Knowledge

Sierpiński carpet

Source 📝

142: 27: 580: 362:
This "universality" of the Sierpiński carpet is not a true universal property in the sense of category theory: it does not uniquely characterize this space up to homeomorphism. For example, the disjoint union of a Sierpiński carpet and a circle is also a universal plane curve. However, in 1958
591:, starts in the same way, by subdividing the unit square into nine smaller squares and removing the middle of them. At the next level of subdivision, it subdivides each of the squares into 25 smaller squares and removes the middle one, and it continues at the 1566: 97:. It can be realised as the set of points in the unit square whose coordinates written in base three do not both have a digit '1' in the same position, using the infinitesimal number representation of 346: 664:, they easily accommodate multiple frequencies. They are also easy to fabricate and smaller than conventional antennas of similar performance, thus being optimal for pocket-sized mobile phones. 945:
N. A. Saidatul, A. A. H. Azremi, R. B. Ahmad, P. J. Soh and F. Malek, "A development of Fractal PIFA (planar inverted F antenna) with bandwidth enhancement for mobile phone applications," 2009
124: 65:
can be extended to other shapes. For instance, subdividing an equilateral triangle into four equilateral triangles, removing the middle triangle, and recursing leads to the
1639: 1654: 958:
T. Kalaimani, P. M. Venkatesh, R. Mohanamurali and T. Shanmuganantham, "A modified Sierpinski carpet fractal antenna for wireless applications," 2013
886: 530:
on the Sierpiński carpet diffuses at a slower rate than an unrestricted random walk in the plane. The latter reaches a mean distance proportional to
1584: 673: 723: 351:
Sierpiński demonstrated that his carpet is a universal plane curve. That is: the Sierpiński carpet is a compact subset of the plane with
1030: 1063: 903: 759: 971:
W. -L. Chen, G. -M. Wang and C. -X. Zhang, "Small-Size Microstrip Patch Antennas Combining Koch and Sierpinski Fractal-Shapes," in
1590: 302: 1446: 1403: 1524: 1649: 1606: 1090: 352: 262:
which is entirely contained in the carpet. This square contains a smaller square whose coordinates are multiples of
711: 526:
on the Sierpiński carpet has attracted interest in recent years. Martin Barlow and Richard Bass have shown that a
409:
is a continuum embedded in the plane. Suppose its complement in the plane has countably many connected components
1659: 1256: 1112: 629:, unlike the standard Sierpiński carpet which has zero limiting area. Although the Wallis sieve has positive 1549: 783: 564: 130: 43: 786:(1916). "Sur une courbe cantorienne qui contient une image biunivoque et continue de toute courbe donnée". 571:
without satisfying the parabolic one. The existence of such an example was an open problem for many years.
1598: 1157: 1023: 545:
steps, but the random walk on the discrete Sierpiński carpet reaches only a mean distance proportional to
66: 1383: 1075: 86: 100: 89:
subsquares in a 3-by-3 grid, and the central subsquare is removed. The same procedure is then applied
1544: 1539: 1329: 1261: 402: 1302: 1279: 1214: 1162: 1147: 1080: 296: 244: 20: 1529: 1509: 1473: 1468: 1231: 988: 920: 568: 401:
In the same paper Whyburn gave another characterization of the Sierpiński carpet. Recall that a
715: 1572: 1534: 1458: 1366: 1271: 1177: 1152: 1142: 1085: 1068: 1058: 1053: 1016: 795: 755: 719: 634: 368: 82: 993: 881:"Sequence A016754 (Odd squares: a(n) = (2n+1)^2. Also centered octagonal numbers.)" 1489: 1356: 1339: 1167: 998: 912: 837: 803: 765: 729: 703: 661: 630: 284:. But, if this square has not been previously removed, it must have been holed in iteration 154: 26: 1003: 932: 858: 141: 1644: 1504: 1441: 1102: 928: 807: 769: 733: 699: 657: 653: 579: 523: 1199: 656:
have been produced in the form of few iterations of the Sierpiński carpet. Due to their
567:
inequalities (so called "sub-Gaussian inequalities") and that it satisfies the elliptic
1519: 1463: 1451: 1422: 1378: 1361: 1344: 1297: 1241: 1226: 1194: 1132: 821: 747: 638: 608: 364: 1633: 1373: 1349: 1219: 1189: 1172: 1137: 1122: 704: 678: 604: 70: 1618: 1613: 1514: 1494: 1251: 1184: 356: 398:
is not connected. So, for example, any point of the circle is a local cut point.
