 2442:, Oxford Mathematical Monographs, Oxford University Press, 2084:
Jordan algebras reduces to that of linear Jordan algebras.
1209:, and all the formally real Jordan algebras are related to 503:, whose product (Lie bracket) is defined by the commutator 2888:, Springer Monographs in Mathematics, Berlin, New York: 2289:(1946), "On Jordan algebras of linear transformations", 1619:
were introduced by Kac, Kantor and Kaplansky; these are
378:) in an effort to formalize the notion of an algebra of 1382:
are JB algebras, which in finite dimensions are called
1310: 1067: 831:
are not associative). This was the first example of an
487:
These Jordan algebras and their subalgebras are called
406:
is a Jordan algebra if and only if it is commutative.
618: 560:–Cohn theorem states that any Jordan algebra with two 2006: 1979: 1852: 1809: 1779: 1749: 1722: 1695: 1655: 1625: 1400: 1399: 1127: 781: 722: 509: 434: 346: 326: 240: 201: 96: 58: 2926:, North-Holland Mathematics Studies, vol. 104, 2882:
Springer, Tonny A.; Veldkamp, Ferdinand D. (2000) ,
1022:
Derivation and structure algebras also form part of
2241: 2747: 2388:"The Octonions, 3: Projective Octonionic Geometry" 2019: 1992: 1958: 1835: 1795: 1762: 1735: 1708: 1681: 1641: 1543: 1158: 816: 768:2. The set of 3×3 self-adjoint matrices over the 754: 666: 545: 476: 359: 332: 304: 226: 150: 76: 2924:Symmetric Banach manifolds and Jordan C∗-algebras 2885:Octonions, Jordan algebras and exceptional groups 2292:Transactions of the American Mathematical Society 2481:Structure and representations of Jordan algebras 2207: 2511:Nachr. Akad. Wiss. Göttingen. Math. Phys. Kl. I 2131: 2129: 1066:Not every Jordan algebra is formally real, but 1386:. The norm on the real Jordan algebra must be 2392:Bulletin of the American Mathematical Society 2256: 2049:to develop a theory of Jordan algebras using 1112:self-adjoint quaternionic matrices. as above. 960:) can be made into a Lie algebra, called the 8: 2600:(1966), "A general theory of Jordan rings", 2203: 2201: 1879: 1853: 1533: 1507: 1501: 1488: 1473: 1466: 1460: 1447: 1438: 1432: 1426: 1420: 1414: 1402: 1153: 1141: 835:. Its automorphism group is the exceptional 477:{\displaystyle x\circ y={\frac {xy+yx}{2}}.} 1042:if it satisfies the property that a sum of 305:{\displaystyle x^{m}(x^{n}y)=x^{n}(x^{m}y)} 2750:An introduction to nonassociative algebras 2150:"Nazis, Ă©migrĂ©s, and abstract mathematics" 948:) is a derivation. Thus the direct sum of 340:, the operations of multiplying by powers 191:The axioms imply that a Jordan algebra is 2726:Algebraic Structures of Symmetric Domains 2647: 2621: 2403: 2304: 2269: 2219: 2192: 2180: 2165: 2076: 2011: 2005: 1984: 1978: 1944: 1934: 1921: 1899: 1889: 1873: 1860: 1851: 1827: 1814: 1808: 1785: 1781: 1780: 1778: 1754: 1748: 1727: 1721: 1700: 1694: 1673: 1660: 1654: 1631: 1627: 1626: 1624: 1527: 1514: 1495: 1487: 1486: 1485: 1476: 1454: 1446: 1445: 1444: 1401: 1398: 1159:{\displaystyle x^{2}=\langle x,x\rangle } 1132: 1126: 803: 780: 744: 721: 617: 508: 447: 433: 351: 345: 325: 290: 277: 258: 245: 239: 206: 200: 95: 57: 2135: 2046: 1743:has a "Lie-like" product with values in 1101:self-adjoint complex matrices, as above. 