Knowledge (XXG)

Silicon photonics

Source đź“ť

285:
bandwidths. Graphene can absorb a broader range of wavelengths than germanium. That property could be exploited to transmit more data streams simultaneously in the same beam of light. Unlike germanium detectors, graphene photodetectors do not require applied voltage, which could reduce energy needs. Finally, graphene detectors in principle permit a simpler and less expensive on-chip integration. However, graphene does not strongly absorb light. Pairing a silicon waveguide with a graphene sheet better routes light and maximizes interaction. The first such device was demonstrated in 2011. Manufacturing such devices using conventional manufacturing techniques has not been demonstrated.
190:, have typical dimensions in the millimeter range and are usually used in telecom or datacom applications. Resonant devices, such as ring-resonators, can have dimensions of few tens of micrometers only, occupying therefore much smaller areas. In 2013, researchers demonstrated a resonant depletion modulator that can be fabricated using standard Silicon-on-Insulator Complementary Metal-Oxide-Semiconductor (SOI CMOS) manufacturing processes. A similar device has been demonstrated as well in bulk CMOS rather than in SOI. 74: 731:. The frequencies and mode shapes of these acoustic phonons are dependent on the geometry and size of the silicon waveguides, making it possible to produce strong Brillouin scattering at frequencies ranging from a few MHz to tens of GHz. Stimulated Brillouin scattering has been used to make narrowband optical amplifiers as well as all-silicon Brillouin lasers. The interaction between photons and acoustic phonons is also studied in the field of 297:. Construction can be greatly simplified by fabricating the optical and electronic parts on the same chip, rather than having them spread across multiple components. A wider aim is all-optical signal processing, whereby tasks which are conventionally performed by manipulating signals in electronic form are done directly in optical form. An important example is all- 571:. It can be mitigated, however, either by switching to longer wavelengths (at which the TPA to Kerr ratio drops), or by using slot waveguides (in which the internal nonlinear material has a lower TPA to Kerr ratio). Alternatively, the energy lost through TPA can be partially recovered (as is described below) by extracting it from the generated charge carriers. 1261:
Talebi Fard, Sahba; Grist, Samantha M.; Donzella, Valentina; Schmidt, Shon A.; Flueckiger, Jonas; Wang, Xu; Shi, Wei; Millspaugh, Andrew; Webb, Mitchell; Ratner, Daniel M.; Cheung, Karen C.; Chrostowski, Lukas (2013). "Label-free silicon photonic biosensors for use in clinical diagnostics". In Kubby,
583:
within silicon can both absorb photons and change its refractive index. This is particularly significant at high intensities and for long durations, due to the carrier concentration being built up by TPA. The influence of free charge carriers is often (but not always) unwanted, and various means have
177:
In a typical optical link, data is first transferred from the electrical to the optical domain using an electro-optic modulator or a directly modulated laser. An electro-optic modulator can vary the intensity and/or the phase of the optical carrier. In silicon photonics, a common technique to achieve
2248:
Barwicz, T.; Byun, H.; Gan, F.; Holzwarth, C. W.; Popovic, M. A.; Rakich, P. T.; Watts, M. R.; Ippen, E. P.; Kärtner, F. X.; Smith, H. I.; Orcutt, J. S.; Ram, R. J.; Stojanovic, V.; Olubuyide, O. O.; Hoyt, J. L.; Spector, S.; Geis, M.; Grein, M.; Lyszczarz, T.; Yoon, J. U. (2006). "Silicon photonics
2000:
Kang, Yimin; Liu, Han-Din; Morse, Mike; Paniccia, Mario J.; Zadka, Moshe; Litski, Stas; Sarid, Gadi; Pauchard, Alexandre; Kuo, Ying-Hao; Chen, Hui-Wen; Zaoui, Wissem Sfar; Bowers, John E.; Beling, Andreas; McIntosh, Dion C.; Zheng, Xiaoguang; Campbell, Joe C. (2008). "Monolithic germanium/silicon
277:
standard tops out at ten Gbit/s. The technology does not directly replace existing cables in that it requires a separate circuit board to interconvert electrical and optical signals. Its advanced speed offers the potential of reducing the number of cables that connect blades on a rack and even of
272:
In 2012, IBM announced that it had achieved optical components at the 90 nanometer scale that can be manufactured using standard techniques and incorporated into conventional chips. In September 2013, Intel announced technology to transmit data at speeds of 100 gigabits per second along a cable
240:
The first microprocessor with optical input/output (I/O) was demonstrated in December 2015 using an approach known as "zero-change" CMOS photonics. This is known as fiber-to-the-processor. This first demonstration was based on a 45 nm SOI node, and the bi-directional chip-to-chip link was
4132:
Jacobsen, Rune S.; Andersen, Karin N.; Borel, Peter I.; Fage-Pedersen, Jacob; Frandsen, Lars H.; Hansen, Ole; Kristensen, Martin; Lavrinenko, Andrei V.; Moulin, Gaid; Ou, Haiyan; Peucheret, Christophe; Zsigri, Beáta; Bjarklev, Anders (2006). "Strained silicon as a new electro-optic material".
284:
photodetectors have the potential to surpass germanium devices in several important aspects, although they remain about one order of magnitude behind current generation capacity, despite rapid improvement. Graphene devices can work at very high frequencies, and could in principle reach higher
3562:
Griffith, Austin G.; Lau, Ryan K.W.; Cardenas, Jaime; Okawachi, Yoshitomo; Mohanty, Aseema; Fain, Romy; Lee, Yoon Ho Daniel; Yu, Mengjie; Phare, Christopher T.; Poitras, Carl B.; Gaeta, Alexander L.; Lipson, Michal (24 February 2015). "Silicon-chip mid-infrared frequency comb generation".
178:
modulation is to vary the density of free charge carriers. Variations of electron and hole densities change the real and the imaginary part of the refractive index of silicon as described by the empirical equations of Soref and Bennett. Modulators can consist of both forward-biased
711:. Early studies of Raman amplification and Raman lasers started at UCLA which led to demonstration of net gain Silicon Raman amplifiers and silicon pulsed Raman laser with fiber resonator (Optics express 2004). Consequently, all-silicon Raman lasers have been fabricated in 2005. 703:, in which a photon is exchanged for a photon with a slightly different energy, corresponding to an excitation or a relaxation of the material. Silicon's Raman transition is dominated by a single, very narrow frequency peak, which is problematic for broadband phenomena such as 216:
Optical communications are conveniently classified by the reach, or length, of their links. The majority of silicon photonic communications have so far been limited to telecom and datacom applications, where the reach is of several kilometers or several meters respectively.
1838:
Shainline, J. M.; Orcutt, J. S.; Wade, M. T.; Nammari, K.; Tehar-Zahav, O.; Sternberg, Z.; Meade, R.; Ram, R. J.; Stojanović, V.; Popović, M. A. (2013). "Depletion-mode polysilicon optical modulators in a bulk complementary metal-oxide semiconductor process".
4249:
Cazzanelli, M.; Bianco, F.; Borga, E.; Pucker, G.; Ghulinyan, M.; Degoli, E.; Luppi, E.; VĂ©niard, V.; Ossicini, S.; Modotto, D.; Wabnitz, S.; Pierobon, R.; Pavesi, L. (2011). "Second-harmonic generation in silicon waveguides strained by silicon nitride".
627:
are out of phase, thus allowing power to be extracted from the waveguide. The source of this power is the light lost to two photon absorption, and so by recovering some of it, the net loss (and the rate at which heat is generated) can be reduced.
248:
source is required. Others think that it should remain off-chip because of thermal problems (the quantum efficiency decreases with temperature, and computer chips are generally hot) and because of CMOS-compatibility issues. One such device is the
152:. The presence of nonlinearity is of fundamental importance, as it enables light to interact with light, thus permitting applications such as wavelength conversion and all-optical signal routing, in addition to the passive transmission of light. 372:
Silicon photonics has been used in artificial intelligence inference processors that are more energy efficient than those using conventional transistors. This can be done using Mach-Zehnder interferometers (MZIs) which can be combined with
273:
approximately five millimeters in diameter for connecting servers inside data centers. Conventional PCI-E data cables carry data at up to eight gigabits per second, while networking cables reach 40 Gbit/s. The latest version of the
1948:
Vivien, Laurent; Rouvière, Mathieu; Fédéli, Jean-Marc; Marris-Morini, Delphine; Damlencourt, Jean François; Mangeney, Juliette; Crozat, Paul; El Melhaoui, Loubna; Cassan, Eric; Le Roux, Xavier; Pascal, Daniel; Laval, Suzanne (2007).
159:
are also of great academic interest, due to their unique guiding properties, they can be used for communications, interconnects, biosensors, and they offer the possibility to support exotic nonlinear optical phenomena such as
220:
Silicon photonics, however, is expected to play a significant role in computercom as well, where optical links have a reach in the centimeter to meter range. In fact, progress in computer technology (and the continuation of
3817:
Rybczynski, J.; Kempa, K.; Herczynski, A.; Wang, Y.; Naughton, M. J.; Ren, Z. F.; Huang, Z. P.; Cai, D.; Giersig, M. (2007). "Two-photon absorption and Kerr coefficients of silicon for 850– 2,200 nmi (4,100 km)".
1760:
Shainline, J. M.; Orcutt, J. S.; Wade, M. T.; Nammari, K.; Moss, B.; Georgas, M.; Sun, C.; Ram, R. J.; Stojanović, V.; Popović, M. A. (2013). "Depletion-mode carrier-plasma optical modulator in zero-change advanced CMOS".
497:
increases with optical intensity. This effect is not especially strong in bulk silicon, but it can be greatly enhanced by using a silicon waveguide to concentrate light into a very small cross-sectional area. This allows
3624:
Kuyken, Bart; Ideguchi, Takuro; Holzner, Simon; Yan, Ming; Hänsch, Theodor W.; Van Campenhout, Joris; Verheyen, Peter; Coen, Stéphane; Leo, Francois; Baets, Roel; Roelkens, Gunther; Picqué, Nathalie (20 February 2015).
735:, although 3D optical cavities are not necessary to observe the interaction. For instance, besides in silicon waveguides the optomechanical coupling has also been demonstrated in fibers and in chalcogenide waveguides. 441:
in that pulses with longer wavelengths travel with higher group velocity than those with shorter wavelength. By selecting a suitable waveguide geometry, however, it is possible to reverse this, and achieve
4854:
Levy, Shahar; Lyubin, Victor; Klebanov, Matvei; Scheuer, Jacob; Zadok, Avi (15 December 2012). "Stimulated Brillouin scattering amplification in centimeter-long directly written chalcogenide waveguides".
1816: 429:. By selecting the waveguide geometry, it is possible to tailor the dispersion to have desired properties, which is of crucial importance to applications requiring ultrashort pulses. In particular, the 465:, which has a much lower refractive index (of about 1.44 in the wavelength region of interest), and thus light at the silicon-silica interface will (like light at the silicon-air interface) undergo 2649:
Analui, Behnam; Guckenberger, Drew; Kucharski, Daniel; Narasimha, Adithyaram (2006). "A Fully Integrated 20-Gb/s Optoelectronic Transceiver Implemented in a Standard 0.13- ÎĽm CMOS SOI Technology".
2854: 2628: 237:
stated that, "Today, optics is a niche technology. Tomorrow, it's the mainstream of every chip that we build." In 2010 Intel demonstrated a 50 Gbit/s connection made with silicon photonics.
344:
and various academic institutes have been attempting to prove this functionality. A 2010 paper reported on a prototype 80 km, 12.5 Gbit/s transmission using microring silicon devices.
233:
may provide a way forward, and silicon photonics may prove particularly useful, once integrated on the standard silicon chips. In 2006, Intel Senior Vice President - and future CEO -
241:
operated at a rate of 2Ă—2.5 Gbit/s. The total energy consumption of the link was calculated to be of 16 pJ/b and was dominated by the contribution of the off-chip laser.
