Knowledge

Similarity measure

Source 📝

526: 104: 1365:
others. For example, a distance of 0 signifies an exact match with the query, with respect to the dimensions that were considered. As one may intuitively gather, a value greater than 0 indicates various degrees of similarities between the images. Search results then can be sorted based on their distance to the queried image. Many measures of image distance (Similarity Models) have been developed.
1328:). The first approach scored all amino acid changes equally. A later refinement was to determine amino acid similarities based on how many base changes were required to change a codon to code for that amino acid. This model is better, but it doesn't take into account the selective pressure of amino acid changes. Better models took into account the chemical properties of amino acids. 1217:
The choice of similarity measure depends on the type of data being clustered and the specific problem being solved. For example, working with continuous data such as gene expression data, the Euclidean distance or cosine similarity may be appropriate. If working with binary data such as the presence
303:
is a data mining technique that is used to discover patterns in data by grouping similar objects together. It involves partitioning a set of data points into groups or clusters based on their similarities. One of the fundamental aspects of clustering is how to measure similarity between data points.
111:
There are many various options available when it comes to finding similarity between two data points, some of which are a combination of other similarity methods. Some of the methods for similarity measures between two data points include Euclidean distance, Manhattan distance, Minkowski distance,
1364:
The most common method for comparing two images in content-based image retrieval (typically an example image and an image from the database) is using an image distance measure. An image distance measure compares the similarity of two images in various dimensions such as color, texture, shape, and
537:
or Jaccard similarity, which is used in clustering techniques that work with binary data such as presence/absence data or Boolean data; The Jaccard similarity is particularly useful for clustering techniques that work with text data, where it can be used to identify clusters of similar documents
1313:
such as A or G to another purine) than to transversions (from a pyrimidine to a purine or vice versa). The match/mismatch ratio of the matrix sets the target evolutionary distance. The +1/−3 DNA matrix used by BLASTN is best suited for finding matches between sequences that are 99% identical; a
1254:
with values representing the similarity of any pair of targets. Then, by analyzing and comparing the values in the matrix, it is possible to match two targets to a user's preference or link users based on their marks. In this system, it is relevant to observe the value itself and the absolute
605:
Similarities among 162 Relevant Nuclear Profile are tested using the Jaccard Similarity measure (see figure with heatmap). The Jaccard similarity of the nuclear profile ranges from 0 to 1, with 0 indicating no similarity between the two sets and 1 indicating perfect similarity with the aim of
307:
Similarity measures play a crucial role in many clustering techniques, as they are used to determine how closely related two data points are and whether they should be grouped together in the same cluster. A similarity measure can take many different forms depending on the type of data being
1339:
series of matrices. PAM matrices are labelled based on how many nucleotide changes have occurred, per 100 amino acids. While the PAM matrices benefit from having a well understood evolutionary model, they are most useful at short evolutionary distances (PAM10–PAM120). At long evolutionary
613:, is a commonly used similarity measure in clustering techniques that work with continuous data. It is a measure of the distance between two data points in a high-dimensional space, calculated as the sum of the absolute differences between the corresponding coordinates of the two points 323:. The Euclidean distance is a measure of the straight-line distance between two points in a high-dimensional space. It is calculated as the square root of the sum of the squared differences between the corresponding coordinates of the two points. For example, if we have two data points 706:(or similarity) is a common choice as it can handle different types of variables implicitly. It first computes similarities between the pair of variables in each object, and then combines those similarities to a single weighted average per object-pair. As such, for two objects 1218:
of a genomic loci in a nuclear profile, the Jaccard index may be more appropriate. Lastly, working with data that is arranged in a grid or lattice structure, such as image or signal processing data, the Manhattan distance is particularly useful for the clustering.
1255:
distance between two values. Gathering this data can indicate a mark's likeliness to a user as well as how mutually closely two marks are either rejected or accepted. It is possible then to recommend to a user targets with high similarity to the user's likes.
154:
that can be used. Some of these methods include edit distance, Levenshtein distance, Hamming distance, and Jaro distance. The best-fit formula is dependent on the requirements of the application. For example, edit distance is frequently used for
1347:
The BLOSUM series were generated by comparing a number of divergent sequences. The BLOSUM series are labeled based on how much entropy remains unmutated between all sequences, so a lower BLOSUM number corresponds to a higher PAM number.
918: 697: 1304:
similarity matrices. For example, a simple matrix will assign identical bases a score of +1 and non-identical bases a score of −1. A more complicated matrix would give a higher score to transitions (changes from a
1876: 1258:
Recommender systems are observed in multiple online entertainment platforms, in social media and streaming websites. The logic for the construction of this systems is based on similarity measures.