495:. This construction is analogous to the 2251: 2246: 2125: 1311:Jordan, von Neumann & Wigner (1934) 1115:The Jordan algebra freely generated by 1068:Jordan, von Neumann & Wigner (1934) 916:). The Jordan identity implies that if 417:2), one can construct a Jordan algebra 2456:Hanche-Olsen, H.; StĂžrmer, E. (1984), 1314: 1241:is the operation of multiplication by 391: 375: 3020:Jordan-Banach and Jordan-Lie algebras 2079:). The fundamental identities of the 1268:are 0, 1/2, 1. If the Jordan algebra 1225:is an idempotent in a Jordan algebra 1090:self-adjoint real matrices, as above. 7: 2838:Jordan algebras and algebraic groups 1340:Infinite-dimensional Jordan algebras 581:) is an associative algebra with an 176:in a Jordan algebra is also denoted 1970: 1607:that respects the Jordan identity. 1260: − 1) = 0 370:Jordan algebras were introduced by 2678:, Universitext, Berlin, New York: 667:{\textstyle \sigma (xy+yx)=xy+yx.} 25: 2778:Rings that are nearly associative 2306:10.1090/S0002-9947-1946-0016759-3 1836:{\displaystyle A_{0}\oplus A_{1}} 1682:{\displaystyle J_{0}\oplus J_{1}} 1335:Special kinds and generalizations 857:Derivations and structure algebra 151:{\displaystyle (xy)(xx)=x(y(xx))} 2109:Kantor–Koecher–Tits construction 1327:relative to the idempotent  1059:, so that powers of any element 928:, then the endomorphism sending 49:satisfies the following axioms: 2242:Hanche-Olsen & StĂžrmer 1984 1574:The Jordan algebra analogue of 765:form a special Jordan algebra. 682:, which is sometimes denoted H( 678:elements) form a subalgebra of 227:{\displaystyle x^{n}=x\cdots x} 2754:, Courier Dover Publications, 2728:, Princeton University Press, 1918: 1908: 1796:{\displaystyle \mathbb {Z} /2} 1642:{\displaystyle \mathbb {Z} /2} 1563:Jordan algebraic treatment of 1176:. This is sometimes called a 800: 782: 741: 723: 640: 622: 522: 510: 409:Given any associative algebra 299: 283: 267: 251: 145: 142: 133: 127: 118: 109: 106: 97: 1: 2983:American Mathematical Society 2602:Proc. Natl. Acad. Sci. U.S.A. 2485:American Mathematical Society 2405:10.1090/S0273-0979-01-00934-X 1034:Formally real Jordan algebras 713:matrices with multiplication 2746:Schafer, Richard D. (1996), 2208:Springer & Veldkamp 2000 1803:-graded associative algebra 987:). In this case any element 772:, again with multiplication 168:The product of two elements 2840:, Classics in Mathematics, 2822:Encyclopedia of Mathematics 2440:Analysis on symmetric cones 1571:is the common obstruction. 1371:has been extended to cover 1353:, which have dimension 27. 1264:so the only eigenvalues of 493:exceptional Jordan algebras 3052: 2675:A taste of Jordan algebras 2068: 2034: 1360: 905:). The derivations form a 817:{\displaystyle (xy+yx)/2,} 312:for all positive integers 2898:10.1007/978-3-662-12622-6 2850:10.1007/978-3-642-61970-0 2672:McCrimmon, Kevin (2004), 2575:10.1080/00927877708822224 2563:Communications in Algebra 2394:. Bull. Amer. Math. Soc. 2257:Faraut & Koranyi 1994 2148:Dahn, Ryan (2023-01-01). 