2603: 4636:
Van Laer, Raphaël; Kuyken, Bart; Van Thourhout, Dries; Baets, Roel (1 March 2015). "Interaction between light and highly confined hypersound in a silicon photonic nanowire".
4697:
Van Laer, Raphaël; Bazin, Alexandre; Kuyken, Bart; Baets, Roel; Thourhout, Dries Van (1 January 2015). "Net on-chip Brillouin gain based on suspended silicon nanowires".
197:. The semiconductor used for carrier generation has usually a band-gap smaller than the photon energy, and the most common choice is pure germanium. Most detectors use a 1667:
Chen, Long; Preston, Kyle; Manipatruni, Sasikanth; Lipson, Michal (2009). "Integrated GHz silicon photonic interconnect with micrometer-scale modulators and detectors".
1890:
Kucharski, D.; et al. (2010). "10 Gb/s 15mW optical receiver with integrated Germanium photodetector and hybrid inductor peaking in 0.13µm SOI CMOS technology".
771:
and the trailing edge blueshifted) and anomalous group velocity dispersion. Such solitons have been observed in silicon waveguides, by groups at the universities of
422: 1089: 2981: 1812: 3509:
Foster, M. A.; Turner, A. C.; Sharping, J. E.; Schmidt, B. S.; Lipson, M; Gaeta, A. L. (2006). "Broad-band optical parametric gain on a silicon photonic chip".
3095: 600:(in which the waveguides consist of thicker regions in a wider layer of silicon) enhance both the carrier recombination at the silica-silicon interface and the 2751:
Vlasov, Yurii; Green, William M. J.; Xia, Fengnian (2008). "High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks".
643:
of its crystalline structure. By applying strain however, the inversion symmetry of silicon can be broken. This can be obtained for example by depositing a
97:
components are integrated onto a single microchip. Consequently, silicon photonics is being actively researched by many electronics manufacturers including
2850: 3987:
Zevallos l., Manuel E.; Gayen, S. K.; Alrubaiee, M.; Alfano, R. R. (2005). "Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides".
2625: 186:. A prototype optical interconnect with microring modulators integrated with germanium detectors has been demonstrated. Non-resonant modulators, such as 1738: 1568:
Barrios, C.A.; Almeida, V.R.; Panepucci, R.; Lipson, M. (2003). "Electrooptic Modulation of Silicon-on-Insulator Submicrometer-Size Waveguide Devices".
2043: 3326: 1140:
SPIE (5 March 2015). "Yurii A. Vlasov plenary presentation: Silicon Integrated Nanophotonics: From Fundamental Science to Manufacturable Technology".
619:
so that the carriers are attracted away from the waveguide core. A more sophisticated scheme still, is to use the diode as part of a circuit in which
5084: 3737:
Yin, Lianghong; Agrawal, Govind P. (2006). "Impact of two-photon absorption on self-phase modulation in silicon waveguides: Free-carrier effects".
5135: 213:
capable of operating at 40 Gbit/s have been fabricated. Complete transceivers have been commercialized in the form of active optical cables.
4500:
Shin, Heedeuk; Qiu, Wenjun; Jarecki, Robert; Cox, Jonathan A.; Olsson, Roy H.; Starbuck, Andrew; Wang, Zheng; Rakich, Peter T. (December 2013).
301:, whereby the routing of optical signals is directly controlled by other optical signals. Another example is all-optical wavelength conversion. 652: 3446:
Koos, C; Jacome, L; Poulton, C; Leuthold, J; Freude, W (2007). "Nonlinear silicon-on-insulator waveguides for all-optical signal processing".
4108: 2893: 2078: 5074: 553: 3170:
Turner, Amy C.; Manolatou, Christina; Schmidt, Bradley S.; Lipson, Michal; Foster, Mark A.; Sharping, Jay E.; Gaeta, Alexander L. (2006).
2296:. Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies. 532:-sidebands and the eventual breakup of the waveform into a train of pulses. Another example (as described below) is soliton propagation. 4960: 3891: 2421: 1118: 1463:
Ding, W.; Benton, C.; Gorbach, A. V.; Wadsworth, W. J.; Knight, J. C.; Skryabin, D. V.; Gnan, M.; Sorrel, M.; de la Rue, R. M. (2008).
5125: 3004: 4927: 4091:
Manipatruni, Sasikanth; et al. (2007). "High Speed Carrier Injection 18 Gb/S Silicon Micro-ring Electro-optic Modulator".
3308: 2599: 2576: 2502:
Otterstrom, Nils T.; Behunin, Ryan O.; Kittlaus, Eric A.; Wang, Zheng; Rakich, Peter T. (8 June 2018). "A silicon Brillouin laser".
1245: 1012: 979: 580: 506:, in which the high refractive index of the silicon is used to confine light into a central region filled with a strongly nonlinear 2084: 1347:
Hsieh, I.-Wei; Chen, Xiaogang; Dadap, Jerry I.; Panoiu, Nicolae C.; Osgood, Richard M.; McNab, Sharee J.; Vlasov, Yurii A. (2006).
744: 564:
Kerr nonlinearity. At the 1.55 micrometre telecommunication wavelength, this imaginary part is approximately 10% of the real part.
481:
and so improve performance. Silicon photonics have also been built with silicon nitride as the material in the optical waveguides.
202: 971: 5039: 4358: 4194:"Phase-matched sum frequency generation in strained silicon waveguides using their second-order nonlinear optical susceptibility" 3231:"Single-mode porous silicon waveguide interferometers with unity confinement factors for ultra-sensitive surface adlayer sensing" 1608:
Liu, Ansheng; Liao, Ling; Rubin, Doron; Nguyen, Hat; Ciftcioglu, Berkehan; Chetrit, Yoel; Izhaky, Nahum; Paniccia, Mario (2007).
518: 187: 1570: 1035: 869: 437:
varies with wavelength) can be closely controlled. In bulk silicon at 1.55 micrometres, the group velocity dispersion (GVD) is
4758:
Van Laer, Raphaël; Baets, Roel; Van Thourhout, Dries (20 May 2016). "Unifying Brillouin scattering and cavity optomechanics".
446:
GVD, in which pulses with shorter wavelengths travel faster. Anomalous dispersion is significant, as it is a prerequisite for
5140: 2876:
Zortman, W. A. (2010). "Power Penalty Measurement and Frequency Chirp Extraction in Silicon Microdisk Resonator Modulators".
337: 1293:
Donzella, Valentina; Sherwali, Ahmed; Flueckiger, Jonas; Grist, Samantha M.; Fard, Sahba Talebi; Chrostowski, Lukas (2015).
3692:
Panoiu, Nicolae C.; Chen, Xiaogang; Osgood Jr., Richard M. (2006). "Modulation instability in silicon photonic nanowires".
3795: 3117:
Yin, Lianghong; Lin, Q.; Agrawal, Govind P. (2006). "Dispersion tailoring and soliton propagation in silicon waveguides".
2307: 374: 294: 51: 4811:
Kobyakov, Andrey; Sauer, Michael; Chowdhury, Dipak (31 March 2010). "Stimulated Brillouin scattering in optical fibers".
278:
separating processor, storage and memory into separate blades to allow more efficient cooling and dynamic configuration.
2106:
Doerr, Christopher R.; et al. (2015). "Silicon photonic integration in telecommunications". In Yamada, Koji (ed.).
656: 333: 3087: 2446:
Rong, H; Liu, A; Jones, R; Cohen, O; Hak, D; Nicolaescu, R; Fang, A; Paniccia, M (2005). "An all-silicon Raman laser".
2366: 1081: 5054: 2977: 2600:"Intel Unveils Optical Technology to Kill Copper Cables and Make Data Centers Run Faster | MIT Technology Review" 907:
Almeida, V. R.; Barrios, C. A.; Panepucci, R. R.; Lipson, M (2004). "All-optical control of light on a silicon chip".
792: 4032:
Jones, Richard; Rong, Haisheng; Liu, Ansheng; Fang, Alexander W.; Paniccia, Mario J.; Hak, Dani; Cohen, Oded (2005).
1905:
Gunn, Cary; Masini, Gianlorenzo; Witzens, J.; Capellini, G. (2006). "CMOS photonics using germanium photodetectors".
1181: 631:
As is mentioned above, free charge carrier effects can also be used constructively, in order to modulate the light.
193:
On the receiver side, the optical signal is typically converted back to the electrical domain using a semiconductor
5218: 4919: 3363: 1237: 469:, and remain in the silicon. This construct is known as silicon on insulator. It is named after the technology of 5223: 5161: 5105: 5034: 3033: 466: 411: 82: 1401:
Zhang, Jidong; Lin, Qiang; Piredda, Giovanni; Boyd, Robert W.; Agrawal, Govind P.; Fauchet, Philippe M. (2007).
5029: 3916: 1543: 845: 525: 451: 328:'s bandwidth capacity by providing micro-scale, ultra low power devices. Furthermore, the power consumption of 4575:
Kittlaus, Eric A.; Shin, Heedeuk; Rakich, Peter T. (1 July 2016). "Large Brillouin amplification in silicon".
4034:"Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering" 1951:"High speed and high responsivity germanium photodetector integrated in a Silicon-On-Insulator microwaveguide" 1734: 2917:
Biberman, Aleksandr; Manipatruni, Sasikanth; Ophir, Noam; Chen, Long; Lipson, Michal; Bergman, Keren (2010).
377:
to modulate the light passing though it, by physically bending the MZI which changes the phase of the light.
209:
as the semiconductor) have been integrated into silicon waveguides as well. More recently, silicon-germanium
5089: 4953: 3989: 3820: 2039: 1033:
Lipson, Michal (2005). "Guiding, Modulating, and Emitting Light on Silicon – Challenges and Opportunities".
776: 671:
between the optical waves involved. Second-order nonlinear waveguides based on strained silicon can achieve
608: 5166: 5064: 474: 457:
In order for the silicon photonic components to remain optically independent from the bulk silicon of the
2388: 3091: 764: 593: 541: 478: 391: 141: 461:
on which they are fabricated, it is necessary to have a layer of intervening material. This is usually
182:, which generally generate large phase-shifts but suffer of lower speeds, as well as of reverse-biased 1813:"Major silicon photonics breakthrough could allow for continued exponential growth in microprocessors" 4864: 4820: 4777: 4716: 4655: 4594: 4523: 4454: 4399: 4380:
Hon, Nick K.; Tsia, Kevin K.; Solli, Daniel R.; Jalali, Bahram (2009). "Periodically poled silicon".
4324: 4259: 4205: 4142: 4047: 3998: 3953: 3900: 3829: 3748: 3703: 3648: 3582: 3520: 3457: 3372: 3335: 3242: 3185: 3128: 2932: 2806: 2707: 2658: 2521: 2457: 2334: 2258: 2214: 2111: 2012: 1964: 1914: 1848: 1770: 1688: 1623: 1579: 1527: 1478: 1416: 1362: 1306: 1198: 1189: 1044: 918: 878: 829: 732: 728: 470: 250: 230: 210: 149: 110: 55: 5197: 5130: 5120: 5049: 3627:"An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide" 2294:
Demonstration of an Electronic Photonic Integrated Circuit in a Commercial Scaled Bulk CMOS Process
1004: 772: 704: 458: 426: 3412:
Blumenthal, Daniel J.; Heideman, Rene; Geuzebroek, Douwe; Leinse, Arne; Roeloffzen, Chris (2018).
