Knowledge (XXG)

Sierpiński carpet

Source 📝

153: 38: 591: 373:
This "universality" of the Sierpiński carpet is not a true universal property in the sense of category theory: it does not uniquely characterize this space up to homeomorphism. For example, the disjoint union of a Sierpiński carpet and a circle is also a universal plane curve. However, in 1958
602:, starts in the same way, by subdividing the unit square into nine smaller squares and removing the middle of them. At the next level of subdivision, it subdivides each of the squares into 25 smaller squares and removes the middle one, and it continues at the 1577: 108:. It can be realised as the set of points in the unit square whose coordinates written in base three do not both have a digit '1' in the same position, using the infinitesimal number representation of 357: 675:, they easily accommodate multiple frequencies. They are also easy to fabricate and smaller than conventional antennas of similar performance, thus being optimal for pocket-sized mobile phones. 956:
N. A. Saidatul, A. A. H. Azremi, R. B. Ahmad, P. J. Soh and F. Malek, "A development of Fractal PIFA (planar inverted F antenna) with bandwidth enhancement for mobile phone applications," 2009
135: 76:
can be extended to other shapes. For instance, subdividing an equilateral triangle into four equilateral triangles, removing the middle triangle, and recursing leads to the
1650: 1665: 969:
T. Kalaimani, P. M. Venkatesh, R. Mohanamurali and T. Shanmuganantham, "A modified Sierpinski carpet fractal antenna for wireless applications," 2013
897: 541:
on the Sierpiński carpet diffuses at a slower rate than an unrestricted random walk in the plane. The latter reaches a mean distance proportional to
1595: 684: 734: 362:
Sierpiński demonstrated that his carpet is a universal plane curve. That is: the Sierpinski carpet is a compact subset of the plane with
1041: 1074: 914: 770: 982:
W. -L. Chen, G. -M. Wang and C. -X. Zhang, "Small-Size Microstrip Patch Antennas Combining Koch and Sierpinski Fractal-Shapes," in
1601: 313: 1457: 1414: 1535: 1660: 1617: 1101: 363: 273:
which is entirely contained in the carpet. This square contains a smaller square whose coordinates are multiples of
722: 537:
on the Sierpiński carpet has attracted interest in recent years. Martin Barlow and Richard Bass have shown that a
420:
is a continuum embedded in the plane. Suppose its complement in the plane has countably many connected components
1670: 1267: 1123: 640:, unlike the standard Sierpiński carpet which has zero limiting area. Although the Wallis sieve has positive 1560: 794: 575: 141: 54: 797:(1916). "Sur une courbe cantorienne qui contient une image biunivoque et continue de toute courbe donnée". 582:
without satisfying the parabolic one. The existence of such an example was an open problem for many years.
1609: 1168: 1034: 556:
steps, but the random walk on the discrete Sierpiński carpet reaches only a mean distance proportional to
77: 1394: 1086: 97: 111: 100:
subsquares in a 3-by-3 grid, and the central subsquare is removed. The same procedure is then applied
1555: 1550: 1340: 1272: 413: 1313: 1290: 1225: 1173: 1158: 1091: 307: 255: 1540: 1520: 1484: 1479: 1242: 999: 931: 579: 412:
In the same paper Whyburn gave another characterization of the Sierpiński carpet. Recall that a
726: 1583: 1545: 1469: 1377: 1282: 1188: 1163: 1153: 1096: 1079: 1069: 1064: 1027: 806: 766: 730: 645: 379: 93: 1004: 892:"Sequence A016754 (Odd squares: a(n) = (2n+1)^2. Also centered octagonal numbers.)" 1500: 1367: 1350: 1178: 1009: 923: 848: 814: 776: 740: 714: 672: 641: 295:. But, if this square has not been previously removed, it must have been holed in iteration 165: 37: 31: 1014: 943: 869: 152: 1655: 1515: 1452: 1113: 939: 818: 780: 744: 710: 668: 664: 590: 534: 1210: 667:
have been produced in the form of few iterations of the Sierpiński carpet. Due to their
578:
inequalities (so called "sub-Gaussian inequalities") and that it satisfies the elliptic
1530: 1474: 1462: 1433: 1389: 1372: 1355: 1308: 1252: 1237: 1205: 1143: 832: 758: 649: 619: 375: 1644: 1384: 1360: 1230: 1200: 1183: 1148: 1133: 715: 689: 615: 81: 1629: 1624: 1525: 1505: 1262: 1195: 367: 409:
is not connected. So, for example, any point of the circle is a local cut point.