2065:Quadratic Jordan algebras 2057:as a basic relation. In 1565:bounded symmetric domains 1384:Euclidean Jordan algebras 1072:Euclidean Jordan algebras 755:{\displaystyle (xy+yx)/2} 569:Hermitian Jordan algebras 388:Abraham Adrian Albert 3036:Non-associative algebras 2459:Jordan operator algebras 2081:quadratic representation 2071:Quadratic Jordan algebra 1716:is a Jordan algebra and 1390:and satisfy the axioms: 1373:Jordan operator algebras 1357:Jordan operator algebras 1028:Freudenthal magic square 2979:The book of involutions 2815:Slin'ko, A.M. (2001) , 2051:linear algebraic groups 1363:Jordan operator algebra 1180:or a Jordan algebra of 491:, while all others are 489:special Jordan algebras 398:Special Jordan algebras 384:quantum electrodynamics 2724:Ichiro Satake (1980), 2623:10.1073/pnas.56.4.1072 2021: 2020:{\displaystyle K_{10}} 1994: 1960: 1837: 1797: 1764: 1737: 1710: 1683: 1643: 1589:weak operator topology 1545: 1256: − 1)( 1160: 1104:The Jordan algebra of 1093:The Jordan algebra of 1082:The Jordan algebra of 1026:' construction of the 818: 756: 668: 547: 546:{\displaystyle =xy-yx} 478: 361: 334: 306: 228: 152: 78: 40:nonassociative algebra 2532:Annals of Mathematics 2340:Annals of Mathematics 2022: 1995: 1993:{\displaystyle K_{3}} 1961: 1838: 1798: 1765: 1763:{\displaystyle J_{0}} 1738: 1736:{\displaystyle J_{1}} 1711: 1709:{\displaystyle J_{0}} 1684: 1644: 1546: 1161: 819: 757: 669: 548: 479: 402:Notice first that an 362: 360:{\displaystyle x^{n}} 335: 307: 229: 153: 79: 77:{\displaystyle xy=yx} 18:Shirshov–Cohn theorem 2967:Merkurjev, Alexander 2940:Upmeier, H. (1987), 2922:Upmeier, H. (1985), 2099:Jordan triple system 2004: 1977: 1850: 1807: 1777: 1747: 1720: 1693: 1653: 1623: 1611:Jordan superalgebras 1576:von Neumann algebras 1397: 1378:The counterparts of 1320:Peirce decomposition 1217:Peirce decomposition 1125: 865:of a Jordan algebra 779: 720: 616: 507: 432: 344: 324: 238: 199: 94: 56: 2975:Tignol, Jean-Pierre 2614:1966PNAS...56.1072M 2428:Online HTML version 2210:, §5.8, p. 153 2094:Freudenthal algebra 1605:nonassociative ring 1211:projective geometry 1119:with the relations 869:is an endomorphism 404:associative algebra 186:associative algebra 2965:Knus, Max-Albert; 2834:Springer, Tonny A. 2045:was introduced by 2017: 1990: 1956: 1833: 1793: 1760: 1733: 1706: 1679: 1639: 1593:von Neumann factor 1541: 1540: 1207:special relativity 1156: 814: 752: 664: 543: 474: 372:Pascual Jordan 357: 330: 302: 224: 148: 74: 2907:978-3-540-66337-9 2859:978-3-540-63632-8 2761:978-0-486-68813-8 2735:978-0-691-08271-4 2697:978-0-387-95447-9 2569:(13): 1375–1400, 2343:, Second Series, 2287:Albert, A. Adrian 2167:10.1063/PT.3.5158 1952: 1649:-graded algebras 1369:operator algebras 962:structure algebra 845:. Since over the 469: 333:{\displaystyle x} 193:power-associative 16:(Redirected from 3043: 3003: 2954: 2936: 2918: 2878: 2829: 2817:"Jordan algebra" 2811: 2772: 2753: 2738: 2720: 2668: 2651: 2625: 2608:(4): 1072–1079, 2598:McCrimmon, Kevin 2593: 2554: 2518: 2505: 2477:Jacobson, Nathan 2472: 2452: 2425: 2407: 2379: 