5228: 4946: 4896: 4793: 4767: 4740: 4706: 4679: 4645: 4618: 4584: 4513: 4423: 4389: 4174: 4114: 4073: 4014: 3845: 3772: 3638: 3606: 3572: 3544: 3491: 3211: 3152: 2958: 2899: 2832: 2733: 2674: 2553: 2511: 2481: 2358: 2274: 2230: 2133: 1930: 1872: 1794: 1712: 1678: 1649: 1442: 1349:"Ultrafast-pulse self-phase modulation and third-order dispersion in Si photonic wire-waveguides" 1275: 1214: 1060: 942: 780: 691:
coated with a highly nonlinear organic cladding and in periodically strained silicon waveguides.
549: 529: 402:, of about 3.5. The tight optical confinement provided by this high index allows for microscopic 118: 86: 1295:"Design and fabrication of SOI micro-ring resonators based on sub-wavelength grating waveguides" 73: 4441:
Rakich, Peter T.; Reinke, Charles; Camacho, Ryan; Davids, Paul; Wang, Zheng (30 January 2012).
2066: 5003: 4923: 4888: 4880: 4836: 4732: 4671: 4610: 4557: 4539: 4482: 4415: 4350: 4342: 4293: 4285: 4231: 4223: 4166: 4158: 4104: 4065: 3969: 3764: 3719: 3674: 3598: 3536: 3483: 3304: 3276: 3268: 3260: 3229:
Talukdar, Tahmid H.; Allen, Gabriel D.; Kravchenko, Ivan; Ryckman, Judson D. (5 August 2019).
3203: 3144: 2950: 2889: 2824: 2725: 2545: 2537: 2473: 2350: 2074: 1982: 1864: 1786: 1704: 1641: 1496: 1434: 1380: 1324: 1241: 1008: 975: 934: 797: 748: 660: 490: 403: 361: 298: 2417: 2067:"A 40-Gb/s QSFP optoelectronic transceiver in a 0.13 µm CMOS silicon-on-insulator technology" 1114: 5233: 5145: 5110: 5059: 4872: 4828: 4785: 4724: 4663: 4602: 4547: 4531: 4472: 4462: 4407: 4332: 4275: 4267: 4213: 4150: 4096: 4055: 4006: 3961: 3908: 3837: 3756: 3711: 3664: 3656: 3590: 3528: 3511: 3473: 3465: 3425: 3380: 3343: 3324:
Malitson, I. H. (1965). "Interspecimen Comparison of the Refractive Index of Fused Silica".
3250: 3193: 3136: 2940: 2881: 2814: 2762: 2753: 2715: 2666: 2529: 2465: 2448: 2342: 2266: 2222: 2187: 2164: 2119: 2020: 2003: 1972: 1922: 1856: 1778: 1696: 1631: 1587: 1535: 1486: 1424: 1370: 1314: 1267: 1206: 1145: 1052: 926: 909: 886: 837: 676: 624: 585: 557: 514: 499: 494: 415: 399: 258: 161: 129: 59: 3059: 567:
The influence of TPA is highly disruptive, as it both wastes light, and generates unwanted
528:, in which it reinforces deviations from an optical waveform, leading to the generation of 3942:(2006). "Nonlinear absorption and Raman gain in helium-ion-implanted silicon waveguides". 2788: 2632: 2145: 756: 644: 305: 4728: 2572: 54:
systems. The silicon typically lies on top of a layer of silica in what (by analogy with
4868: 4824: 4781: 4720: 4659: 4598: 4527: 4458: 4403: 4328: 4263: 4209: 4146: 4093:
LEOS 2007 - IEEE Lasers and Electro-Optics Society Annual Meeting Conference Proceedings
4051: 4002: 3957: 3904: 3833: 3752: 3707: 3652: 3586: 3524: 3461: 3376: 3339: 3246: 3189: 3132: 2936: 2810: 2711: 2662: 2525: 2461: 2338: 2262: 2218: 2115: 2016: 1968: 1918: 1852: 1774: 1692: 1627: 1583: 1531: 1482: 1420: 1366: 1310: 1202: 1048: 922: 882: 833: 5192: 5069: 4988: 4552: 4501: 4038: 3944: 3739: 3694: 3669: 3626: 3448: 3176: 3119: 2923: 2797: 2793:"Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides" 2698: 1955: 1669: 1614: 1469: 1407: 1353: 818:"All-silicon active and passive guided-wave components for lambda= 1.3 and 1.6 microns" 688: 684: 680: 679:. So far, however, experimental demonstrations are based only on designs which are not 672: 668: 648: 640: 561: 503: 434: 395: 222: 106: 39: 31: 4312: 2851:"After six years of planning, Compass-EOS takes on Cisco to make blazing-fast routers" 2184:
Recent Progress in Silicon Photonics R&D and Manufacturing on 300mm Wafer Platform
1210: 502:
effects to be seen at low powers. The nonlinearity can be enhanced further by using a
5212: 4993: 4797: 4622: 4178: 3849: 3548: 2784: 2362: 1934: 1279: 1218: 760: 597: 262: 254: 234: 226: 194: 114: 4900: 4744: 4683: 4427: 4118: 4018: 3776: 3215: 3156: 2962: 2903: 2836: 2737: 2678: 2557: 2278: 2234: 1798: 1716: 1653: 1446: 1064: 647:
layer on a thin silicon film. Second-order nonlinear phenomena can be exploited for
4983: 4077: 3939: 3610: 3495: 2485: 1876: 1730: 946: 743:
The evolution of light through silicon waveguides can be approximated with a cubic
700: 616: 137: 2919:"First demonstration of long-haul transmission using silicon microring modulators" 607:
A more advanced scheme for carrier removal is to integrate the waveguide into the
4443:"Giant Enhancement of Stimulated Brillouin Scattering in the Subwavelength Limit" 3361:
Celler, G. K.; Cristoloveanu, Sorin (2003). "Frontiers of silicon-on-insulator".
1610:"High-speed optical modulation based on carrier depletion in a silicon waveguide" 596:. A suitable choice of geometry can also be used to reduce the carrier lifetime. 4311:
Alloatti, L.; Korn, D.; Weimann, C.; Koos, C.; Freude, W.; Leuthold, J. (2012).
723:
with a frequency of about 15 THz. However, silicon waveguides also support
708: 513:
Kerr nonlinearity underlies a wide variety of optical phenomena. One example is
357: 269:
or an all-silicon Brillouin lasers wherein silicon serves as the lasing medium.
266: 198: 183: 133: 94: 4789: 3791: 3429: 3413: 3398: 2226: 1465:"Solitons and spectral broadening in long silicon-on- insulator photonic wires" 105:, as well as by academic research groups, as a means for keeping on track with 5171: 5115: 5079: 4997: 4467: 4442: 4100: 1182:"Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides" 768: 353: 332:
may be significantly reduced if this is successfully achieved. Researchers at
329: 309: 47: 4884: 4840: 4736: 4675: 4614: 4606: 4543: 4486: 4419: 4346: 4289: 4227: 4162: 3912: 3264: 2670: 2541: 2024: 1539: 841: 5024: 4969: 4667: 4502:"Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides" 3172:"Tailored anomalous group-velocity dispersion in silicon channel waveguides" 2766: 2692:
Boyraz, Ă–Zdal; Koonath, Prakash; Raghunathan, Varun; Jalali, Bahram (2004).
2533: 2322: 2168: 2124: 1591: 1056: 890: 727:
excitations. The interaction of these acoustic phonons with light is called
612: 601: 407: 206: 179: 156: 35: 23: 4892: 4561: 4354: 4297: 4235: 4170: 4069: 4060: 4033: 3973: 3768: 3723: 3678: 3602: 3540: 3487: 3347: 3280: 3207: 3148: 2954: 2828: 2729: 2720: 2693: 2549: 2477: 2354: 2191: 1986: 1868: 1790: 1708: 1645: 1500: 1438: 1384: 1328: 938: 398:
with wavelengths above about 1.1 micrometres. Silicon also has a very high
2885: 85:
techniques, and because silicon is already used as the substrate for most
4876: 4832: 4337: 4218: 4193: 3965: 3760: 3715: 3469: 3255: 3230: 3198: 3171: 3140: 2945: 2918: 2819: 2792: 2626:"Graphene-Based Optical Communication Could Make Computing More Efficient 2270: 1977: 1950: 1860: 1782: 1700: 1636: 1609: 1491: 1464: 1429: 1402: 1375: 1348: 1319: 1294: 1149: 664: 325: 281: 43: 4477: 4280: 4154: 3532: 2469: 2346: 930: 639:
Second-order nonlinearities cannot exist in bulk silicon because of the
4535: 3660: 3594: 2406:. 2014 International Semiconductor Laser Conference\. IEEE. p. 29. 1271: 752: 620: 507: 447: 341: 145: 27: 4411: 4010: 3841: 3384: 3272: 2694:"All optical switching and continuum generation in silicon waveguides" 1926: 5187: 4271: 3478: 2108:
Photonic Integration and Photonics-Electronics Convergence on Silicon
724: 720: 589: 545: 462: 316:, was the first to present a commercial silicon-to-photonics router. 313: 90: 3886: 1515: 817: 521:, parametric wavelength conversion, and frequency comb generation., 4772: 4711: 4589: 2516: 2323:"Single-chip microprocessor that communicates directly using light" 5044: 4650: 4518: 4394: 3643: 3577: 2205:
Meindl, J. D. (2003). "Beyond Moore's Law: the interconnect era".
1892:
Solid-State Circuits Conference Digest of Technical Papers (ISSCC)
1683: 552:. This process is related to the Kerr effect, and by analogy with 406:, which may have cross-sectional dimensions of only a few hundred 293:
Another application of silicon photonics is in signal routers for
245: 125: 102: 72: 2308:"Intel's 50Gbps Silicon Photonics Link: The Future of Interfaces" 3871: 3399:"Silicon photonics: Silicon nitride versus silicon-on-insulator" 2163:. Optical Fiber Communication Conference. OSA. pp. Th4H.1. 568: 425:
that result from this tight confinement substantially alter the
4942: 2186:. Optical Fiber Communication Conference. OSA. pp. W3A.1. 2071:
Proceedings of the Optical Fiber Communication Conference (OFC)
2389:"Silicon Photonics Stumbles at the Last Meter - IEEE Spectrum" 1085: 274: 98: 867:
Jalali, Bahram; Fathpour, Sasan (2006). "Silicon photonics".
473:
in electronics, whereby components are built upon a layer of
4938: 3005:"Silicon Photonics for Artificial Intelligence Acceleration" 2001:
avalanche photodiodes with 340 GHz gain–bandwidth product".
667:
generation. Efficient nonlinear conversion however requires
4313:"Second-order nonlinear silicon-organic hybrid waveguides" 2040:"Intel trumpets world's fastest silicon photonic detector" 719:
In the Raman effect, photons are red- or blue-shifted by
3303:(2nd ed.). San Diego (California): Academic Press. 2573:"IBM integrates optics and electronics on a single chip" 3034:"Optical Compute Promises Game-Changing AI Performance" 2497: 2495: 89:, it is possible to create hybrid devices in which the 16:
Photonic systems which use silicon as an optical medium
2978:"Can Magic Leap Do What It Claims with $ 592 Million?" 410:. Single mode propagation can be achieved, thus (like 1180:
Dekker, R; Usechak, N; Först, M; Driessen, A (2008).