17: 1590: 1510: 1220: 1215: 887: 538: 382:
and has no 'local cut-points' is homeomorphic to the Sierpinski carpet. Here a
157: 62: 1443: 1428: 1423: 1404: 1138: 58: 810: 80:. In three dimensions, a similar construction based on cubes is known as the 1399: 1345: 1257: 1108: 853: 836: 101: 73: 973:, Melmaruvathur, India, 2013, pp. 722-725, doi: 10.1109/iccsp.2013.6577150. 378:
uniquely characterized the Sierpiński carpet as follows: any curve that is
1300: 69: 1330: 1247: 1050: 935: 765:. Oxford Mathematical Monographs. Oxford University Press. p. 31. 50: 960:, Loughborough, UK, 2009, pp. 113-116, doi: 10.1109/LAPC.2009.5352584. 1318: 927: 661: 589: 269:
in the interior of the carpet. Then there is a square centered at
151: 36: 1023: 971:
International Conference on Communication and Signal Processing
140:
The process of recursively removing squares is an example of a
912:
Rummler, Hansklaus (1993). "Squaring the circle with holes".
986:, vol. 7, pp. 738-741, 2008, doi: 10.1109/LAWP.2008.2002808. 574:. They also showed that this random walk satisfies stronger 302:, so it cannot be contained in the carpet – a contradiction. 1019: 891: 871:
Brownian motion and harmonic analysis on Sierpiński carpets
30:"Sierpinski snowflake" redirects here. For other uses, see 717:
Automatic Sequences: Theory, Applications, Generalizations
366:
1, and every subset of the plane with these properties is
1015:
Sierpinski Carpet solved by means of modular arithmetics
92:
The construction of the Sierpiński carpet begins with a
160:
with the middle line erased creates a Sierpiński carpet
837:"Topological chcracterization of the Sierpinski curve" 648:
of two sets of real numbers has this property, so its
618:) smaller squares and removing the middle one. By the 416:
is a nonempty connected compact metric space. Suppose
352:{\displaystyle {\frac {\log 8}{\log 3}}\approx 1.8928} 61:
to two dimensions; another such generalization is the
316: 114: 1569: 1493: 1442: 1413: 1329: 1299: 1281: 1122: 1057: 958:Loughborough Antennas & Propagation Conference 351: 129: 598:A variation of the Sierpiński carpet, called the 70:subdividing a shape into smaller copies of itself 265:Suppose by contradiction that there is a point 57:in 1916. The carpet is a generalization of the 984:IEEE Antennas and Wireless Propagation Letters 72:, removing one or more copies, and continuing 1035: 8: 164:The area of the carpet is zero (in standard 1042: 1028: 1020: 525:is homeomorphic to the Sierpiński carpet. 898:On-Line Encyclopedia of Integer Sequences 852: 370:to some subset of the Sierpiński carpet. 317: 315: 113: 606:th step by subdividing each square into 529:Brownian motion on the Sierpiński carpet 506:the union of the boundaries of the sets 1596:List of fractals by Hausdorff dimension 701: 685:List of fractals by Hausdorff dimension 390:for which some connected neighborhood 7: 1000:Variations on the Theme of Tremas II 763:Some Novel Types of Fractal Geometry 622:, the area of the resulting set is 594:Third iteration of the Wallis sieve 499:is a simple closed curve for each 25: 1651:Iterated function system fractals 1578:How Long Is the Coast of Britain? 