2333: 2308: 2273: 2267: 2261: 2236: 2230: 2217: 2211: 2205: 2196: 2190: 2184: 2178: 2172: 2171: 2169: 2145: 2139: 2133: 2026: 2024: 2023: 2018: 2016: 2015: 1999: 1997: 1996: 1991: 1989: 1988: 1965: 1963: 1962: 1957: 1950: 1949: 1948: 1939: 1938: 1929: 1928: 1904: 1903: 1894: 1893: 1878: 1877: 1865: 1864: 1842: 1840: 1839: 1834: 1832: 1831: 1819: 1818: 1802: 1800: 1799: 1794: 1789: 1784: 1769: 1767: 1766: 1761: 1759: 1758: 1742: 1740: 1739: 1734: 1732: 1731: 1715: 1713: 1712: 1707: 1705: 1704: 1688: 1686: 1685: 1680: 1678: 1677: 1665: 1664: 1648: 1646: 1645: 1640: 1635: 1630: 1557:complex geometry 1550: 1548: 1547: 1542: 1539: 1532: 1531: 1519: 1518: 1500: 1499: 1481: 1480: 1459: 1458: 1165: 1163: 1162: 1157: 1137: 1136: 924:are elements of 823: 821: 820: 815: 807: 761: 759: 758: 753: 748: 673: 671: 670: 665: 612:it follows that 552: 550: 549: 544: 483: 481: 480: 475: 470: 465: 448: 366: 364: 363: 358: 356: 355: 339: 337: 336: 331: 311: 309: 308: 303: 295: 294: 282: 281: 263: 262: 250: 249: 233: 231: 230: 225: 211: 210: 163: 162: 157: 155: 154: 149: 83: 81: 80: 75: 32:abstract algebra 21: 3051: 3050: 3046: 3045: 3044: 3042: 3041: 3040: 3026: 3025: 3010: 2993: 2964: 2961: 2959:Further reading 2952: 2939: 2934: 2921: 2908: 2890:Springer-Verlag 2881: 2860: 2842:Springer-Verlag 2832: 2814: 2792: 2775: 2762: 2745: 2736: 2723: 2698: 2680:Springer-Verlag 2671: 2596: 2557: 2544:10.2307/1968117 2524:von Neumann, J. 2521: 2508: 2495: 2475: 2470: 2455: 2450: 2433: 2382: 2353:10.2307/1969128 2336: 2285: 2282: 2277: 2276: 2272:, pp. 9–10 2268: 2264: 2237: 2233: 2218: 2214: 2206: 2199: 2191: 2187: 2179: 2175: 2147: 2146: 2142: 2134: 2127: 2122: 2090: 2073: 2067: 2047:Springer (1998) 2041:The concept of 2039: 2033: 2007: 2002: 2001: 1980: 1975: 1974: 1940: 1930: 1917: 1895: 1885: 1869: 1856: 1848: 1847: 1823: 1810: 1805: 1804: 1775: 1774: 1750: 1745: 1744: 1723: 1718: 1717: 1696: 1691: 1690: 1669: 1656: 1651: 1650: 1621: 1620: 1613: 1601: 1523: 1510: 1491: 1472: 1450: 1395: 1394: 1365: 1359: 1351:Albert algebras 1342: 1337: 1317:and called the 1304: 1293: 1282: 1219: 1128: 1123: 1122: 1036: 859: 847:complex numbers 843: 777: 776: 718: 717: 696: 614: 613: 571: 505: 504: 449: 430: 429: 400: 347: 342: 341: 322: 321: 286: 273: 254: 241: 236: 235: 202: 197: 196: 195:, meaning that 161:Jordan identity 160: 159: 92: 91: 54: 53: 28: 23: 22: 15: 12: 11: 5: 3049: 3047: 3039: 3038: 3028: 3027: 3024: 3023: 3017: 3014:Jordan algebra 3009: 3008:External links 3006: 3005: 3004: 2991: 2960: 2957: 2956: 2955: 2950: 2937: 2932: 2919: 2906: 2879: 2858: 2830: 2812: 2790: 2782:Academic Press 2773: 2760: 2743: 2734: 2721: 2696: 2688:10.1007/b97489 2669: 2594: 2555: 2519: 2506: 2493: 2473: 2468: 2453: 2448: 2431: 2398:(2): 145–205. 