320:
Long range telecommunications using silicon photonics
3792:"Silicon photonics solves its "fundamental problem"" 584:
been proposed to remove them. One such scheme is to
324:
Silicon microphotonics can potentially increase the
201:
for carrier extraction, however, detectors based on
81:
Silicon photonic devices can be made using existing
5180: 5154: 5098: 5017: 4976: 707:, but is beneficial for narrowband devices such as 360:chip using silicon photonics for the purpose of an 767:(which causes the leading edge of the pulse to be 128:through silicon devices is governed by a range of 2418:"Hybrid Silicon Laser – Intel Platform Research" 253:, in which the silicon is bonded to a different 3874:International Conference on Group IV Photonics. 3294: 3292: 3290: 1563: 1561: 1109: 1107: 517:, which has been applied in silicon to realise 225:) is becoming increasingly dependent on faster 3082: 3080: 2783:Foster, Mark A.; Turner, Amy C.; Salem, Reza; 2778: 2776: 2249:for compact, energy-efficient interconnects". 2110:. Vol. 3. Frontiers Media SA. p. 7. 1175: 1173: 1171: 1169: 1167: 1165: 1163: 1161: 1159: 902: 900: 816:Soref, Richard A.; Lorenzo, Joseph P. (1986). 4954: 3868:Energy Harvesting in Silicon Raman Amplifiers 1514:Soref, Richard A.; Bennett, Brian R. (1987). 1396: 1394: 1342: 1340: 1338: 1076: 1074: 1028: 1026: 1024: 962: 960: 958: 956: 8: 3861: 3859: 3441: 3439: 2441: 2439: 1735:"Intel cranks up next-gen chip-to-chip play" 1458: 1456: 4914:Drazin, P. G. & Johnson, R. S. (1989). 1603: 1601: 995: 993: 991: 4961: 4947: 4939: 687:can be obtained as well in silicon double 4771: 4710: 4649: 4588: 4551: 4517: 4476: 4466: 4393: 4336: 4279: 4217: 4059: 3668: 3642: 3576: 3477: 3327:Journal of the Optical Society of America 3254: 3197: 2944: 2818: 2719: 2515: 2123: 1976: 1682: 1635: 1490: 1428: 1403:"Optical solitons in a silicon waveguide" 1374: 1318: 5085:Time stretch analog-to-digital converter 1232:Butcher, Paul N.; Cotter, David (1991). 386:Optical guiding and dispersion tailoring 34:. The silicon is usually patterned with 5136:Monte Carlo method for photon transport 4192:Avrutsky, Ivan; Soref, Richard (2011). 808: 46:, most commonly at the 1.55 micrometre 3414:"Silicon Nitride in Silicon Photonics" 2878:Optical Fiber Communication Conference 2207:Computing in Science & Engineering 2161:Monolithic Silicon Photonics at 25Gb/s 2141: 2131: 653:spontaneous parametric down-conversion 4361:from the original on 29 February 2020 3058:Ward-Foxton, Sally (24 August 2020). 3032:Ward-Foxton, Sally (24 August 2020). 2606:from the original on 5 September 2013 2182:Frederic, Boeuf; et al. (2015). 604:of carriers from the waveguide core. 289:Optical routers and signal processors 7: 5075:Subwavelength-diameter optical fibre 3919:from the original on 2 December 2020 2651:IEEE Journal of Solid-State Circuits 2571:Borghino, Dario (13 December 2012). 1546:from the original on 2 December 2020 848:from the original on 2 December 2020 661:ultra-fast optical signal processing 265:. Other devices include all-silicon 244:Some researchers believe an on-chip 3892:IEEE Journal of Quantum Electronics 3887:"Electrooptical Effects in Silicon" 2976:Bourzac, Katherine (11 June 2015). 2292:Orcutt, J. S.; et al. (2008). 2159:Orcutt, Jason; et al. (2016). 2046:from the original on 10 August 2017 1819:from the original on 8 October 2013 1741:from the original on 4 October 2012 1520:IEEE Journal of Quantum Electronics 1516:"Electrooptical effects in silicon" 822:IEEE Journal of Quantum Electronics 77:Silicon photonics 300 mm wafer 5126:Extraordinary optical transmission 3060:"How Does Optical Computing Work?" 2853:. venturebeat.com. 12 March 2013. 2579:from the original on 22 April 2013 2087:from the original on 16 April 2023 2038:Modine, Austin (8 December 2008). 1266:. Vol. 8629. p. 862909. 1092:from the original on 9 August 2009 1082:"Silicon Integrated Nanophotonics" 1001:Silicon photonics: an introduction 14: 2984:from the original on 14 June 2015 2424:from the original on 28 June 2009 2369:from the original on 23 June 2020 1121:from the original on 28 June 2009 747:, which is notable for admitting 524:Kerr nonlinearity can also cause 42:components. These operate in the 5040:Erbium-doped waveguide amplifier 4813:Advances in Optics and Photonics 3798:from the original on 31 May 2008 3098:from the original on 14 May 2016 3094:Infrared Multilayer Laboratory. 1234:The elements of nonlinear optics 763:) result from a balance between 575:Free charge carrier interactions 519:optical parametric amplification 22:is the study and application of 3885:Soref, R.; Bennett, B. (1987). 3790:Nikbin, Darius (20 July 2006). 2857:from the original on 5 May 2013 2404:Semiconductor lasers on silicon 2321:Sun, Chen; et al. (2015). 1571:Journal of Lightwave Technology 1036:Journal of Lightwave Technology 870:Journal of Lightwave Technology 352:As of 2015, US startup company 229:between and within microchips. 5141:Wavelength selective switching 4729:10.1088/1367-2630/17/11/115005 2624:Orcutt, Mike (2 October 2013) 1815:. KurzweilAI. 8 October 2013. 745:Nonlinear Schrödinger equation 433:(that is, the extent to which 308:named "Compass-EOS", based in 1: 2251:Journal of Optical Networking 1262:Joel; Reed, Graham T (eds.). 414:) eliminating the problem of 375:nanoelectromechanical systems 203:metal–semiconductor junctions 52:fiber optic telecommunication 188:Mach-Zehnder interferometers 5055:Photonic integrated circuit 3401:. March 2016. pp. 1–3. 3299:Agrawal, Govind P. (1995). 1211:10.1088/0022-3727/40/14/r01 793:Photonic integrated circuit 556:, can be thought of as the 427:optical dispersion relation 423:dielectric boundary effects 5250: 4920:Cambridge University Press 4790:10.1103/PhysRevA.93.053828 3430:10.1109/JPROC.2018.2861576 3364:Journal of Applied Physics 2227:10.1109/MCISE.2003.1166548 1238:Cambridge University Press 544:(TPA), in which a pair of 5162:Fiber-optic communication 5106:Arrayed waveguide grating 5035:Delay line interferometer 4916:Solitons: an introduction 4468:10.1103/PhysRevX.2.011008 4101:10.1109/leos.2007.4382517 2980:. MIT Technology Review. 759:(which are also known in 683:. It has been shown that 635:Second-order nonlinearity 467:total internal reflection 431:group velocity dispersion 412:single-mode optical fiber 144:and interactions between 83:semiconductor fabrication 5030:Optical DPSK demodulator 4607:10.1038/nphoton.2016.112 3913:10.1109/JQE.1987.1073206 2671:10.1109/JSSC.2006.884388 2602:. Technologyreview.com. 2025:10.1038/nphoton.2008.247 1540:10.1109/JQE.1987.1073206 842:10.1109/JQE.1986.1073057 657:parametric amplification 554:complex refractive index 526:modulational instability 452:modulational instability 132:phenomena including the 117:both between and within 5090:Wireless power transfer 4668:10.1038/nphoton.2015.11 4382:Applied Physics Letters 3990:Applied Physics Letters 3821:Applied Physics Letters 3418:Proceedings of the IEEE 2767:10.1038/nphoton.2008.31 2534:10.1126/science.aar6113 2402:Bowers, John E (2014). 2169:10.1364/OFC.2016.Th4H.1 2125:10.3389/fphy.2015.00037 1592:10.1109/JLT.2003.818167 1057:10.1109/JLT.2005.858225 891:10.1109/JLT.2006.885782 489:Silicon has a focusing 368:Artificial intelligence 5167:Optical neural network 5065:Photonic-crystal fiber 4699:New Journal of Physics 4061:10.1364/OPEX.13.000519 3348:10.1364/JOSA.55.001205 3301:Nonlinear fiber optics 2721:10.1364/OPEX.12.004094 2192:10.1364/OFC.2015.W3A.1 2065:Narasimha, A. (2008). 1264:Silicon Photonics VIII 677:dispersion-engineering 173:Optical communications 78: 56:a similar construction 4506:Nature Communications 3631:Nature Communications 3565:Nature Communications 3092:University of Reading 2886:10.1364/OFC.2010.OMI7 2637:MIT Technology Review 765:self phase modulation 699:Silicon exhibits the 594:carrier recombination 548:can act to excite an 542:two-photon absorption 536:Two-photon absorption 479:parasitic capacitance 295:optical communication 231:Optical interconnects 211:avalanche photodiodes 142:two-photon absorption 111:optical interconnects 76: 4877:10.1364/OL.37.005112 4833:10.1364/AOP.2.000001 4338:10.1364/OE.20.020506 4219:10.1364/OE.19.021707 4095:. pp. 537–538. 