915:The American Mathematical Monthly 1666:Science and technology in Poland 130:{\displaystyle 0.1111\dots =0.2} 27:Plane fractal built from squares 868:Barlow, Martin; Bass, Richard, 104:to the remaining 8 subsquares, 41:6 steps of a Sierpinski carpet. 1602:The Fractal Geometry of Nature 1: 1618:Chaos: Making a New Science 364:Lebesgue covering dimension 96:. The square is cut into 9 1687: 888:Sloane, N. J. A. 723:Cambridge University Press 29: 1010:Sierpinski Carpet Project 258:of the carpet is empty. 854:10.4064/fm-45-1-320-324 142:finite subdivision rule 1610:The Beauty of Fractals 799:C. R. Acad. Sci. Paris 644:, no subset that is a 595: 398:has the property that 353: 246:, which tends to 0 as 182:the area of iteration 161: 131: 42: 709:Allouche, Jean-Paul; 593: 354: 155: 132: 40: 1556:Lewis Fry Richardson 1551:Hamid Naderi Yeganeh 1341:Burning Ship fractal 1273:Weierstrass function 472:and the boundary of 314: 112: 1314:Space-filling curve 1291:Multifractal system 1174:Space-filling curve 1159:Sierpinski triangle 308:Hausdorff dimension 78:Sierpiński triangle 53:first described by 1661:Topological spaces 1541:Aleksandr Lyapunov 1521:Desmond Paul Henry 1485:Self-avoiding walk 1480:Percolation theory 1124:Iterated function 1065:Fractal dimensions 1005:Sierpiński Cookies 901:. OEIS Foundation. 795:Sierpiński, Wacław 596: 580:Harnack inequality 349: 162: 127: 43: 1638: 1637: 1584:Coastline paradox 1561:Wacław Sierpiński 1546:Benoit Mandelbrot 1470:Fractal landscape 1378:Misiurewicz point 1283:Strange attractor 1164:Apollonian gasket 1154:Sierpinski carpet 736:978-0-521-82332-6 660:Mobile phone and 646:Cartesian product 380:locally connected 341: 310:of the carpet is 250:goes to infinity. 68:The technique of 55:Wacław Sierpiński 47:Sierpiński carpet 18:Sierpinski carpet 16:(Redirected from 1678: 1671:Eponymous curves 1501:Michael Barnsley 1368:Lyapunov fractal 1226:Sierpiński curve 1179:Blancmange curve 1044: 1037: 1030: 1021: 987: 980: 974: 967: 961: 954: 948: 947: 909: 903: 902: 884: 878: 877: 876: 865: 859: 858: 856: 829: 823: 822: 791: 785: 784: 755: 749: 748: 720: 711:Shallit, Jeffrey 706: 673:scale invariance 665:fractal antennas 642:Lebesgue measure 639: 637: 636: 633: 630: 629: 613: 605: 573: 566: 565: 564: 555: 551: 550: 549: 524: 516: 512: 502: 498: 492:the boundary of 488: 479:are disjoint if 478: 471: 465:the boundary of 461: 455:goes to zero as 454: 448:the diameter of 443: 419: 408: 397: 393: 389: 358: 356: 355: 350: 342: 340: 329: 318: 301: 294: 290: 289: 287: 286: 283: 280: 272: 268: 249: 245: 243: 241: 240: 237: 234: 219: 212: 210: 209: 206: 203: 185: 181: 166:Lebesgue