1579: 1499: 1209: 1204: 876: 527: 371:
and has no 'local cut-points' is homeomorphic to the Sierpiński carpet. Here a
146: 51: 1432: 1417: 1412: 1393: 1127: 47: 799: 69:. In three dimensions, a similar construction based on cubes is known as the 1388: 1334: 1246: 1097: 842: 825: 90: 62: 962:, Melmaruvathur, India, 2013, pp. 722-725, doi: 10.1109/iccsp.2013.6577150. 367:
uniquely characterized the Sierpiński carpet as follows: any curve that is
1289: 58: 1319: 1236: 1039: 924: 754:. Oxford Mathematical Monographs. Oxford University Press. p. 31. 39: 949:, Loughborough, UK, 2009, pp. 113-116, doi: 10.1109/LAPC.2009.5352584. 1307: 916: 650: 578: 258:
in the interior of the carpet. Then there is a square centered at
140: 25: 1012: 960:
International Conference on Communication and Signal Processing
129:
The process of recursively removing squares is an example of a
901:
Rummler, Hansklaus (1993). "Squaring the circle with holes".
975:, vol. 7, pp. 738-741, 2008, doi: 10.1109/LAWP.2008.2002808. 563:. They also showed that this random walk satisfies stronger 291:, so it cannot be contained in the carpet – a contradiction. 1008: 880: 860:
Brownian motion and harmonic analysis on Sierpiński carpets
19:"Sierpinski snowflake" redirects here. For other uses, see 706:
Automatic Sequences: Theory, Applications, Generalizations
355:
1, and every subset of the plane with these properties is
1004:
Sierpiński Carpet solved by means of modular arithmetics
81:
The construction of the Sierpiński carpet begins with a
149:
with the middle line erased creates a Sierpiński carpet
826:"Topological chcracterization of the Sierpinski curve" 637:
of two sets of real numbers has this property, so its
607:) smaller squares and removing the middle one. By the 405:
is a nonempty connected compact metric space. Suppose
341:{\displaystyle {\frac {\log 8}{\log 3}}\approx 1.8928} 50:
to two dimensions; another such generalization is the
305: 103: 1558: 1482: 1431: 1402: 1318: 1288: 1270: 1111: 1046: 947:Loughborough Antennas & Propagation Conference 340: 118: 587:A variation of the Sierpiński carpet, called the 59:subdividing a shape into smaller copies of itself 254:Suppose by contradiction that there is a point 46:in 1916. The carpet is a generalization of the 973:IEEE Antennas and Wireless Propagation Letters 61:, removing one or more copies, and continuing 1024: 8: 153:The area of the carpet is zero (in standard 1031: 1017: 1009: 514:is homeomorphic to the Sierpiński carpet. 887:On-Line Encyclopedia of Integer Sequences 841: 359:to some subset of the Sierpiński carpet. 306: 304: 102: 595:th step by subdividing each square into 518:Brownian motion on the Sierpiński carpet 495:the union of the boundaries of the sets 1585:List of fractals by Hausdorff dimension 690: 674:List of fractals by Hausdorff dimension 379:for which some connected neighborhood 7: 989:Variations on the Theme of Tremas II 752:Some Novel Types of Fractal Geometry 611:, the area of the resulting set is 583:Third iteration of the Wallis sieve 488:is a simple closed curve for each 14: 1640:Iterated function system fractals 1567:How Long Is the Coast of Britain? 