3966:10.1364/OL.31.001714 3866:Tsia, K. M. (2006). 3761:10.1364/OL.32.002031 3716:10.1364/OL.31.003609 3470:10.1364/OE.15.005976 3256:10.1364/OE.27.022485 3199:10.1364/OE.14.004357 3141:10.1364/OL.31.001295 2946:10.1364/OE.18.015544 2820:10.1364/OE.15.012949 2271:10.1364/JON.6.000063 1978:10.1364/OE.15.009843 1861:10.1364/OL.38.002729 1783:10.1364/OL.38.002657 1701:10.1364/OE.17.015248 1637:10.1364/OE.15.000660 1492:10.1364/OE.16.003310 1430:10.1364/OE.15.007682 1376:10.1364/OE.14.012380 1320:10.1364/OE.23.004791 1190:Journal of Physics D 1150:10.1117/2.3201503.15 733:cavity optomechanics 729:Brillouin scattering 715:The Brillouin effect 592:in order to enhance 581:free charge carriers 471:silicon on insulator 348:Light-field displays 251:hybrid silicon laser 150:free charge carriers 64:silicon on insulator 5198:Solid-state physics 5131:Holographic grating 5121:Diffraction grating 5050:Optical interleaver 4869:2012OptL...37.5112L 4825:2010AdOP....2....1K 4782:2016PhRvA..93e3828V 4721:2015NJPh...17k5005V 4660:2015NaPho...9..199V 4599:2016NaPho..10..463K 4528:2013NatCo...4.1944S 4459:2012PhRvX...2a1008R 4404:2009ApPhL..94i1116H 4329:2012OExpr..2020506A 4264:2012NatMa..11..148C 4210:2011OExpr..1921707A 4155:10.1038/nature04706 4147:2006Natur.441..199J 4052:2005OExpr..13..519J 4003:2005ApPhL..86a1115Z 3958:2006OptL...31.1714L 3905:1987IJQE...23..123S 3834:2007ApPhL..90b1104R 3753:2007OptL...32.2031Y 3708:2006OptL...31.3609P 3653:2015NatCo...6.6310K 3587:2015NatCo...6.6299G 3533:10.1038/nature04932 3525:2006Natur.441..960F 3462:2007OExpr..15.5976K 3377:2003JAP....93.4955C 3340:1965JOSA...55.1205M 3247:2019OExpr..2722485T 3241:(16): 22485–22498. 3190:2006OExpr..14.4357T 3133:2006OptL...31.1295Y 2937:2010OExpr..1815544B 2931:(15): 15544–15552. 2811:2007OExpr..1512949F 2805:(20): 12949–12958. 2789:Gaeta, Alexander L. 2712:2004OExpr..12.4094B 2663:2006IJSSC..41.2945A 2631:10 May 2021 at the 2526:2018Sci...360.1113O 2510:(6393): 1113–1116. 2470:10.1038/nature03273 2462:2005Natur.433..292R 2347:10.1038/nature16454 2339:2015Natur.528..534S 2263:2007JON.....6...63B 2219:2003CSE.....5a..20M 2116:2015FrP.....3...37D 2017:2009NaPho...3...59K 1969:2007OExpr..15.9843V 1919:2006ECSTr...3g..17G 1853:2013OptL...38.2729S 1775:2013OptL...38.2657S 1693:2009OExpr..1715248C 1677:(17): 15248–15256. 1628:2007OExpr..15..660L 1584:2003JLwT...21.2332B 1532:1987IJQE...23..123S 1483:2008OExpr..16.3310D 1421:2007OExpr..15.7682Z 1367:2006OExpr..1412380H 1361:(25): 12380–12387. 1311:2015OExpr..23.4791D 1203:2007JPhD...40..249D 1115:"Silicon Photonics" 1049:2005JLwT...23.4222L 1005:John Wiley and Sons 931:10.1038/nature02921 923:2004Natur.431.1081A 917:(7012): 1081–1084. 883:2006JLwT...24.4600J 834:1986IJQE...22..873S 705:Raman amplification 477:in order to reduce 381:Physical properties 162:soliton propagation 124:The propagation of 87:integrated circuits 4536:10.1038/ncomms2943 3794:. IOP publishing. 3661:10.1038/ncomms7310 3595:10.1038/ncomms7299 1272:10.1117/12.2005832 649:optical modulation 550:electron-hole pair 404:optical waveguides 113:to provide faster 79: 26:systems which use 5219:Silicon photonics 5206: 5205: 5009:Silicon photonics 5004:Optical computing 4760:Physical Review A 4447:Physical Review X 4412:10.1063/1.3094750 4141:(7090): 199–202. 4110:978-1-4244-0924-2 4011:10.1063/1.1846145 3952:(11): 1714–1716. 3842:10.1063/1.2430400 3747:(14): 2031–2033. 3456:(10): 5976–5990. 3424:(12): 2209–2231. 3385:10.1063/1.1558223 3334:(10): 1205–1209. 3184:(10): 4357–4362. 2895:978-1-55752-885-8 2880:. pp. OMI7. 2706:(17): 4094–4102. 2657:(12): 2945–2955. 2456:(7023): 292–294. 2333:(7583): 534–538. 2080:978-1-55752-859-9 1963:(15): 9843–9848. 1927:10.1149/1.2355790 1847:(15): 2729–2731. 1769:(15): 2657–2659. 1578:(10): 2332–2339. 1415:(12): 7682–7688. 1197:(14): R249–R271. 1043:(12): 4222–4238. 968:Silicon photonics 877:(12): 4600–4615. 798:Optical computing 755:solutions. These 588:the silicon with 540:Silicon exhibits 500:nonlinear optical 491:Kerr nonlinearity 485:Kerr nonlinearity 450:propagation, and 362:augmented reality 299:optical switching 130:nonlinear optical 20:Silicon photonics 5241: 5224:Nonlinear optics 5146:Photon diffusion 5111:Atomic coherence 5060:Photonic crystal 4963: 4956: 4949: 4940: 4934: 4933: 4911: 4905: 4904: 4851: 4845: 4844: 4808: 4802: 4801: 4775: 4755: 4749: 4748: 4714: 4694: 4688: 4687: 4653: 4638:Nature Photonics 4633: 4627: 4626: 4592: 4577:Nature Photonics 4572: 4566: 4565: 4555: 4521: 4497: 4491: 4490: 4480: 4470: 4438: 4432: 4431: 4397: 4377: 4371: 4370: 4368: 4366: 4340: 4323:(18): 20506–15. 4308: 4302: 4301: 4283: 4272:10.1038/nmat3200 4252:Nature Materials 4246: 4240: 4239: 4221: 4204:(22): 21707–16. 4189: 4183: 4182: 4129: 4123: 4122: 4088: 4082: 4081: 4063: 4029: 4023: 4022: 3984: 3978: 3977: 3935: 3929: 3928: 3926: 3924: 3882: 3876: 3875: 3863: 3854: 3853: 3814: 3808: 3807: 3805: 3803: 3787: 3781: 3780: 3734: 3728: 3727: 3689: 3683: 3682: 3672: 3646: 3621: 3615: 3614: 3580: 3559: 3553: 3552: 3506: 3500: 3499: 3481: 3443: 3434: 3433: 3409: 3403: 3402: 3395: 3389: 3388: 3358: 3352: 3351: 3321: 3315: 3314: 3296: 3285: 3284: 3258: 3226: 3220: 3219: 3201: 3167: 3161: 3160: 3127:(9): 1295–1297. 3114: 3108: 3107: 3105: 3103: 3084: 3075: 3074: 3072: 3070: 3055: 3049: 3048: 3046: 3044: 3029: 3023: 3022: 3020: 3018: 3009: 3000: 2994: 2993: 2991: 2989: 2973: 2967: 2966: 2948: 2914: 2908: 2907: 2873: 2867: 2866: 2864: 2862: 2847: 2841: 2840: 2822: 2780: 2771: 2770: 2754:Nature Photonics 2748: 2742: 2741: 2723: 2689: 2683: 2682: 2646: 2640: 2622: 2616: 2615: 2613: 2611: 2595: 2589: 2588: 2586: 2584: 2568: 2562: 2561: 2519: 2499: 2490: 2489: 2443: 2434: 2433: 2431: 2429: 2414: 2408: 2407: 2399: 2393: 2392: 2385: 2379: 2378: 2376: 2374: 2318: 2312: 2311: 2304: 2298: 2297: 2289: 2283: 2282: 2245: 2239: 2238: 2202: 2196: 2195: 2179: 2173: 2172: 2156: 2150: 2149: 2143: 2139: 2137: 2129: 2127: 2103: 2097: 2096: 2094: 2092: 2062: 2056: 2055: 2053: 2051: 2042:. The Register. 2035: 2029: 2028: 2004:Nature Photonics 1997: 1991: 1990: 1980: 1945: 1939: 1938: 1907:ECS Transactions 1902: 1896: 1895: 1887: 1881: 1880: 1835: 1829: 1828: 1826: 1824: 1809: 1803: 1802: 1757: 1751: 1750: 1748: 1746: 1737:. The Register. 1727: 1721: 1720: 1686: 1664: 1658: 1657: 1639: 1605: 1596: 1595: 1565: 1556: 1555: 1553: 1551: 1511: 1505: 1504: 1494: 1477:(5): 3310–3319. 1460: 1451: 1450: 1432: 1398: 1389: 1388: 1378: 1344: 1333: 1332: 1322: 1290: 1284: 1283: 1258: 1252: 1251: 1229: 1223: 1222: 1186: 1177: 1154: 1153: 1137: 1131: 1130: 1128: 1126: 1111: 1102: 1101: 1099: 1097: 1078: 1069: 1068: 1030: 1019: 1018: 997: 986: 985: 964: 951: 950: 904: 895: 894: 864: 858: 857: 855: 853: 813: 757:optical solitons 695:The Raman effect 609:intrinsic region 515:four wave mixing 495:refractive index 416:modal dispersion 400:refractive index 356:is working on a 259:indium phosphide 60:microelectronics 38:precision, into 5249: 5248: 5244: 5243: 5242: 5240: 5239: 5238: 5209: 5208: 5207: 5202: 5176: 5150: 5094: 5013: 4972: 4967: 4937: 4930: 4913: 4912: 4908: 4853: 4852: 4848: 4810: 4809: 4805: 4757: 4756: 4752: 4696: 4695: 4691: 4635: 4634: 4630: 4574: 4573: 4569: 4499: 4498: 4494: 4440: 4439: 4435: 4379: 4378: 4374: 4364: 4362: 4310: 4309: 4305: 4248: 4247: 4243: 4191: 4190: 4186: 4131: 4130: 4126: 4111: 4090: 4089: 4085: 4031: 4030: 4026: 3986: 3985: 3981: 3937: 3936: 3932: 3922: 3920: 3884: 3883: 3879: 3865: 3864: 3857: 3816: 3815: 3811: 3801: 3799: 3789: 3788: 3784: 3736: 3735: 3731: 3702:(24): 3609–11. 3691: 3690: 3686: 3623: 3622: 3618: 3561: 3560: 3556: 3519:(7096): 960–3. 