measure 136: 134: 133: 128: 32:Sierpinski curve 21: 1686: 1685: 1681: 1680: 1679: 1677: 1676: 1675: 1641: 1640: 1639: 1634: 1565: 1516:Felix Hausdorff 1489: 1453:Brownian motion 1438: 1409: 1332: 1325: 1295: 1277: 1268:Pythagoras tree 1125: 1118: 1114:Self-similarity 1058:Characteristics 1053: 1048: 996: 991: 990: 981: 977: 968: 964: 955: 951: 928:10.2307/2324662 911: 910: 906: 886: 885: 881: 874: 867: 866: 862: 833:Whyburn, Gordon 831: 830: 826: 793: 792: 788: 773: 759:Semmes, Stephen 757: 756: 752: 737: 708: 707: 703: 698: 681: 669:self-similarity 658: 634: 631: 627: 626: 625: 623: 607: 603: 588: 576:large deviation 568: 560: 558: 557: 553: 545: 543: 542: 535:Brownian motion 531: 522: 514: 511: 507: 500: 497: 493: 480: 477: 473: 470: 466: 456: 453: 449: 441: 434: 427: 421: 417: 399: 395: 391: 387: 384:local cut-point 330: 319: 312: 311: 296: 292: 284: 281: 278: 277: 275: 274: 270: 266: 247: 238: 235: 232: 231: 229: 226: 221: 217: 207: 204: 201: 200: 198: 196: 187: 183: 180: 176: 156:Variant of the 150: 110: 109: 90: 35: 28: 23: 22: 15: 12: 11: 5: 1684: 1682: 1674: 1673: 1668: 1663: 1658: 1653: 1643: 1642: 1636: 1635: 1633: 1632: 1627: 1622: 1614: 1606: 1598: 1593: 1588: 1587: 1586: 1573: 1571: 1567: 1566: 1564: 1563: 1558: 1553: 1548: 1543: 1538: 1533: 1531:Helge von Koch 1528: 1523: 1518: 1513: 1508: 1503: 1497: 1495: 1491: 1490: 1488: 1487: 1482: 1477: 1472: 1467: 1466: 1465: 1463:Brownian motor 1460: 1449: 1447: 1440: 1439: 1437: 1436: 1434:Pickover stalk 1431: 1426: 1420: 1418: 1411: 1410: 1408: 1407: 1402: 1397: 1392: 1390:Newton fractal 1387: 1382: 1381: 1380: 1373:Mandelbrot set 1370: 1365: 1364: 1363: 1358: 1356:Newton fractal 1353: 1343: 1337: 1335: 1327: 1326: 1324: 1323: 1322: 1321: 1311: 1309:Fractal canopy 1305: 1303: 1297: 1296: 1294: 1293: 1287: 1285: 1279: 1278: 1276: 1275: 1270: 1265: 1260: 1255: 1253:Vicsek fractal 1250: 1245: 1240: 1235: 1234: 1233: 1228: 1223: 1218: 1213: 1208: 1203: 1198: 1193: 1192: 1191: 1181: 1171: 1169:Fibonacci word 1166: 1161: 1156: 1151: 1146: 1144:Koch snowflake 1141: 1136: 1130: 1128: 1120: 1119: 1117: 1116: 1111: 1106: 1105: 1104: 1099: 1094: 1089: 1084: 1083: 1082: 1072: 1061: 1059: 1055: 1054: 1049: 1047: 1046: 1039: 1032: 1024: 1018: 1017: 1012: 1007: 1002: 995: 994:External links 992: 989: 988: 975: 962: 949: 922:(9): 858–860. 904: 879: 860: 824: 786: 771: 750: 735: 700: 699: 697: 694: 693: 692: 687: 680: 677: 657: 654: 650:Jordan measure 620:Wallis product 587: 584: 530: 527: 519: 518: 509: 504: 495: 490: 475: 468: 463: 451: 439: 432: 425: 376:Gordon Whyburn 348: 345: 339: 336: 333: 328: 325: 322: 304: 303: 252: 251: 224: 215: 191: 178: 149: 146: 126: 123: 120: 117: 89: 86: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1683: 1672: 1669: 1667: 1664: 1662: 1659: 1657: 1654: 1652: 1649: 1648: 1646: 1631: 1628: 1626: 1623: 1620: 1619: 1615: 1612: 1611: 1607: 1604: 1603: 1599: 1597: 1594: 