2380: 2347:(3): 546–567, 2334: 2299:(3): 524–555, 2281: 2278: 2275: 2274: 2270:McCrimmon 2004 2262: 2260: 2259: 2254: 2249: 2244: 2231: 2222:, pp. 99 2220:McCrimmon 2004 2212: 2197: 2193:McCrimmon 2004 2185: 2181:McCrimmon 2004 2173: 2140: 2124: 2123: 2121: 2118: 2117: 2116: 2114:Scorza variety 2111: 2106: 2101: 2096: 2089: 2086: 2069:Main article: 2066: 2063: 2059:characteristic 2055:Hua's identity 2035:Main article: 2032: 2029: 2014: 2010: 1987: 1983: 1967: 1966: 1955: 1947: 1943: 1937: 1933: 1927: 1924: 1920: 1916: 1913: 1910: 1907: 1902: 1898: 1892: 1888: 1884: 1881: 1876: 1872: 1868: 1863: 1859: 1855: 1830: 1826: 1822: 1817: 1813: 1792: 1788: 1783: 1757: 1753: 1730: 1726: 1703: 1699: 1676: 1672: 1668: 1663: 1659: 1638: 1634: 1629: 1612: 1609: 1600: 1597: 1585:Albert algebra 1569:Albert algebra 1552: 1551: 1538: 1535: 1530: 1526: 1522: 1517: 1513: 1509: 1506: 1503: 1498: 1494: 1490: 1484: 1479: 1475: 1471: 1468: 1465: 1462: 1457: 1453: 1449: 1443: 1440: 1437: 1434: 1431: 1428: 1425: 1422: 1419: 1416: 1413: 1410: 1407: 1404: 1367:The theory of 1361:Main article: 1358: 1355: 1341: 1338: 1336: 1333: 1302: 1298:) âŠ•  1291: 1287:) âŠ•  1280: 1262: 1261: 1218: 1215: 1195: 1194: 1191:Albert algebra 1186: 1185: 1169: 1168: 1167: 1166: 1155: 1152: 1149: 1146: 1143: 1140: 1135: 1131: 1113: 1102: 1091: 1035: 1032: 858: 855: 841: 833:Albert algebra 825: 824: 813: 810: 806: 802: 799: 796: 793: 790: 787: 784: 763: 762: 751: 747: 743: 740: 737: 734: 731: 728: 725: 698:1. The set of 695: 692: 663: 660: 657: 654: 651: 648: 645: 642: 639: 636: 633: 630: 627: 624: 621: 570: 567: 542: 539: 536: 533: 530: 527: 524: 521: 518: 515: 512: 499:associated to 485: 484: 473: 468: 464: 461: 458: 455: 452: 446: 443: 440: 437: 423:Jordan product 415:characteristic 399: 396: 354: 350: 329: 301: 298: 293: 289: 285: 280: 276: 272: 269: 266: 261: 257: 253: 248: 244: 223: 220: 217: 214: 209: 205: 166: 165: 147: 144: 141: 138: 135: 132: 129: 126: 123: 120: 117: 114: 111: 108: 105: 102: 99: 89: 73: 70: 67: 64: 61: 47:multiplication 36:Jordan algebra 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 3048: 3037: 3034: 3033: 3031: 3022:at PlanetMath 3021: 3018: 3016:at PlanetMath 3015: 3012: 3011: 3007: 3002: 2998: 2994: 2992:0-8218-0904-0 2988: 2984: 2980: 2976: 2972: 2968: 2963: 2962: 2958: 2953: 2947: 2943: 2938: 2935: 2929: 2925: 2920: 2917: 2913: 2909: 2903: 2899: 2895: 2891: 2887: 2886: 2880: 2877: 2873: 2869: 2865: 2861: 2855: 2851: 2847: 2843: 2839: 2835: 2831: 2828: 2824: 2823: 2818: 2813: 2809: 2805: 2801: 2797: 2793: 2791:0-12-779850-1 2787: 2783: 2779: 2774: 2771: 2767: 2763: 2757: 2752: 2751: 2744: 2742: 2737: 2731: 2727: 2722: 2719: 2715: 2711: 2707: 2703: 2699: 2693: 2689: 2685: 2681: 2677: 2676: 2670: 2667: 2663: 2659: 2655: 2650: 2645: 2641: 2637: 2633: 2629: 2624: 2619: 2615: 2611: 2607: 2603: 2599: 2595: 2592: 2588: 2584: 2580: 2576: 2572: 2568: 2564: 2560: 2559:Kac, Victor G 2556: 2553: 2549: 2545: 2541: 2537: 2533: 2529: 2525: 2520: 2516: 2512: 2507: 2504: 2500: 2496: 2494:9780821831793 2490: 2486: 2482: 2478: 2474: 2471: 2465: 2461: 2460: 2454: 2451: 2445: 2441: 2437: 2432: 2429: 2423: 2419: 2415: 2411: 2406: 2401: 2397: 2393: 2389: 2385: 2384:Baez, John C. 2381: 2378: 2374: 2370: 2366: 2362: 2358: 2354: 2350: 2346: 2342: 2341: 2335: 2332: 2328: 2324: 2320: 2316: 2312: 2307: 2302: 2298: 2294: 2293: 2288: 2284: 2283: 2279: 2271: 2266: 2263: 2258: 2255: 2253: 2250: 2248: 2245: 2243: 2240: 