3508: 3507: 3503: 3445: 3444: 3437: 3411: 3410: 3406: 3397: 3396: 3392: 3360: 3359: 3355: 3323: 3322: 3318: 3311: 3298: 3297: 3288: 3228: 3227: 3223: 3169: 3168: 3164: 3116: 3115: 3111: 3101: 3099: 3086: 3085: 3078: 3068: 3066: 3057: 3056: 3052: 3042: 3040: 3031: 3030: 3026: 3016: 3014: 3007: 3002: 3001: 2997: 2987: 2985: 2975: 2974: 2970: 2916: 2915: 2911: 2896: 2875: 2874: 2870: 2860: 2858: 2849: 2848: 2844: 2782: 2781: 2774: 2750: 2749: 2745: 2691: 2690: 2686: 2648: 2647: 2643: 2633:Wayback Machine 2623: 2619: 2609: 2607: 2598:Simonite, Tom. 2597: 2596: 2592: 2582: 2580: 2570: 2569: 2565: 2501: 2500: 2493: 2445: 2444: 2437: 2427: 2425: 2416: 2415: 2411: 2401: 2400: 2396: 2387: 2386: 2382: 2372: 2370: 2320: 2319: 2315: 2306: 2305: 2301: 2291: 2290: 2286: 2247: 2246: 2242: 2204: 2203: 2199: 2181: 2180: 2176: 2158: 2157: 2153: 2140: 2130: 2105: 2104: 2100: 2090: 2088: 2081: 2064: 2063: 2059: 2049: 2047: 2037: 2036: 2032: 1999: 1998: 1994: 1947: 1946: 1942: 1904: 1903: 1899: 1889: 1888: 1884: 1837: 1836: 1832: 1822: 1820: 1811: 1810: 1806: 1759: 1758: 1754: 1744: 1742: 1729: 1728: 1724: 1666: 1665: 1661: 1607: 1606: 1599: 1567: 1566: 1559: 1549: 1547: 1513: 1512: 1508: 1462: 1461: 1454: 1400: 1399: 1392: 1346: 1345: 1336: 1305:(4): 4791–803. 1292: 1291: 1287: 1260: 1259: 1255: 1248: 1231: 1230: 1226: 1184: 1179: 1178: 1157: 1139: 1138: 1134: 1124: 1122: 1113: 1112: 1105: 1095: 1093: 1080: 1079: 1072: 1032: 1031: 1022: 1015: 999: 998: 989: 982: 966: 965: 954: 906: 905: 898: 866: 865: 861: 851: 849: 815: 814: 810: 806: 789: 741: 725:acoustic phonon 721:optical phonons 717: 697: 689:slot waveguides 645:silicon nitride 637: 577: 538: 487: 388: 383: 370: 350: 322: 306:startup company 291: 175: 170: 17: 12: 11: 5: 5247: 5245: 5237: 5236: 5231: 5226: 5221: 5211: 5210: 5204: 5203: 5201: 5200: 5195: 5193:Quantum optics 5190: 5184: 5182: 5178: 5177: 5175: 5174: 5169: 5164: 5158: 5156: 5152: 5151: 5149: 5148: 5143: 5138: 5133: 5128: 5123: 5118: 5113: 5108: 5102: 5100: 5096: 5095: 5093: 5092: 5087: 5082: 5077: 5072: 5070:Slot-waveguide 5067: 5062: 5057: 5052: 5047: 5042: 5037: 5032: 5027: 5021: 5019: 5015: 5014: 5012: 5011: 5006: 5001: 4991: 4989:Microphotonics 4986: 4980: 4978: 4974: 4973: 4968: 4966: 4965: 4958: 4951: 4943: 4936: 4935: 4928: 4906: 4863:(24): 5112–4. 4857:Optics Letters 4846: 4803: 4750: 4705:(11): 115005. 4689: 4644:(3): 199–203. 4628: 4583:(7): 463–467. 4567: 4492: 4433: 4372: 4317:Optics Express 4303: 4258:(2): 148–154. 4241: 4198:Optics Express 4184: 4124: 4109: 4083: 4046:(2): 519–525. 4039:Optics Express 4024: 3979: 3945:Optics Letters 3930: 3899:(1): 123–129. 3877: 3855: 3809: 3782: 3740:Optics Letters 3729: 3695:Optics Letters 3684: 3616: 3554: 3501: 3449:Optics Express 3435: 3404: 3390: 3353: 3316: 3309: 3286: 3235:Optics Express 3221: 3177:Optics Express 3162: 3120:Optics Letters 3109: 3088:"Silicon (Si)" 3076: 3050: 3024: 2995: 2968: 2924:Optics Express 2909: 2894: 2868: 2842: 2798:Optics Express 2785:Lipson, Michal 2772: 2761:(4): 242–246. 2743: 2699:Optics Express 2684: 2641: 2617: 2590: 2575:. Gizmag.com. 2563: 2491: 2435: 2409: 2394: 2380: 2313: 2299: 2284: 2240: 2197: 2174: 2151: 2142:|journal= 2098: 2079: 2057: 2030: 1992: 1956:Optics Express 1940: 1897: 1882: 1841:Optics Letters 1830: 1804: 1763:Optics Letters 1752: 1722: 1670:Optics Express 1659: 1622:(2): 660–668. 1615:Optics Express 1597: 1557: 1526:(1): 123–129. 1506: 1470:Optics Express 1452: 1408:Optics Express 1390: 1354:Optics Express 1334: 1299:Optics Express 1285: 1253: 1246: 1224: 1155: 1132: 1103: 1070: 1020: 1013: 987: 980: 952: 896: 859: 828:(6): 873–879. 807: 805: 802: 801: 800: 795: 788: 785: 740: 737: 716: 713: 696: 693: 685:phase matching 673:phase matching 669:phase matching 641:centrosymmetry 636: 633: 617:reverse biased 598:Rib waveguides 576: 573: 537: 534: 504:slot waveguide 493:, in that the 486: 483: 435:group velocity 396:infrared light 387: 384: 382: 379: 369: 366: 349: 346: 321: 318: 290: 287: 174: 171: 169: 166: 62:) is known as 36:sub-micrometre 32:optical medium 15: 13: 10: 9: 6: 4: 3: 2: 5246: 5235: 5232: 5230: 5227: 5225: 5222: 5220: 5217: 5216: 5214: 5199: 5196: 5194: 5191: 5189: 5186: 5185: 5183: 5179: 5173: 5170: 5168: 5165: 5163: 5160: 5159: 5157: 5153: 5147: 5144: 5142: 5139: 5137: 5134: 5132: 5129: 5127: 5124: 5122: 5119: 5117: 5114: 5112: 5109: 5107: 5104: 5103: 5101: 5097: 5091: 5088: 5086: 5083: 5081: 5078: 5076: 5073: 5071: 5068: 5066: 5063: 5061: 5058: 5056: 5053: 5051: 5048: 5046: 5043: 5041: 5038: 5036: 5033: 5031: 5028: 5026: 5023: 5022: 5020: 5016: 5010: 5007: 5005: 5002: 4999: 4995: 4994:Nanophotonics 4992: 4990: 4987: 4985: 4982: 4981: 4979: 4975: 4971: 4964: 4959: 4957: 4952: 4950: 4945: 4944: 4941: 4931: 4929:0-521-33655-4 4925: 4921: 4917: 4910: 4907: 4902: 4898: 4894: 4890: 4886: 4882: 4878: 4874: 4870: 4866: 4862: 4858: 4850: 4847: 4842: 4838: 4834: 4830: 4826: 4822: 4818: 4814: 4807: 4804: 4799: 4795: 4791: 4787: 4783: 4779: 4774: 4769: 4766:(5): 053828. 4765: 4761: 4754: 4751: 4746: 4742: 4738: 4734: 4730: 4726: 4722: 4718: 4713: 4708: 4704: 4700: 4693: 4690: 4685: 4681: 4677: 4673: 4669: 4665: 4661: 4657: 4652: 4647: 4643: 4639: 4632: 4629: 4624: 4620: 4616: 4612: 4608: 4604: 4600: 4596: 4591: 4586: 4582: 4578: 4571: 4568: 4563: 4559: 4554: 4549: 4545: 4541: 4537: 4533: 4529: 4525: 4520: 4515: 4511: 4507: 4503: 4496: 4493: 4488: 4484: 4479: 4474: 4469: 4464: 4460: 4456: 4453:(1): 011008. 4452: 4448: 4444: 4437: 4434: 4429: 4425: 4421: 4417: 4413: 4409: 4405: 4401: 4396: 4391: 4388:(9): 091116. 4387: 4383: 4376: 4373: 4360: 4356: 4352: 4348: 4344: 4339: 4334: 4330: 4326: 4322: 4318: 4314: 4307: 4304: 4299: 4295: 4291: 4287: 4282: 4277: 4273: 4269: 4265: 4261: 4257: 4253: 4245: 4242: 4237: 4233: 4229: 4225: 4220: 4215: 4211: 4207: 4203: 4199: 4195: 4188: 4185: 4180: 4176: 4172: 4168: 4164: 4160: 4156: 4152: 4148: 4144: 4140: 4136: 4128: 4125: 4120: 4116: 4112: 4106: 4102: 4098: 4094: 4087: 4084: 4079: 4075: 4071: 4067: 4062: 4057: 4053: 4049: 4045: 4041: 4040: 4035: 4028: 4025: 4020: 4016: 4012: 4008: 4004: 4000: 3997:(1): 071115. 3996: 3992: 3991: 3983: 3980: 3975: 3971: 3967: 3963: 3959: 3955: 3951: 3947: 3946: 3941: 3934: 3931: 3918: 3914: 3910: 3906: 3902: 3898: 3894: 3893: 3888: 3881: 3878: 3873: 3869: 3862: 3860: 3856: 3851: 3847: 3843: 3839: 3835: 3831: 3828:(2): 191104. 3827: 3823: 3822: 3813: 3810: 3797: 3793: 3786: 3783: 3778: 3774: 3770: 3766: 3762: 3758: 3754: 3750: 3746: 3742: 3741: 3733: 3730: 3725: 3721: 3717: 3713: 3709: 3705: 3701: 3697: 3696: 3688: 3685: 3680: 3676: 3671: 3666: 3662: 3658: 3654: 3650: 3645: 3640: 3636: 3632: 3628: 3620: 3617: 3612: 3608: 3604: 3600: 3596: 3592: 3588: 3584: 3579: 3574: 3570: 3566: 3558: 3555: 3550: 3546: 3542: 3538: 3534: 3530: 3526: 3522: 3518: 3514: 3513: 3505: 3502: 3497: 3493: 3489: 3485: 3480: 3475: 3471: 3467: 3463: 3459: 3455: 3451: 3450: 3442: 3440: 3436: 3431: 3427: 3423: 3419: 3415: 3408: 3405: 3400: 3394: 3391: 3386: 3382: 3378: 3374: 3370: 3366: 3365: 3357: 3354: 3349: 3345: 3341: 3337: 3333: 3329: 3328: 3320: 3317: 3312: 3310:0-12-045142-5 3306: 3302: 3295: 3293: 3291: 3287: 3282: 3278: 3274: 3270: 3266: 3262: 3257: 3252: 3248: 3244: 3240: 3236: 3232: 3225: 3222: 3217: 3213: 3209: 3205: 3200: 3195: 3191: 3187: 3183: 3179: 3178: 3173: 3166: 3163: 3158: 3154: 3150: 3146: 3142: 3138: 3134: 3130: 3126: 3122: 3121: 3113: 3110: 3097: 3093: 3089: 3083: 3081: 3077: 3065: 3061: 3054: 3051: 3039: 3035: 3028: 3025: 3013: 3006: 3003:Ramey, Carl. 2999: 2996: 2983: 2979: 2972: 2969: 2964: 2960: 2956: 2952: 2947: 2942: 2938: 2934: 2930: 2926: 2925: 2920: 2913: 2910: 2905: 2901: 2897: 2891: 2887: 2883: 2879: 2872: 2869: 2856: 2852: 2846: 2843: 2838: 2834: 2830: 2826: 2821: 2816: 2812: 2808: 2804: 2800: 2799: 2794: 2790: 2786: 2779: 2777: 2773: 2768: 2764: 2760: 2756: 2755: 2747: 2744: 2739: 2735: 2731: 2727: 2722: 2717: 2713: 2709: 2705: 2701: 2700: 2695: 2688: 2685: 2680: 2676: 2672: 2668: 2664: 2660: 2656: 2652: 2645: 2642: 2638: 2634: 2630: 2627: 2621: 2618: 2605: 2601: 2594: 2591: 2578: 2574: 2567: 2564: 2559: 2555: 2551: 2547: 2543: 2539: 2535: 2531: 2527: 2523: 2518: 2513: 2509: 2505: 2498: 2496: 2492: 2487: 2483: 2479: 2475: 2471: 2467: 2463: 2459: 2455: 2451: 2450: 2442: 2440: 2436: 2423: 2419: 2413: 2410: 2405: 2398: 2395: 2390: 2384: 2381: 2368: 2364: 2360: 2356: 2352: 2348: 2344: 2340: 2336: 2332: 2328: 2324: 2317: 2314: 2309: 2303: 2300: 2295: 2288: 2285: 2280: 2276: 2272: 2268: 2264: 2260: 2256: 2252: 2244: 2241: 2236: 2232: 2228: 2224: 2220: 2216: 2212: 2208: 2201: 2198: 2193: 2189: 2185: 2178: 2175: 2170: 2166: 2162: 2155: 2152: 2147: 2135: 2126: 2121: 2117: 2113: 2109: 2102: 2099: 2086: 2082: 2076: 2072: 2068: 2061: 2058: 2045: 2041: 2034: 2031: 2026: 2022: 2018: 2014: 2010: 2006: 2005: 1996: 1993: 1988: 1984: 1979: 1974: 1970: 1966: 1962: 1958: 1957: 1952: 1944: 