1212: 61:: they take on large values for similar objects and either zero or a negative value for very dissimilar objects. Though, in more broad terms, a similarity function may also satisfy metric axioms. 600: 112:
and Chebyshev distance. The Euclidean distance formula is used to find the distance between two points on a plane, which is visualized in the image below. Manhattan distance is commonly used in
206:. Both provide a quantification of similarity for two probability distributions on the same domain, and they are mathematically closely linked. The Bhattacharyya distance does not fulfill the 254:
also compares the number of items in both sets to the total number of items present but the weight for the number of shared items is larger. The Sørensen–Dice coefficient is commonly used in
95:
Different types of similarity measures exist for various types of objects, depending on the objects being compared. For each type of object there are various similarity measurement formulas.
116:
applications, as it can be used to find the shortest route between two addresses. When you generalize the Euclidean distance formula and Manhattan distance formula you are left with the
1013:, a similarity, or affinity, measure is used to transform data to overcome difficulties related to lack of convexity in the shape of the data distribution. The measure gives rise to an 789: 413: 367: 1869: 520: 984: 951: 1087: 1043: 1721: 1314:+1/−1 (or +4/−4) matrix is much more suited to sequences with about 70% similarity. Matrices for lower similarity sequences require longer sequence alignments. 57:
that quantifies the similarity between two objects. Although no single definition of a similarity exists, usually such measures are in some sense the inverse of
1131: 1111: 1004: 784: 764: 744: 724: 278:
When comparing temporal sequences (time series), some similarity measures must additionally account for similarity of two sequences that are not fully aligned.
1862: 538:
based on their shared features or keywords. It is calculated as the size of the intersection of two sets divided by the size of the union of the two sets:
616: 1562:
International MultiConference of Engineers and Computer Scientists : IMECS 2013 : 13-15 March, 2013, the Royal Garden Hotel, Kowloon, Hong Kong
159:
applications and features, such as spell-checking. Jaro distance is commonly used in record linkage to compare first and last names to other sources.
1912: 1324:, and so a larger number of possible substitutions. Therefore, the similarity matrix for amino acids contains 400 entries (although it is usually 1683:
States, D; Gish, W; Altschul, S (1991). "Improved sensitivity of nucleic acid database searches using application-specific scoring matrices".
1809: 1789: 1570: 1230:. It observes a user's perception and liking of multiple items. On recommender systems, the method is using a distance calculation such as 2271: 1661: 2010: 2005: 267: 251: 2232: 2093: 1917: 1136: 2276: 2183: 1927: 1358: 541: 242:
based on the number of items that are present in both sets relative to the total number of items. It is commonly used in
2281: 2266: 1942: 1404: 84: 1760: 2149: 2078: 2015: 156: 1634:
Li, Xin-Ye; Guo, Li-Jie (2012), "Constructing affinity matrix in spectral clustering based on neighbor propagation",
1962: 1937: 1922: 1594: 1407: – in network analysis, when two nodes (or other more elaborate structures) fall in the same equivalence class 1952: 1947: 1335:
method used phylogenetic trees and sequences taken from species on the tree. This approach has given rise to the
195: 2048: 1468: 1270:. Higher scores are given to more-similar characters, and lower or negative scores for dissimilar characters. 2139: 2043: 2038: 1413: 1336: 1332: 320: 294: 2206: 1980: 1692: 1393: 243: 218: 199: 247: 68: 1464: 525: 2201: 2101: 1990: 1985: 1833: 1419: 1375: 282: 168: 58: 54: 1697: 702:
When dealing with mixed-type data, including nominal, ordinal, and numerical attributes per object,
1907: 1894: 1398: 1387: 1227: 1010: 703: 372: 326: 207: 2227: 2193: 1902: 1752: 1588: 1267: 1090: 529:
Heatmap of HIST1 region, which is located on mouse chromosome 13 at the following coordinates: .