2239: 2235: 2232: 2229: 2225: 2221: 2216: 2213: 2209: 2204: 2202: 2198: 2194: 2189: 2186: 2183:, p. 100 2182: 2177: 2174: 2168: 2163: 2159: 2155: 2154:Physics Today 2151: 2144: 2141: 2137: 2136:Jacobson 1968 2132: 2130: 2126: 2119: 2115: 2112: 2110: 2107: 2105: 2102: 2100: 2097: 2095: 2092: 2091: 2087: 2085: 2082: 2078: 2072: 2064: 2062: 2060: 2056: 2052: 2048: 2044: 2038: 2030: 2028: 2012: 2008: 1985: 1981: 1972: 1953: 1945: 1941: 1935: 1931: 1925: 1922: 1914: 1911: 1905: 1900: 1896: 1890: 1886: 1882: 1874: 1870: 1866: 1861: 1857: 1846: 1845: 1844: 1828: 1824: 1820: 1815: 1811: 1790: 1786: 1771: 1755: 1751: 1728: 1724: 1701: 1697: 1674: 1670: 1666: 1661: 1657: 1636: 1632: 1618: 1617:superalgebras 1610: 1608: 1606: 1598: 1596: 1594: 1590: 1586: 1582: 1577: 1572: 1570: 1566: 1562: 1558: 1536: 1528: 1524: 1520: 1515: 1511: 1504: 1496: 1492: 1482: 1477: 1469: 1463: 1455: 1451: 1441: 1435: 1429: 1423: 1417: 1411: 1408: 1405: 1393: 1392: 1391: 1389: 1385: 1381: 1376: 1374: 1370: 1364: 1356: 1354: 1352: 1347: 1346:Efim Zelmanov 1339: 1334: 1332: 1330: 1326: 1322: 1321: 1316: 1315:Albert (1947) 1312: 1308: 1301: 1297: 1290: 1286: 1279: 1276: =  1275: 1271: 1267: 1259: 1255: 1251: 1248: 1247: 1246: 1244: 1240: 1236: 1233: =  1232: 1228: 1224: 1216: 1214: 1212: 1208: 1204: 1200: 1192: 1188: 1187: 1183: 1182:Clifford type 1179: 1175: 1171: 1170: 1150: 1147: 1144: 1138: 1133: 1129: 1121: 1120: 1118: 1114: 1111: 1107: 1103: 1100: 1096: 1092: 1089: 1085: 1081: 1080: 1079: 1077: 1073: 1069: 1064: 1062: 1058: 1054: 1050: 1045: 1041: 1040:formally real 1033: 1031: 1029: 1025: 1020: 1018: 1014: 1010: 1006: 1002: 998: 994: 990: 986: 982: 977: 975: 971: 967: 963: 959: 955: 951: 947: 943: 939: 935: 931: 927: 923: 919: 915: 911: 908: 904: 900: 896: 892: 888: 884: 880: 876: 872: 868: 864: 856: 854: 852: 848: 844: 838: 834: 830: 811: 808: 804: 797: 794: 791: 788: 785: 775: 774: 773: 771: 766: 749: 745: 738: 735: 732: 729: 726: 716: 715: 714: 712: 708: 704: 701: 693: 691: 689: 685: 681: 677: 661: 658: 655: 652: 649: 646: 643: 637: 634: 631: 628: 625: 619: 611: 607: 603: 599: 595: 591: 587: 584: 580: 576: 568: 566: 563: 559: 554: 540: 537: 534: 531: 528: 525: 519: 516: 513: 502: 498: 494: 490: 471: 466: 462: 459: 456: 453: 450: 444: 441: 438: 435: 428: 427: 426: 424: 420: 416: 412: 407: 405: 397: 395: 393: 389: 385: 381: 377: 373: 368: 367:all commute. 352: 348: 327: 319: 315: 296: 291: 287: 278: 274: 270: 264: 259: 255: 246: 242: 221: 218: 215: 212: 207: 203: 194: 189: 187: 183: 179: 175: 171: 139: 136: 130: 124: 121: 115: 112: 103: 100: 90: 87: 71: 68: 65: 62: 59: 52: 51: 50: 48: 44: 41: 37: 33: 19: 2978: 2971:Rost, Markus 2941: 2923: 2884: 2837: 2820: 2777: 2749: 2725: 2674: 2605: 2601: 2566: 2562: 2538:(1): 29–64, 2535: 2531: 2522:Jordan, P.; 2514: 2510: 2480: 2458: 2439: 2434:Faraut, J.; 2395: 2391: 2344: 2338: 2296: 2290: 2265: 2252:Upmeier 1987 2247:Upmeier 1985 2234: 2227: 2223: 2215: 2195:, p. 99 2188: 2176: 2160:(1): 44–50. 