1941: 1936: 1932: 1928: 1924: 1920: 1916: 1912: 1908: 1901: 1898: 1893: 1886: 1883: 1878: 1874: 1870: 1866: 1862: 1858: 1854: 1850: 1846: 1842: 1834: 1831: 1818: 1814: 1808: 1805: 1800: 1796: 1792: 1788: 1784: 1780: 1776: 1772: 1768: 1764: 1756: 1753: 1740: 1736: 1732: 1731:Vance, Ashlee 1726: 1723: 1718: 1714: 1710: 1706: 1702: 1698: 1694: 1690: 1685: 1680: 1676: 1672: 1671: 1663: 1660: 1655: 1651: 1647: 1643: 1638: 1633: 1629: 1625: 1621: 1617: 1616: 1611: 1604: 1602: 1598: 1593: 1589: 1585: 1581: 1577: 1573: 1572: 1564: 1562: 1558: 1545: 1541: 1537: 1533: 1529: 1525: 1521: 1517: 1510: 1507: 1502: 1498: 1493: 1488: 1484: 1480: 1476: 1472: 1471: 1466: 1459: 1457: 1453: 1448: 1444: 1440: 1436: 1431: 1426: 1422: 1418: 1414: 1410: 1409: 1404: 1397: 1395: 1391: 1386: 1382: 1377: 1372: 1368: 1364: 1360: 1356: 1355: 1350: 1343: 1341: 1339: 1335: 1330: 1326: 1321: 1316: 1312: 1308: 1304: 1300: 1296: 1289: 1286: 1281: 1277: 1273: 1269: 1265: 1257: 1254: 1249: 1247:0-521-42424-0 1243: 1239: 1235: 1228: 1225: 1220: 1216: 1212: 1208: 1204: 1200: 1196: 1192: 1191: 1183: 1176: 1174: 1172: 1170: 1168: 1166: 1164: 1162: 1160: 1156: 1151: 1147: 1143: 1142:SPIE Newsroom 1136: 1133: 1120: 1116: 1110: 1108: 1104: 1091: 1087: 1083: 1077: 1075: 1071: 1066: 1062: 1058: 1054: 1050: 1046: 1042: 1038: 1037: 1029: 1027: 1025: 1021: 1016: 1014:0-470-87034-6 1010: 1006: 1002: 996: 994: 992: 988: 983: 981:3-540-21022-9 977: 973: 969: 963: 961: 959: 957: 953: 948: 944: 940: 936: 932: 928: 924: 920: 916: 912: 911: 903: 901: 897: 892: 888: 884: 880: 876: 872: 871: 863: 860: 847: 843: 839: 835: 831: 827: 823: 819: 812: 809: 803: 799: 796: 794: 791: 790: 786: 784: 782: 778: 774: 770: 766: 762: 761:optical fiber 758: 754: 750: 746: 738: 736: 734: 730: 726: 722: 714: 712: 710: 706: 702: 694: 692: 690: 686: 682: 681:phase matched 678: 674: 670: 666: 662: 658: 654: 650: 646: 642: 634: 632: 629: 626: 622: 618: 614: 610: 605: 603: 599: 595: 591: 587: 582: 574: 572: 570: 565: 563: 559: 555: 551: 547: 543: 535: 533: 531: 527: 522: 520: 516: 511: 509: 505: 501: 496: 492: 484: 482: 480: 476: 472: 468: 464: 460: 455: 453: 449: 445: 440: 436: 432: 428: 424: 419: 417: 413: 409: 405: 401: 397: 393: 385: 380: 378: 376: 367: 365: 363: 359: 355: 347: 345: 343: 339: 335: 331: 327: 319: 317: 315: 311: 307: 302: 300: 296: 288: 286: 283: 279: 276: 270: 268: 264: 263:lasing medium 260: 256: 255:semiconductor 252: 247: 242: 238: 236: 235:Pat Gelsinger 232: 228: 227:data transfer 224: 218: 214: 212: 208: 204: 200: 196: 195:photodetector 191: 189: 185: 181: 172: 167: 165: 163: 158: 153: 151: 147: 143: 139: 135: 131: 127: 122: 120: 116: 115:data transfer 112: 108: 104: 100: 96: 92: 88: 84: 75: 71: 69: 65: 61: 57: 53: 50:used by most 49: 45: 41: 40:microphotonic 37: 33: 29: 25: 21: 5155:Applications 5008: 4984:Biophotonics 4915: 4909: 4860: 4856: 4849: 4816: 4812: 4806: 4763: 4759: 4753: 4702: 4698: 4692: 4641: 4637: 4631: 4580: 4576: 4570: 4509: 4505: 4495: 4478:1721.1/89020 4450: 4446: 4436: 4385: 4381: 4375: 4363:. Retrieved 4320: 4316: 4306: 4281:11379/107111 4255: 4251: 4244: 4201: 4197: 4187: 4138: 4134: 4127: 4092: 4086: 4043: 4037: 4027: 3994: 3988: 3982: 3949: 3943: 3940:Tsang, H. K. 3933: 3921:. Retrieved 3896: 3890: 3880: 3867: 3825: 3819: 3812: 3800:. Retrieved 3785: 3744: 3738: 3732: 3699: 3693: 3687: 3634: 3630: 3619: 3568: 3564: 3557: 3516: 3510: 3504: 3453: 3447: 3421: 3417: 3407: 3393: 3368: 3362: 3356: 3331: 3325: 3319: 3300: 3238: 3234: 3224: 3181: 3175: 3165: 3124: 3118: 3112: 3100:. Retrieved 3067:. Retrieved 3063: 3053: 3041:. Retrieved 3037: 3027: 3015:. Retrieved 3012:hotchips.org 3011: 2998: 2986:. Retrieved 2971: 2928: 2922: 2912: 2877: 2871: 2859:. Retrieved 2845: 2802: 2796: 2758: 2752: 2746: 2703: 2697: 2687: 2654: 2650: 2644: 2636: 2620: 2608:. Retrieved 2593: 2581:. Retrieved 2566: 2507: 2503: 2453: 2447: 2426:. Retrieved 2412: 2403: 2397: 2383: 2371:. Retrieved 2330: 2326: 2316: 2302: 2293: 2287: 2257:(1): 63–73. 2254: 2250: 2243: 2213:(1): 20–24. 2210: 2206: 2200: 2183: 2177: 2160: 2154: 2107: 2101: 2091:14 September 2089:. Retrieved 2070: 2060: 2048:. Retrieved 2033: 2011:(1): 59–63. 2008: 2002: 1995: 1960: 1954: 1943: 1913:(7): 17–24. 1910: 1906: 1900: 1891: 1885: 1844: 1840: 1833: 1821:. Retrieved 1807: 1766: 1762: 1755: 1743:. Retrieved 1725: 1674: 1668: 1662: 1619: 1613: 1575: 1569: 1548:. Retrieved 1523: 1519: 1509: 1474: 1468: 1412: 1406: 1358: 1352: 1302: 1298: 1288: 1263: 1256: 1233: 1227: 1194: 1188: 1141: 1135: 1123:. Retrieved 1094:. Retrieved 1040: 1034: 1000: 967: 914: 908: 874: 868: 862: 850:. Retrieved 825: 821: 811: 742: 718: 709:Raman lasers 701:Raman effect 698: 665:mid-infrared 638: 630: 606: 578: 566: 539: 523: 512: 488: 456: 443: 438: 430: 420: 389: 371: 351: 323: 303: 292: 280: 271: 243: 239: 219: 215: 192: 184:PN junctions 176: 168:Applications 154: 138:Raman effect 123: 80: 67: 63: 19: 18: 4512:(1): 1944. 3371:(9): 4955. 2610:4 September 615:, which is 560:-part of a 421:The strong 392:transparent 390:Silicon is 358:light-field 330:datacenters 304:In 2013, a 267:Raman laser 223:Moore's Law 199:PN junction 134:Kerr effect 109:, by using 107:Moore's Law 5213:Categories 5172:Solar sail 5116:Dark state 5080:Superprism 4998:Plasmonics 4773:1503.03044 4712:1508.06318 4590:1510.08495 2517:1705.05813 1894:: 360–361. 1088:Research. 804:References 769:redshifted 408:nanometers 354:Magic Leap 336:, Kotura, 310:California 180:PIN diodes 157:waveguides 119:microchips 95:electronic 48:wavelength 5229:Photonics 5025:Biophoton 4970:Photonics 4885:1539-4794 4841:1943-8206 4798:118542296 4737:1367-2630 4676:1749-4885 4651:1407.4977 4623:119159337 4615:1749-4885 4544:2041-1723 4519:1301.7311 4487:2160-3308 4420:0003-6951 4395:0812.4427 4347:1094-4087 4290:1476-1122 4228:1094-4087 4179:205210888 4163:0028-0836 3938:Liu, Y.; 3850:122887780 3644:1405.4205 3578:1408.1039 3549:205210957 3479:10453/383 3265:1094-4087 2542:0036-8075 2420:. Intel. 2363:205247044 2144:ignored ( 2134:cite book 2050:10 August 1935:111820229 1823:8 October 1684:0907.0022 1280:123382866 1219:123008652 1117:. Intel. 777:Rochester 613:PIN diode 602:diffusion 558:imaginary 475:insulator 444:anomalous 364:display. 261:) as the 257:(such as 207:germanium 5181:See also 5099:Concepts 4901:11976822 4893:23258022 4819:(1): 1. 4745:54539825 4684:55218097 4562:23739586 4428:28598739 4359:Archived 4355:23037098 4298:22138793 4236:22109021 4171:16688172 4119:26131159 4070:19488380 4019:37590490 3974:16688271 3917:Archived 3796:Archived 3777:10937266 3769:17632633 3724:17130919 3679:25697764 3637:: 6310. 3603:25708922 3571:: 6299. 3541:16791190 3488:19546900 3281:31510540 3216:41508892 3208:19516587 3157:43103486 3149:16642090 3096:Archived 3064:EE Times 3038:EE Times 2982:Archived 2963:19421366 2955:20720934 2904:11379237 2861:25 April 2855:Archived 2837:12219167 2829:19550563 2791:(2007). 2738:29225037 2730:19483951 2679:44232146 2629:Archived 2604:Archived 2583:20 April 2577:Archived 2558:46979719 2550:29880687 2478:15635371 2422:Archived 2367:Archived 2355:26701054 2279:10174513 2235:15668981 2085:Archived 2073:: OMK7. 2044:Archived 1987:19547334 1869:23903125 1817:Archived 1799:16603677 1791:23903103 1739:Archived 1717:40101121 1709:19688003 1654:24984744 1646:19532289 1544:Archived 1501:18542420 1447:26807722 1439:19547096 1385:19529669 1329:25836514 1119:Archived 1090:Archived 1065:42767475 1007:. 2004. 974:. 2004. 972:Springer 939:15510144 846:Archived 787:See also 773:Columbia 739:Solitons 530:spectral 326:Internet 282:Graphene 155:Silicon 44:infrared 24:photonic 5234:Silicon 4865:Bibcode 4821:Bibcode 4778:Bibcode 4717:Bibcode 4656:Bibcode 4595:Bibcode 4553:3709496 4524:Bibcode 4455:Bibcode 4400:Bibcode 4325:Bibcode 4260:Bibcode 4206:Bibcode 4143:Bibcode 4078:6804621 4048:Bibcode 3999:Bibcode 3954:Bibcode 3901:Bibcode 3830:Bibcode 3802:27 July 3749:Bibcode 3704:Bibcode 3670:4346629 3649:Bibcode 3611:1089022 3583:Bibcode 3521:Bibcode 3496:7069722 3458:Bibcode 3373:Bibcode 3336:Bibcode 3273:1546510 3243:Bibcode 3186:Bibcode 3129:Bibcode 3102:17 July 2988:13 June 2933:Bibcode 2807:Bibcode 2708:Bibcode 2659:Bibcode 2522:Bibcode 2504:Science 2486:4407228 2458:Bibcode 2428:14 July 2335:Bibcode 2259:Bibcode 2215:Bibcode 2112:Bibcode 2013:Bibcode 1965:Bibcode 1915:Bibcode 1877:6228126 1849:Bibcode 1771:Bibcode 1745:26 July 1689:Bibcode 1624:Bibcode 1580:Bibcode 1528:Bibcode 1479:Bibcode 1417:Bibcode 1363:Bibcode 1307:Bibcode 1199:Bibcode 1125:14 July 1096:14 July 1045:Bibcode 947:4404067 919:Bibcode 879:Bibcode 830:Bibcode 753:soliton 625:current 621:voltage 586:implant 562:complex 546:photons 508:polymer 448:soliton 342:Fujitsu 312:and in 146:photons 91:optical 28:silicon 5188:Optics 4977:Fields 4926:  4899:  4891:  4883:  4839:  4796:  4743:  4735:  4682:  4674:  4621:  4613:  4560:  4550:  4542:  4485:  4426:  4418:  4365:2 July 4353:  4345:  4296:  4288:  4234:  4226:  4177:  4169:  4161:  4135:Nature 4117:  4107:  4076:  4068:  4017:  3972:  3923:2 July 3870:. 