1592: 1589: 1585: 1582: 1581: 1579: 1575: 1574: 1572: 1568: 1562: 1559: 1557: 1554: 1552: 1549: 1547: 1544: 1542: 1539: 1537: 1534: 1532: 1529: 1527: 1524: 1522: 1519: 1517: 1514: 1512: 1509: 1507: 1504: 1502: 1499: 1498: 1496: 1492: 1486: 1483: 1481: 1478: 1476: 1473: 1471: 1468: 1464: 1461: 1459: 1458:Brownian tree 1456: 1455: 1454: 1451: 1450: 1448: 1445: 1441: 1435: 1432: 1430: 1427: 1425: 1422: 1421: 1419: 1416: 1412: 1406: 1403: 1401: 1398: 1396: 1393: 1391: 1388: 1386: 1385:Multibrot set 1383: 1379: 1376: 1375: 1374: 1371: 1369: 1366: 1362: 1361:Douady rabbit 1359: 1357: 1354: 1352: 1349: 1348: 1347: 1344: 1342: 1339: 1338: 1336: 1334: 1328: 1320: 1317: 1316: 1315: 1312: 1310: 1307: 1306: 1304: 1302: 1298: 1292: 1289: 1288: 1286: 1284: 1280: 1274: 1271: 1269: 1266: 1264: 1261: 1259: 1256: 1254: 1251: 1249: 1246: 1244: 1241: 1239: 1236: 1232: 1231:Z-order curve 1229: 1227: 1224: 1222: 1219: 1217: 1214: 1212: 1209: 1207: 1204: 1202: 1201:Hilbert curve 1199: 1197: 1194: 1190: 1187: 1186: 1185: 1184:De Rham curve 1182: 1180: 1177: 1176: 1175: 1172: 1170: 1167: 1165: 1162: 1160: 1157: 1155: 1152: 1150: 1149:Menger sponge 1147: 1145: 1142: 1140: 1137: 1135: 1134:Barnsley fern 1132: 1131: 1129: 1127: 1121: 1115: 1112: 1110: 1107: 1103: 1100: 1098: 1095: 1093: 1090: 1088: 1085: 1081: 1078: 1077: 1076: 1073: 1071: 1068: 1067: 1066: 1063: 1062: 1060: 1056: 1052: 1045: 1040: 1038: 1033: 1031: 1026: 1025: 1022: 1016: 1013: 1011: 1008: 1006: 1003: 1001: 998: 997: 993: 985: 979: 976: 972: 966: 963: 959: 953: 950: 945: 941: 937: 933: 929: 925: 921: 917: 916: 908: 905: 900: 899: 893: 889: 883: 880: 873: 872: 864: 861: 855: 850: 846: 842: 838: 834: 828: 825: 820: 816: 812: 808: 804: 801:(in French). 800: 796: 790: 787: 782: 778: 774: 772:0-19-850806-9 768: 764: 760: 754: 751: 746: 742: 738: 732: 728: 724: 719: 718: 712: 705: 702: 695: 691: 690:Menger sponge 688: 686: 683: 682: 678: 676: 674: 670: 666: 663: 655: 653: 651: 647: 643: 621: 617: 611: 601: 592: 585: 583: 581: 577: 571: 563: 548: 540: 536: 533:The topic of 528: 526: 505: 491: 487: 483: 464: 459: 447: 446: 445: 444:and suppose: 438: 431: 424: 415: 410: 406: 402: 385: 381: 377: 371: 369: 365: 360: 346: 343: 337: 334: 331: 326: 323: 320: 309: 299: 264: 261: 260: 259: 257: 227: 218: 194: 190: 174: 171: 170: 169: 167: 159: 154: 147: 145: 143: 138: 124: 121: 118: 115: 107: 103: 99: 95: 87: 85: 83: 82:Menger sponge 79: 75: 71: 66: 64: 60: 56: 52: 48: 39: 33: 19: 1630:Chaos theory 1625:Kaleidoscope 1616: 1608: 1600: 1526:Gaston Julia 1506:Georg Cantor 1331:Escape-time 1263:Gosper curve 1211:Lévy C curve 1196:Dragon curve 1075:Box-counting 983: 978: 970: 965: 957: 952: 919: 913: 907: 895: 882: 870: 863: 844: 840: 827: 802: 798: 789: 762: 753: 716: 704: 659: 656:Applications 609: 600:Wallis sieve 599: 597: 586:Wallis sieve 569: 561: 546: 532: 520: 513:is dense in 485: 481: 457: 436: 429: 422: 411: 404: 400: 383: 372: 368:homeomorphic 361: 305: 297: 262: 253: 222: 213: 192: 188: 172: 163: 139: 106:ad infinitum 105: 91: 88:Construction 67: 46: 44: 1621:(1987 book) 1613:(1986 book) 1605:(1982 book) 1591:Fractal art 1511:Bill Gosper 1475:Lévy flight 1221:Peano curve 1216:Moore curve 1102:Topological 1087:Correlation 847:: 320–324. 