904:The American Mathematical Monthly 1655:Science and technology in Poland 119:{\displaystyle 0.1111\dots =0.2} 16:Plane fractal built from squares 857:Barlow, Martin; Bass, Richard, 93:to the remaining 8 subsquares, 30:6 steps of a Sierpiński carpet. 1591:The Fractal Geometry of Nature 1: 1607:Chaos: Making a New Science 353:Lebesgue covering dimension 85:. The square is cut into 9 1676: 877:Sloane, N. J. A. 712:Cambridge University Press 18: 999:Sierpiński Carpet Project 247:of the carpet is empty. 843:10.4064/fm-45-1-320-324 131:finite subdivision rule 1599:The Beauty of Fractals 788:C. R. Acad. Sci. Paris 633:, no subset that is a 584: 387:has the property that 342: 235:, which tends to 0 as 171:the area of iteration 150: 120: 31: 698:Allouche, Jean-Paul; 582: 343: 144: 121: 29: 1545:Lewis Fry Richardson 1540:Hamid Naderi Yeganeh 1330:Burning Ship fractal 1262:Weierstrass function 461:and the boundary of 303: 101: 1303:Space-filling curve 1280:Multifractal system 1163:Space-filling curve 1148:Sierpinski triangle 297:Hausdorff dimension 67:Sierpiński triangle 42:first described by 1650:Topological spaces 1530:Aleksandr Lyapunov 1510:Desmond Paul Henry 1474:Self-avoiding walk 1469:Percolation theory 1113:Iterated function 1054:Fractal dimensions 994:Sierpiński Cookies 890:. OEIS Foundation. 784:Sierpiński, Wacław 585: 569:Harnack inequality 338: 151: 116: 32: 1627: 1626: 1573:Coastline paradox 1550:Wacław Sierpiński 1535:Benoit Mandelbrot 1459:Fractal landscape 1367:Misiurewicz point 1272:Strange attractor 1153:Apollonian gasket 1143:Sierpinski carpet 725:978-0-521-82332-6 649:Mobile phone and 635:Cartesian product 369:locally connected 330: 299:of the carpet is 239:goes to infinity. 57:The technique of 44:Wacław Sierpiński 36:Sierpiński carpet 1667: 1660:Eponymous curves 1490:Michael Barnsley 1357:Lyapunov fractal 1215:Sierpiński curve 1168:Blancmange curve 1033: 1026: 1019: 1010: 976: 969: 963: 956: 950: 943: 937: 936: 898: 892: 891: 873: 867: 866: 865: 854: 848: 847: 845: 818: 812: 811: 780: 774: 773: 744: 738: 737: 709: 700:Shallit, Jeffrey 695: 662:scale invariance 654:fractal antennas 631:Lebesgue measure 628: 626: 625: 622: 619: 618: 602: 594: 562: 555: 554: 553: 544: 540: 539: 538: 513: 505: 501: 491: 487: 481:the boundary of 477: 468:are disjoint if 467: 460: 454:the boundary of 450: 444:goes to zero as 443: 437:the diameter of 432: 408: 397: 386: 382: 378: 347: 345: 344: 339: 331: 329: 318: 307: 290: 283: 279: 278: 276: 275: 272: 269: 261: 257: 238: 234: 232: 230: 229: 226: 223: 208: 201: 199: 198: 195: 192: 174: 170: 155:Lebesgue measure 