316: 312: 223: 203: 139: 134: 129: 124: 117: 72: 2222: 2111: 2058: 1805: 1785: 1744: 1576: 1566: 1542: 1524: 1503:"Jaccard/Tanimoto similarity test and estimation methods for biological presence-absence data" 1431: 418: 239: 64: 31: 956: 923: 2245: 2030: 1995: 1932: 1885: 1841: 1736: 1702: 1643: 1532: 1514: 1325: 1320:
similarity matrices are more complicated, because there are 20 amino acids coded for by the
610: 300: 178: 76: 67:
is a commonly used similarity measure for real-valued vectors, used in (among other fields)
1060: 1016: 2178: 2121: 2000: 1443: 1837: 1537: 1502: 1116: 1096: 989: 913:{\displaystyle S_{ij}={\frac {\sum _{k=1}^{p}w_{ijk}s_{ijk}}{\sum _{k=1}^{p}w_{ijk}}},} 769: 749: 729: 709: 214:. The Hellinger distance does form a metric on the space of probability distributions. 103: 1854: 1706: 2260: 2063: 2020: 1777: 1756: 1612: 1425: 692:{\displaystyle \left\vert x_{1}-x_{2}\right\vert +\left\vert y_{1}-y_{2}\right\vert } 534: 262: 235: 183: 163: 151: 1488: 1565:. S. I. Ao, International Association of Engineers. Hong Kong: Newswood Ltd. 2013. 1381: 1321: 1277: 211: 173: 80: 17: 1501:
Chung, Neo Christopher; Miasojedow, BłaŻej; Startek, Michał; Gambin, Anna (2019).
1214:. Further modifying this result with network analysis techniques is also common. 1647: 1359:
Content-based image retrieval § Content comparison using image distance measures
1437: 2157: 2068: 2053: 1846: 1821: 1519: 1317: 1306: 1273: 38: 1580: 1528: 258:
applications, measuring the similarity between two sets of genes or species.
107:
Image shows the path of calculation when using the Euclidean distance formula
1975: 1748: 1546: 1331:
One approach has been to empirically generate the similarity matrices. The
1560: 1384: – Embedding of data within a manifold based on a similarity function 1340:
distances, for example PAM250 or 20% identity, it has been shown that the
1740: 1289: 30:"Similarity matrix" redirects here. For the linear algebra concept, see 2083: 1970: 1804:
Eidenberger, Horst (2011). "Fundamental Media Understanding", atpress.
1301: 1297: 1293: 1285: 1133:, or it can be a more complex measure of distance such as the Gaussian 255: 1446:, a visualization tool of recurrences in dynamical (and other) systems 1428: – Metric that measures the distance between two strings of text 1341: 1310: 1280:
sequences. Because there are only four nucleotides commonly found in
27:
Real-valued function that quantifies similarity between two objects
524: 102: 2162: 2134: 2129: 2106: 1858: 120:
formulas, which can be used in a wide variety of applications.
1281: 113: 1300:(T)), nucleotide similarity matrices are much simpler than 986:
is the similarity between the two objects regarding their
1722:"Where did the BLOSUM62 alignment score matrix come from?" 1440: – Estimate of the importance of a word in a document 311:
One of the most commonly used similarity measures is the
315:, which is used in many clustering techniques including 1207:{\displaystyle e^{-\|s_{1}-s_{2}\|^{2}/2\sigma ^{2}}} 1139: 1119: 1099: 1063: 1019: 992: 959: 926: 792: 772: 752: 732: 712: 619: 544: 421: 375: 329: 150:
For comparing strings, there are various measures of
1409:
Pages displaying wikidata descriptions as a fallback
1390: – Supervised learning of a similarity function 1089:
in the matrix can be simply the (reciprocal of the)
595:{\displaystyle J(A,B)={A\bigcap B \over A\bigcup B}} 2215: 2192: 2171: 2148: 2120: 2092: 2029: 1961: 1893: 1613:"On Spectral Clustering: Analysis and an Algorithm" 1206: 1125: 1105: 1081: 1037: 998: 978: 945: 912: 778: 758: 738: 718: 691: 594: 514: 407: 361: 1617:Advances in Neural Information Processing Systems 1489:https://iq.opengenus.org/similarity-measurements/ 1434: – Searching for similar items in a data set 308:clustered and the specific problem being solved. 1422: – Distance between two statistical objects 1309:such as C or T to another pyrimidine, or from a 533:Another commonly used similarity measure is the 295:Hierarchical clustering § Similarity metric 190:Similarity between two probability distributions 1416: – Relation of resemblance between objects 1870: 1685:Methods: A Companion to Methods in Enzymology 606:clustering the most similar nuclear profile. 