805:: 629–632. 725:. pp.  616:odd squares 539:random walk 386:is a point 158:Peano curve 102:recursively 74:recursively 63:Cantor dust 49:is a plane 1645:Categories 1429:Orbit trap 1424:Buddhabrot 1417:techniques 1405:Mandelbulb 1206:Koch curve 1139:Cantor set 841:Fund. Math 819:46.0295.02 781:0970.28001 745:1086.11015 696:References 175:Denote as 148:Properties 59:Cantor set 1536:Paul Lévy 1415:Rendering 1400:Mandelbox 1346:Julia set 1258:Hexaflake 1189:Minkowski 1109:Recursion 1092:Hausdorff 811:0001-4036 652:is zero. 567:for some 414:continuum 344:≈ 335:⁡ 324:⁡ 291:for some 119:⋯ 98:congruent 1446:fractals 1333:fractals 1301:L-system 1243:T-square 1051:Fractals 835:(1958). 761:(2001). 713:(2003). 679:See also 256:interior 1395:Tricorn 1248:n-flake 1097:Packing 1080:Higuchi 1070:Assouad 944:1247533 936:2324662 890:(ed.). 638:⁠ 624:⁠ 559:√ 544:√ 288:⁠ 276:⁠ 242:⁠ 230:⁠ 211:⁠ 199:⁠ 186:. Then 51:fractal 1656:Curves 1494:People 1444:Random 1351:Filled 1319:H tree 1238:String 1126:system 942:  934:  817:  809:  779:  769:  743:  733:  729:–406. 572:> 2 552:after 347:1.8928 263:Proof: 173:Proof: 116:0.1111 94:square 1570:Other 932:JSTOR 875:(PDF) 662:Wi-Fi 614:(the 521:Then 442:, ... 220:. So 896:The 807:ISSN 767:ISBN 731:ISBN 671:and 612:+ 1) 306:The 254:The 45:The 924:doi 920:100 849:doi 815:JFM 803:162 777:Zbl 741:Zbl 727:405 460:→ ∞ 403:− { 394:of 332:log 321:log 300:+ 1 228:= ( 195:+ 1 168:). 125:0.2 1647:: 1580:" 940:MR 938:. 930:. 918:. 894:. 845:45 843:. 839:. 813:. 775:. 739:. 721:. 608:(2 484:≠ 435:, 428:, 407:} 359:. 197:= 144:. 137:. 84:. 65:. 1576:" 1043:e 1036:t 1029:v 946:. 926:: 857:. 851:: 821:. 783:. 747:. 635:4 632:/ 628:π 610:i 604:i 570:β 562:n 554:n 547:n 523:X 517:. 515:X 510:i 508:C 503:; 501:i 496:i 494:C 489:; 486:j 482:i 476:j 474:C 469:i 467:C 462:; 458:i 452:i 450:C 440:3 437:C 433:2 430:C 426:1 423:C 418:X 405:p 401:U 396:p 392:U 388:p 338:3 327:8 298:k 293:k 285:3 282:/ 279:1 271:P 267:P 248:i 244:) 239:9 236:/ 233:8 225:i 223:a 216:i 214:a 208:9 205:/ 202:8 193:i 189:a 184:i 179:i 177:a 122:= 34:. 20:)

Index

Sierpinski carpet
Sierpinski curve

fractal
Wacław Sierpiński
Cantor set
Cantor dust
subdividing a shape into smaller copies of itself
recursively
Sierpiński triangle
Menger sponge
square
congruent
recursively
finite subdivision rule

Peano curve
Lebesgue measure
interior
Hausdorff dimension
Lebesgue covering dimension
homeomorphic
Gordon Whyburn
locally connected
continuum
Brownian motion
random walk
large deviation
Harnack inequality

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.