2157: 2153: 2143: 2074: 2040: 2031:J-structures 1968: 1772: 1614: 1602: 1599:Jordan rings 1580: 1573: 1553: 1377: 1366: 1343: 1328: 1324: 1318: 1306: 1299: 1295: 1288: 1284: 1277: 1273: 1269: 1265: 1263: 1257: 1253: 1249: 1242: 1238: 1234: 1230: 1226: 1222: 1220: 1202: 1198: 1196: 1181: 1177: 1173: 1116: 1109: 1105: 1098: 1094: 1087: 1083: 1075: 1071: 1065: 1060: 1056: 1052: 1048: 1043: 1039: 1037: 1021: 1016: 1012: 1008: 1004: 1000: 996: 992: 988: 984: 980: 978: 973: 969: 965: 961: 957: 953: 949: 945: 941: 937: 933: 929: 925: 921: 917: 913: 909: 902: 898: 894: 890: 886: 882: 878: 874: 870: 866: 860: 851:real numbers 826: 767: 764: 711:quaternionic 700:self-adjoint 697: 687: 683: 679: 675: 609: 605: 601: 597: 593: 589: 585: 578: 574: 572: 555: 500: 492: 488: 486: 425:defined by: 422: 418: 410: 408: 401: 369: 317: 313: 190: 181: 177: 173: 169: 167: 43:over a field 35: 29: 2436:Koranyi, A. 2104:Jordan pair 2043:J-structure 2037:J-structure 1380:C*-algebras 1178:spin factor 907:Lie algebra 497:Lie algebra 380:observables 86:commutative 3001:0955.16001 2951:082180717X 2933:0444876510 2876:1024.17018 2808:0487.17001 2770:0145.25601 2714:1044.17001 2666:0139.25502 2528:Wigner, E. 2469:0273086197 2449:0198534779 2280:References 1971:Kac (1977) 1559:to extend 877:such that 863:derivation 588:, then if 583:involution 562:generators 2836:(1998) , 2827:EMS Press 2583:0092-7872 2517:: 209–217 2479:(2008) , 2361:0003-486X 2315:0002-9947 1912:− 1821:⊕ 1667:⊕ 1561:Koecher's 1534:‖ 1508:‖ 1505:≤ 1502:‖ 1489:‖ 1474:‖ 1467:‖ 1461:‖ 1448:‖ 1439:‖ 1433:‖ 1430:⋅ 1427:‖ 1421:‖ 1418:≤ 1415:‖ 1409:∘ 1403:‖ 1344:In 1979, 1154:⟩ 1142:⟨ 1003:)=− 837:Lie group 829:octonions 770:octonions 676:hermitian 620:σ 535:− 439:∘ 219:⋯ 3030:Category 2977:(1998), 2658:16591377 2438:(1994), 2386:(2002). 2088:See also 1388:complete 940:)− 694:Examples 558:Shirshov 413:(not of 2916:1763974 2868:1490836 2800:0518614 2706:2014924 2640:0202783 2610:Bibcode 2591:0498755 2552:1968117 2503:0251099 2414:1886087 2377:0021546 2369:1969128 2331:0016759 2323:1990270 1615:Jordan 1245:, then 707:complex 390: ( 374: ( 2999:  2989:  2948:  2930:  2914:  2904:  2874:  2866:  2856:  2806:  2798:  2788:  2768:  2758:  2741:Review 2732:  2718:Errata 2712:  2704:  2694:  2664:  2656:  2649:220000 2646:  2638:  2630:  2589:  2581:  2550:  2501:  2491:  2466:  2446:  2422:586512 2420:  2412:  2375:  2367:  2359:  2329:  2321:  2313:  2228:et seq 2226:, 235 2224:et seq 1951:  1689:where 1237:) and 1076:simple 1013:σ 997:σ 985:σ 688:σ 602:σ 590:σ 586:σ 579:σ 45:whose 2632:57792 2628:JSTOR 2548:JSTOR 2418:S2CID 2365:JSTOR 2319:JSTOR 2238:See: 2120:Notes 1015:) is 995:with 709:, or 38:is a 2987:ISBN 2946:ISBN 2928:ISBN 2902:ISBN 2854:ISBN 2786:ISBN 2756:ISBN 2730:ISBN 2692:ISBN 2654:PMID 2579:ISSN 2489:ISBN 2464:ISBN 2444:ISBN 2357:ISSN 2311:ISSN 2077:1966 2000:and 1773:Any 1024:Tits 952:and 920:and 885:) = 703:real 608:) = 600:and 596:) = 573:If ( 556:The 392:1946 376:1933 316:and 172:and 88:law) 34:, a 2997:Zbl 2894:doi 2872:Zbl 2846:doi 2804:Zbl 2766:Zbl 2710:Zbl 2684:doi 2662:Zbl 2644:PMC 2618:doi 2571:doi 2540:doi 2400:doi 2349:doi 2301:doi 2162:doi 1323:of 1292:1/2 1221:If 991:of 976:). 970:str 964:of 954:der 932:to 910:der 873:of 690:). 