125: 123: 122: 117: 21:Sierpiński curve 1675: 1674: 1670: 1669: 1668: 1666: 1665: 1664: 1630: 1629: 1628: 1623: 1554: 1505:Felix Hausdorff 1478: 1442:Brownian motion 1427: 1398: 1321: 1314: 1284: 1266: 1257:Pythagoras tree 1114: 1107: 1103:Self-similarity 1047:Characteristics 1042: 1037: 985: 980: 979: 970: 966: 957: 953: 944: 940: 917:10.2307/2324662 900: 899: 895: 875: 874: 870: 863: 856: 855: 851: 822:Whyburn, Gordon 820: 819: 815: 782: 781: 777: 762: 748:Semmes, Stephen 746: 745: 741: 726: 697: 696: 692: 687: 670: 658:self-similarity 647: 623: 620: 616: 615: 614: 612: 596: 592: 577: 565:large deviation 557: 549: 547: 546: 542: 534: 532: 531: 524:Brownian motion 520: 511: 503: 500: 496: 489: 486: 482: 469: 466: 462: 459: 455: 445: 442: 438: 430: 423: 416: 410: 406: 388: 384: 380: 376: 373:local cut-point 319: 308: 301: 300: 285: 281: 273: 270: 267: 266: 264: 263: 259: 255: 236: 227: 224: 221: 220: 218: 215: 210: 206: 196: 193: 190: 189: 187: 185: 176: 172: 169: 165: 145:Variant of the 139: 99: 98: 79: 24: 17: 12: 11: 5: 1673: 1671: 1663: 1662: 1657: 1652: 1647: 1642: 1632: 1631: 1625: 1624: 1622: 1621: 1616: 1611: 1603: 1595: 1587: 1582: 1577: 1576: 1575: 1562: 1560: 1556: 1555: 1553: 1552: 1547: 1542: 1537: 1532: 1527: 1522: 1520:Helge von Koch 1517: 1512: 1507: 1502: 1497: 1492: 1486: 1484: 1480: 1479: 1477: 1476: 1471: 1466: 1461: 1456: 1455: 1454: 1452:Brownian motor 1449: 1438: 1436: 1429: 1428: 1426: 1425: 1423:Pickover stalk 1420: 1415: 1409: 1407: 1400: 1399: 1397: 1396: 1391: 1386: 1381: 1379:Newton fractal 1376: 1371: 1370: 1369: 1362:Mandelbrot set 1359: 1354: 1353: 1352: 1347: 1345:Newton fractal 1342: 1332: 1326: 1324: 1316: 1315: 1313: 1312: 1311: 1310: 1300: 1298:Fractal canopy 1294: 1292: 1286: 1285: 1283: 1282: 1276: 1274: 1268: 1267: 1265: 1264: 1259: 1254: 1249: 1244: 1242:Vicsek fractal 1239: 1234: 1229: 1224: 1223: 1222: 1217: 1212: 1207: 1202: 1197: 1192: 1187: 1182: 1181: 1180: 1170: 1160: 1158:Fibonacci word 1155: 1150: 1145: 1140: 1135: 1133:Koch snowflake 1130: 1125: 1119: 1117: 1109: 1108: 1106: 1105: 1100: 1095: 1094: 1093: 1088: 1083: 1078: 1073: 1072: 1071: 1061: 1050: 1048: 1044: 1043: 1038: 1036: 1035: 1028: 1021: 1013: 1007: 1006: 1001: 996: 991: 984: 983:External links 981: 978: 977: 964: 951: 938: 911:(9): 858–860. 893: 868: 849: 813: 775: 760: 739: 724: 689: 688: 686: 683: 682: 681: 676: 669: 666: 646: 643: 639:Jordan measure 609:Wallis product 576: 573: 519: 516: 508: 507: 498: 493: 484: 479: 464: 457: 452: 440: 428: 421: 414: 365:Gordon Whyburn 337: 334: 328: 325: 322: 317: 314: 311: 293: 292: 241: 240: 213: 204: 180: 167: 138: 135: 115: 112: 109: 106: 78: 75: 15: 13: 10: 9: 6: 4: 3: 2: 1672: 1661: 1658: 1656: 1653: 1651: 1648: 1646: 1643: 1641: 1638: 1637: 1635: 1620: 1617: 1615: 1612: 1609: 1608: 1604: 1601: 1600: 1596: 1593: 1592: 1588: 1586: 1583: 1581: 1578: 1574: 1571: 