3rd 3848:  3775:  3767:  3722:  3677:  3667:  3609:  3601:  3547:  3539:  3512:Nature 3494:  3486:  3307:  3279:  3271:  3263:  3214:  3206:  3155:  3147:  3069:1 July 3043:1 July 3017:1 July 2961:  2953:  2902:  2892:  2835:  2827:  2736:  2728:  2677:  2556:  2548:  2540:  2484:  2476:  2449:Nature 2373:2 July 2361:  2353:  2327:Nature 2277:  2233:  2077:  1985:  1933:  1875:  1867:  1797:  1789:  1715:  1707:  1652:  1644:  1550:2 July 1499:  1445:  1437:  1383:  1327:  1278:  1244:  1217:  1063:  1011:  978:  945:  937:  910:Nature 852:2 July 779:, and 751:-like 590:helium 463:silica 439:normal 334:Sandia 314:Israel 205:(with 136:, the 30:as an 5045:Laser 5018:Tools 4897:S2CID 4794:S2CID 4768:arXiv 4741:S2CID 4707:arXiv 4680:S2CID 4646:arXiv 4619:S2CID 4585:arXiv 4514:arXiv 4424:S2CID 4390:arXiv 4175:S2CID 4115:S2CID 4074:S2CID 4015:S2CID 3846:S2CID 3773:S2CID 3639:arXiv 3607:S2CID 3573:arXiv 3545:S2CID 3492:S2CID 3212:S2CID 3153:S2CID 3008:(PDF) 2959:S2CID 2900:S2CID 2833:S2CID 2734:S2CID 2675:S2CID 2554:S2CID 2512:arXiv 2482:S2CID 2359:S2CID 2275:S2CID 2231:S2CID 1931:S2CID 1873:S2CID 1795:S2CID 1713:S2CID 1679:arXiv 1650:S2CID 1443:S2CID 1276:S2CID 1215:S2CID 1185:(PDF) 1061:S2CID 943:S2CID 611:of a 459:wafer 246:laser 126:light 103:Intel 4924:ISBN 4889:PMID 4881:ISSN 4837:ISSN 4733:ISSN 4672:ISSN 4611:ISSN 4558:PMID 4540:ISSN 4483:ISSN 4416:ISSN 4367:2019 4351:PMID 4343:ISSN 4294:PMID 4286:ISSN 4232:PMID 4224:ISSN 4167:PMID 4159:ISSN 4105:ISBN 4066:PMID 3970:PMID 3925:2019 3872:IEEE 3804:2009 3765:PMID 3720:PMID 3675:PMID 3599:PMID 3537:PMID 3484:PMID 3305:ISBN 3277:PMID 3269:OSTI 3261:ISSN 3204:PMID 3145:PMID 3104:2009 3071:2023 3045:2023 3019:2023 2990:2015 2951:PMID 2890:ISBN 2863:2013 2825:PMID 2726:PMID 2612:2013 2585:2013 2546:PMID 2538:ISSN 2474:PMID 2430:2009 2375:2019 2351:PMID 2146:help 2093:2012 2075:ISBN 2052:2017 1983:PMID 1865:PMID 1825:2013 1787:PMID 1747:2009 1705:PMID 1642:PMID 1552:2019 1497:PMID 1435:PMID 1381:PMID 1325:PMID 1242:ISBN 1127:2009 1098:2009 1009:ISBN 976:ISBN 935:PMID 854:2019 781:Bath 749:sech 663:and 623:and 579:The 569:heat 148:and 101:and 93:and 4873:doi 4829:doi 4786:doi 4725:doi 4664:doi 4603:doi 4548:PMC 4532:doi 4473:hdl 4463:doi 4408:doi 4333:doi 4276:hdl 4268:doi 4214:doi 4151:doi 4139:441 4097:doi 4056:doi 4007:doi 3962:doi 3909:doi 3838:doi 3757:doi 3712:doi 3665:PMC 3657:doi 3591:doi 3529:doi 3517:441 3474:hdl 3466:doi 3426:doi 3422:106 3381:doi 3344:doi 3251:doi 3194:doi 3137:doi 2941:doi 2882:doi 2815:doi 2763:doi 2716:doi 2667:doi 2530:doi 2508:360 2466:doi 2454:433 2343:doi 2331:528 2267:doi 2223:doi 2188:doi 2165:doi 2120:doi 2021:doi 1973:doi 1923:doi 1857:doi 1779:doi 1697:doi 1632:doi 1588:doi 1536:doi 1487:doi 1425:doi 1371:doi 1315:doi 1268:doi 1207:doi 1146:doi 1086:IBM 1053:doi 927:doi 915:431 887:doi 838:doi 675:by 394:to 338:NTT 275:USB 99:IBM 70:). 68:SOI 58:in 5215:: 4922:. 4918:. 4895:. 4887:. 4879:. 4871:. 4861:37 4859:. 4835:. 4827:. 4815:. 4792:. 4784:. 4776:. 4764:93 4762:. 4739:. 4731:. 4723:. 4715:. 4703:17 4701:. 4678:. 4670:. 4662:. 4654:. 4640:. 4617:. 4609:. 4601:. 4593:. 4581:10 4579:. 4556:. 4546:. 4538:. 4530:. 4522:. 4508:. 4504:. 4481:. 4471:. 4461:. 4449:. 4445:. 4422:. 4414:. 4406:. 4398:. 4386:94 4384:. 4357:. 4349:. 4341:. 4331:. 4321:20 4319:. 4315:. 4292:. 4284:. 4274:. 4266:. 4256:11 4254:. 4230:. 4222:. 4212:. 4202:19 4200:. 4196:. 4173:. 4165:. 4157:. 4149:. 4137:. 4113:. 4103:. 4072:. 4064:. 4054:. 4044:13 4042:. 4036:. 4013:. 4005:. 3995:86 3993:. 3968:. 3960:. 3950:31 3948:. 3915:. 3907:. 3897:23 3895:. 3889:. 3858:^ 3844:. 3836:. 3826:90 3824:. 3771:. 3763:. 3755:. 3745:32 3743:. 3718:. 3710:. 3700:31 3698:. 3673:. 3663:. 3655:. 3647:. 3633:. 3629:. 3605:. 3597:. 3589:. 3581:. 3567:. 3543:. 3535:. 3527:. 3515:. 3490:. 3482:. 3472:. 3464:. 3454:15 3452:. 3438:^ 3420:. 3416:. 3379:. 3369:93 3367:. 3342:. 3332:55 3330:. 3289:^ 3275:. 3267:. 3259:. 3249:. 3239:27 3237:. 3233:. 3210:. 3202:. 3192:. 3182:14 3180:. 3174:. 3151:. 3143:. 3135:. 3125:31 3123:. 3090:. 3079:^ 3062:. 3036:. 3010:. 2957:. 2949:. 2939:. 2929:18 2927:. 2921:. 2898:. 2888:. 2831:. 2823:. 2813:. 2803:15 2801:. 2795:. 2787:; 2775:^ 2757:. 2732:. 2724:. 2714:. 2704:12 2702:. 2696:. 2673:. 2665:. 2655:41 2653:. 2635:. 2552:. 2544:. 2536:. 2528:. 2520:. 2506:. 2494:^ 2480:. 2472:. 2464:. 2452:. 2438:^ 2365:. 2357:. 2349:. 2341:. 2329:. 2325:. 2273:. 2265:. 2253:. 2229:. 2221:. 2209:. 2138:: 2136:}} 2132:{{ 2118:. 2083:. 2069:. 2019:. 2007:. 1981:. 1971:. 1961:15 1959:. 1953:. 1929:. 1921:. 1909:. 1871:. 1863:. 1855:. 1845:38 1843:. 1793:. 1785:. 1777:. 1767:38 1765:. 1733:. 1711:. 1703:. 1695:. 1687:. 1675:17 1673:. 1648:. 1640:. 1630:. 1620:15 1618:. 1612:. 1600:^ 1586:. 1576:21 1574:. 1560:^ 1542:. 1534:. 1524:23 1522:. 1518:. 1495:. 1485:. 1475:16 1473:. 1467:. 1455:^ 1441:. 1433:. 1423:. 1413:15 1411:. 1405:. 1393:^ 1379:. 1369:. 1359:14 1357:. 1351:. 1337:^ 1323:. 1313:. 1303:23 1301:. 1297:. 1274:. 1240:. 1236:. 1213:. 1205:. 1195:40 1193:. 1187:. 1158:^ 1144:. 1106:^ 1084:. 1073:^ 1059:. 1051:. 1041:23 1039:. 1023:^ 1003:. 990:^ 970:. 955:^ 941:. 933:. 925:. 913:. 899:^ 885:. 875:24 873:. 844:. 836:. 826:22 824:. 820:. 783:. 775:, 659:, 655:, 651:, 510:. 454:. 418:. 340:, 164:. 140:, 121:. 5000:) 4996:( 4962:e 4955:t 4948:v 4932:. 4903:. 4875:: 4867:: 4843:. 4831:: 4823:: 4817:2 4800:. 4788:: 4780:: 4770:: 4747:. 4727:: 4719:: 4709:: 4686:. 4666:: 4658:: 4648:: 4642:9 4625:. 4605:: 4597:: 4587:: 4564:. 4534:: 4526:: 4516:: 4510:4 4489:. 4475:: 4465:: 4457:: 4451:2 4430:. 4410:: 4402:: 4392:: 4369:. 4335:: 4327:: 4300:. 4278:: 4270:: 4262:: 4238:. 4216:: 4208:: 4181:. 4153:: 4145:: 4121:. 4099:: 4080:. 4058:: 4050:: 4021:. 4009:: 4001:: 3976:. 3964:: 3956:: 3927:. 3911:: 3903:: 3852:. 3840:: 3832:: 3806:. 3779:. 3759:: 3751:: 3726:. 3714:: 3706:: 3681:. 3659:: 3651:: 3641:: 3635:6 3613:. 3593:: 3585:: 3575:: 3569:6 3551:. 3531:: 3523:: 3498:. 3476:: 3468:: 3460:: 3432:. 3428:: 3387:. 3383:: 3375:: 3350:. 3346:: 3338:: 3313:. 3283:. 3253:: 3245:: 3218:. 3196:: 3188:: 3159:. 3139:: 3131:: 3106:. 3073:. 3047:. 3021:. 2992:. 2965:. 2943:: 2935:: 2906:. 2884:: 2865:. 2839:. 2817:: 2809:: 2769:. 2765:: 2759:2 2740:. 2718:: 2710:: 2681:. 2669:: 2661:: 2639:. 2614:. 2587:. 2560:. 2532:: 2524:: 2514:: 2488:. 2468:: 2460:: 2432:. 2391:. 2377:. 2345:: 2337:: 2310:. 2281:. 2269:: 2261:: 2255:6 2237:. 2225:: 2217:: 2211:5 2194:. 2190:: 2171:. 2167:: 2148:) 2128:. 2122:: 2114:: 2095:. 2054:. 2027:. 2023:: 2015:: 2009:3 1989:. 1975:: 1967:: 1937:. 1925:: 1917:: 1911:3 1879:. 1859:: 1851:: 1827:. 1801:. 1781:: 1773:: 1749:. 1719:. 1699:: 1691:: 1681:: 1656:. 1634:: 1626:: 1594:. 1590:: 1582:: 1554:. 1538:: 1530:: 1503:. 1489:: 1481:: 1449:. 1427:: 1419:: 1387:. 1373:: 1365:: 1331:. 1317:: 1309:: 1282:. 1270:: 1250:. 1221:. 1209:: 1201:: 1152:. 1148:: 1129:. 1100:. 1067:. 1055:: 1047:: 1017:. 984:. 949:. 929:: 921:: 893:. 889:: 881:: 856:. 840:: 832:: 66:(

Index

photonic
silicon
optical medium
sub-micrometre
microphotonic
infrared
wavelength
fiber optic telecommunication
a similar construction
microelectronics

semiconductor fabrication
integrated circuits
optical
electronic
IBM
Intel
Moore's Law
optical interconnects
data transfer
microchips
light
nonlinear optical
Kerr effect
Raman effect
two-photon absorption
photons
free charge carriers
waveguides
soliton propagation

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