382:in 30:In 3032:: 2995:, 2985:, 2973:; 2969:; 2912:MR 2910:, 2900:, 2892:, 2870:, 2864:MR 2862:, 2852:, 2844:, 2825:, 2819:, 2802:. 2796:MR 2794:. 2784:. 2780:. 2764:, 2739:. 2716:, 2708:, 2702:MR 2700:, 2690:, 2682:, 2660:, 2652:, 2642:, 2636:MR 2634:, 2626:, 2616:, 2606:56 2604:, 2587:MR 2585:, 2577:, 2565:, 2546:, 2536:35 2534:, 2526:; 2515:41 2513:, 2499:MR 2497:, 2487:, 2426:. 2416:. 2410:MR 2408:. 2396:39 2390:. 2373:MR 2371:, 2363:, 2355:, 2345:48 2327:MR 2325:, 2317:, 2309:, 2297:59 2295:, 2200:^ 2158:76 2156:. 2152:. 2128:^ 2027:. 2013:10 1770:. 1375:. 1331:. 1252:(2 1213:. 1193:). 1053:yx 1051:= 1049:xy 1030:. 1019:. 968:, 946:xz 938:yz 899:xD 883:xy 861:A 705:, 577:, 553:. 188:. 180:∘ 164:). 2896:: 2848:: 2810:. 2686:: 2620:: 2612:: 2573:: 2567:5 2542:: 2430:. 2424:. 2402:: 2351:: 2303:: 2170:. 2164:: 2009:K 1986:3 1982:K 1954:. 1946:i 1942:x 1936:j 1932:y 1926:j 1923:i 1919:) 1915:1 1909:( 1906:+ 1901:j 1897:y 1891:i 1887:x 1883:= 1880:} 1875:j 1871:y 1867:, 1862:i 1858:x 1854:{ 1829:1 1825:A 1816:0 1812:A 1791:2 1787:/ 1782:Z 1756:0 1752:J 1729:1 1725:J 1702:0 1698:J 1675:1 1671:J 1662:0 1658:J 1637:2 1633:/ 1628:Z 1581:R 1537:. 1529:2 1525:b 1521:+ 1516:2 1512:a 1497:2 1493:a 1483:, 1478:2 1470:a 1464:= 1456:2 1452:a 1442:, 1436:b 1424:a 1412:b 1406:a 1329:e 1325:A 1307:e 1305:( 1303:1 1300:A 1296:e 1294:( 1289:A 1285:e 1283:( 1281:0 1278:A 1274:A 1270:A 1266:R 1258:R 1254:R 1250:R 1243:e 1239:R 1235:e 1231:e 1229:( 1227:A 1223:e 1203:n 1201:× 1199:n 1184:. 1174:R 1151:x 1148:, 1145:x 1139:= 1134:2 1130:x 1117:R 1110:n 1108:× 1106:n 1099:n 1097:× 1095:n 1088:n 1086:× 1084:n 1061:x 1057:x 1047:( 1044:n 1017:A 1011:, 1009:A 1005:x 1001:x 999:( 993:A 989:x 983:, 981:A 974:A 972:( 966:A 958:A 956:( 950:A 944:( 942:y 936:( 934:x 930:z 926:A 922:y 918:x 914:A 912:( 903:y 901:( 897:+ 895:y 893:) 891:x 889:( 887:D 881:( 879:D 875:A 871:D 867:A 842:4 840:F 812:, 809:2 805:/ 801:) 798:x 795:y 792:+ 789:y 786:x 783:( 750:2 746:/ 742:) 739:x 736:y 733:+ 730:y 727:x 724:( 686:, 684:A 680:A 662:. 659:x 656:y 653:+ 650:y 647:x 644:= 641:) 638:x 635:y 632:+ 629:y 626:x 623:( 610:y 606:y 604:( 598:x 594:x 592:( 575:A 541:x 538:y 532:y 529:x 526:= 523:] 520:y 517:, 514:x 511:[ 501:A 472:. 467:2 463:x 460:y 457:+ 454:y 451:x 445:= 442:y 436:x 419:A 411:A 353:n 349:x 328:x 318:n 314:m 300:) 297:y 292:m 288:x 284:( 279:n 275:x 271:= 268:) 265:y 260:n 256:x 252:( 247:m 243:x 222:x 216:x 213:= 208:n 204:x 182:y 178:x 174:y 170:x 158:( 146:) 143:) 140:x 137:x 134:( 131:y 128:( 125:x 122:= 119:) 116:x 113:x 110:( 107:) 104:y 101:x 98:( 84:( 72:x 69:y 66:= 63:y 60:x 20:)

Index

Shirshov–Cohn theorem
abstract algebra
nonassociative algebra
over a field
multiplication
commutative
associative algebra
power-associative
Pascual Jordan
1933
observables
quantum electrodynamics
Abraham Adrian Albert
1946
associative algebra
characteristic
Lie algebra
Shirshov
generators
involution
self-adjoint
real
complex
quaternionic
octonions
octonions
Albert algebra
Lie group
F4
complex numbers

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