1570: 1568: 1564: 1563: 1561: 1557: 1551: 1548: 1546: 1543: 1541: 1538: 1536: 1533: 1531: 1528: 1526: 1523: 1521: 1518: 1516: 1513: 1511: 1508: 1506: 1503: 1501: 1498: 1496: 1493: 1491: 1488: 1487: 1485: 1481: 1475: 1472: 1470: 1467: 1465: 1462: 1460: 1457: 1453: 1450: 1448: 1447:Brownian tree 1445: 1444: 1443: 1440: 1439: 1437: 1434: 1430: 1424: 1421: 1419: 1416: 1414: 1411: 1410: 1408: 1405: 1401: 1395: 1392: 1390: 1387: 1385: 1382: 1380: 1377: 1375: 1374:Multibrot set 1372: 1368: 1365: 1364: 1363: 1360: 1358: 1355: 1351: 1350:Douady rabbit 1348: 1346: 1343: 1341: 1338: 1337: 1336: 1333: 1331: 1328: 1327: 1325: 1323: 1317: 1309: 1306: 1305: 1304: 1301: 1299: 1296: 1295: 1293: 1291: 1287: 1281: 1278: 1277: 1275: 1273: 1269: 1263: 1260: 1258: 1255: 1253: 1250: 1248: 1245: 1243: 1240: 1238: 1235: 1233: 1230: 1228: 1225: 1221: 1220:Z-order curve 1218: 1216: 1213: 1211: 1208: 1206: 1203: 1201: 1198: 1196: 1193: 1191: 1190:Hilbert curve 1188: 1186: 1183: 1179: 1176: 1175: 1174: 1173:De Rham curve 1171: 1169: 1166: 1165: 1164: 1161: 1159: 1156: 1154: 1151: 1149: 1146: 1144: 1141: 1139: 1138:Menger sponge 1136: 1134: 1131: 1129: 1126: 1124: 1123:Barnsley fern 1121: 1120: 1118: 1116: 1110: 1104: 1101: 1099: 1096: 1092: 1089: 1087: 1084: 1082: 1079: 1077: 1074: 1070: 1067: 1066: 1065: 1062: 1060: 1057: 1056: 1055: 1052: 1051: 1049: 1045: 1041: 1034: 1029: 1027: 1022: 1020: 1015: 1014: 1011: 1005: 1002: 1000: 997: 995: 992: 990: 987: 986: 982: 974: 968: 965: 961: 955: 952: 948: 942: 939: 934: 930: 926: 922: 918: 914: 910: 906: 905: 897: 894: 889: 888: 882: 878: 872: 869: 862: 861: 853: 850: 844: 839: 835: 831: 827: 823: 817: 814: 809: 805: 801: 797: 793: 790:(in French). 789: 785: 779: 776: 771: 767: 763: 761:0-19-850806-9 757: 753: 749: 743: 740: 735: 731: 727: 721: 717: 713: 708: 707: 701: 694: 691: 684: 680: 679:Menger sponge 677: 675: 672: 671: 667: 665: 663: 659: 655: 652: 644: 642: 640: 636: 632: 610: 606: 600: 590: 581: 574: 572: 570: 566: 560: 552: 537: 529: 525: 522:The topic of 517: 515: 494: 480: 476: 472: 453: 448: 436: 435: 434: 433:and suppose: 427: 420: 413: 404: 399: 395: 391: 374: 370: 366: 360: 358: 354: 349: 335: 332: 326: 323: 320: 315: 312: 309: 298: 288: 253: 250: 249: 248: 246: 216: 207: 183: 179: 163: 160: 159: 158: 156: 148: 143: 136: 134: 132: 127: 113: 110: 107: 104: 96: 92: 88: 84: 76: 74: 72: 71:Menger sponge 68: 64: 60: 55: 53: 49: 45: 41: 37: 28: 22: 1619:Chaos theory 1614:Kaleidoscope 1605: 1597: 1589: 1515:Gaston Julia 1495:Georg Cantor 1320:Escape-time 1252:Gosper curve 1200:Lévy C curve 1185:Dragon curve 1064:Box-counting 972: 967: 959: 954: 946: 941: 908: 902: 896: 884: 871: 859: 852: 833: 829: 816: 791: 787: 778: 751: 742: 705: 693: 648: 645:Applications 598: 589:Wallis sieve 588: 586: 575:Wallis sieve 558: 550: 535: 521: 509: 502:is dense in 474: 470: 446: 425: 418: 411: 400: 393: 389: 372: 361: 357:homeomorphic 350: 294: 286: 251: 242: 211: 202: 181: 177: 161: 152: 128: 95:ad infinitum 94: 80: 77:Construction 56: 35: 33: 1610:(1987 book) 1602:(1986 book) 1594:(1982 book) 1580:Fractal art 1500:Bill Gosper 1464:Lévy flight 1210:Peano curve 1205:Moore curve 1091:Topological 1076:Correlation 836:: 320–324. 794:: 629–632. 714:. pp.  605:odd squares 528:random walk 375:is a point 147:Peano curve 91:recursively 63:recursively 52:Cantor dust 38:is a plane 1634:Categories 1418:Orbit trap 1413:Buddhabrot 1406:techniques 1394:Mandelbulb 1195:Koch curve 1128:Cantor set 830:Fund. Math 808:46.0295.02 770:0970.28001 734:1086.11015 685:References 164:Denote as 137:Properties 48:Cantor set 1525:Paul Lévy 1404:Rendering 1389:Mandelbox 1335:Julia set 1247:Hexaflake 1178:Minkowski 1098:Recursion 1081:Hausdorff 800:0001-4036 641:is zero. 556:for some 403:continuum 333:≈ 324:⁡ 313:⁡ 280:for some 108:⋯ 87:congruent 1435:fractals 1322:fractals 1290:L-system 1232:T-square 1040:Fractals 824:(1958). 750:(2001). 702:(2003). 668:See also 245:interior 1384:Tricorn 1237:n-flake 1086:Packing 1069:Higuchi 1059:Assouad 933:1247533 925:2324662 879:(ed.). 627:⁠ 613:⁠ 548:√ 533:√ 277:⁠ 265:⁠ 231:⁠ 219:⁠ 200:⁠ 188:⁠ 175:. Then 40:fractal 1645:Curves 1483:People 1433:Random 1340:Filled 1308:H tree 1227:String 1115:system 931:  923:  806:  798:  768:  758:  732:  722:  718:–406. 561:> 2 541:after 336:1.8928 252:Proof: 162:Proof: 105:0.1111 83:square 1559:Other 921:JSTOR 864:(PDF) 651:Wi-Fi 603:(the 510:Then 431:, ... 209:. So 885:The 796:ISSN 756:ISBN 720:ISBN 660:and 601:+ 1) 295:The 243:The 34:The 913:doi 909:100 838:doi 804:JFM 792:162 766:Zbl 730:Zbl 716:405 449:→ ∞ 392:− { 383:of 321:log 310:log 289:+ 1 217:= ( 184:+ 1 157:). 114:0.2 1636:: 1569:" 929:MR 927:. 919:. 907:. 883:. 834:45 832:. 828:. 802:. 764:. 728:. 710:. 597:(2 473:≠ 424:, 417:, 396:} 348:. 186:= 133:. 126:. 73:. 54:. 1565:" 1032:e 1025:t 1018:v 935:. 915:: 846:. 840:: 810:. 772:. 736:. 624:4 621:/ 617:π 599:i 593:i 559:β 551:n 543:n 536:n 512:X 506:. 504:X 499:i 497:C 492:; 490:i 485:i 483:C 478:; 475:j 471:i 465:j 463:C 458:i 456:C 451:; 447:i 441:i 439:C 429:3 426:C 422:2 419:C 415:1 412:C 407:X 394:p 390:U 385:p 381:U 377:p 327:3 316:8 287:k 282:k 274:3 271:/ 268:1 260:P 256:P 237:i 233:) 228:9 225:/ 222:8 214:i 212:a 205:i 203:a 197:9 194:/ 191:8 182:i 178:a 173:i 168:i 166:a 111:= 23:.

Index

Sierpiński curve

fractal
Wacław Sierpiński
Cantor set
Cantor dust
subdividing a shape into smaller copies of itself
recursively
Sierpiński triangle
Menger sponge
square
congruent
recursively
finite subdivision rule

Peano curve
Lebesgue measure
interior
Hausdorff dimension
Lebesgue covering dimension
homeomorphic
Gordon Whyburn
locally connected
continuum
Brownian motion
random walk
large deviation
Harnack inequality

odd squares

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.