8: 1491:"Different Types of Similarity measurements" 1175: 1148: 238:formula measures the similarity between two 91:Use of different similarity measure formulas 71:to score the similarity of documents in the 1877: 1863: 1855: 1820:F. Gregory Ashby; Daniel M. Ennis (2007). 1611:Ng, A.Y.; Jordan, M.I.; Weiss, Y. (2001), 415:, the Euclidean distance between them is 1845: 1784:. Upper Saddle River, NJ: Prentice Hall. 1696: 1663:Similarity metrics in recommender systems 1536: 1518: 1196: 1184: 1178: 1168: 1155: 1144: 1138: 1118: 1098: 1062: 1018: 991: 964: 958: 931: 925: 892: 882: 871: 853: 837: 827: 816: 809: 797: 791: 771: 751: 731: 711: 678: 665: 642: 629: 618: 566: 543: 503: 493: 480: 464: 454: 441: 420: 396: 383: 374: 350: 337: 328: 1226:Similarity measures are used to develop 1476:Kernel Methods in Computational Biology 1455: 87:can be viewed as similarity functions. 1586: 1276:similarity matrices are used to align 7: 1606: 1604: 1401: – Natural language processing 609:Manhattan distance, also known as 194:Typical measures of similarity for 1463:Vert, Jean-Philippe; Tsuda, Koji; 1344:matrices are much more effective. 99:Similarity between two data points 25: 1378: – Algorithm in data mining 1357:This section is an excerpt from 1266:Similarity matrices are used in 274:Similarity between two sequences 2233:Pearson correlation coefficient 1076: 1064: 1032: 1020: 560: 548: 509: 500: 473: 461: 434: 431: 428: 402: 376: 356: 330: 1: 2172:Deep Learning Related Metrics 1707:10.1016/S1046-2023(05)80165-3 953:are non-negative weights and 408:{\displaystyle (x_{2},y_{2})} 362:{\displaystyle (x_{1},y_{1})} 210:, meaning it does not form a 1648:10.1016/j.neucom.2012.06.023 1469:"A primer on kernel methods" 1405:Similarity (network science) 766:descriptors, the similarity 2016:Sensitivity and specificity 1660:Bondarenko, Kirill (2019), 230:Similarity between two sets 157:natural language processing 2298: 2272:Statistical classification 1780:; George Stockman (2001). 1356: 1222:Use in recommender systems 292: 146:Similarity between strings 29: 2241: 1847:10.4249/scholarpedia.4116 1520:10.1186/s12859-019-3118-5 1262:Use in sequence alignment 268:Sørensen–Dice coefficient 252:Sørensen–Dice coefficient 196:probability distributions 1057:points, where the entry 515:{\displaystyle d=\surd } 2044:Calinski-Harabasz index 1414:Similarity (philosophy) 979:{\displaystyle s_{ijk}} 946:{\displaystyle w_{ijk}} 321:Hierarchical clustering 1593:: CS1 maint: others ( 1394:Self-similarity matrix 1352:Use in computer vision 1208: 1127: 1107: 1083: 1039: 1000: 980: 947: 914: 887: 832: 780: 760: 740: 720: 693: 596: 530: 516: 409: 363: 244:recommendation systems 219:Bhattacharyya distance 200:Bhattacharyya distance 108: 41:and related fields, a 2207:Intra-list Similarity 1822:"Similarity measures" 1720:Sean R. Eddy (2004). 1209: 1128: 1108: 1084: 1082:{\displaystyle (i,j)} 1040: 1038:{\displaystyle (n,n)} 1001: 981: 948: 915: 867: 812: 781: 761: 741: 721: 694: 597: 528: 517: 410: 364: 248:social media analysis 106: 69:information retrieval 2277:Statistical distance 1741:10.1038/nbt0804-1035 1729:Nature Biotechnology 1623:, MIT Press: 849–856 1420:Statistical distance 1376:Affinity propagation 1137: 1117: 1097: 1061: 1017: 990: 957: 924: 790: 770: 750: 730: 710: 617: 542: 419: 373: 327: 283:Dynamic time warping 169:Levenshtein distance 55:real-valued function 2282:Similarity measures 2267:Clustering criteria 1838:2007SchpJ...2.4116A 1465:Schölkopf, Bernhard 1399:Semantic similarity 1388:Similarity learning 1228:recommender systems 1011:spectral clustering 208:triangle inequality 47:similarity function 18:Similarity function 2228:Euclidean distance 2194:Recommender system 2074:Similarity measure 1888:evaluation metrics 1507:BMC Bioinformatics 1268:sequence alignment 1234:Euclidean Distance 1204: 1123: 1103: 1091:Euclidean distance 1079: 1035: 996: 976: 943: 910: 776: 756: 736: 716: 689: 592: 531: 512: 405: 359: 317:K-means clustering 313:Euclidean distance 224:Hellinger distance 204:Hellinger distance 140:Chebyshev distance 135:Minkowski distance 130:Manhattan distance 125:Euclidean distance 118:Minkowski distance 109: 73:vector space model 43:similarity measure 2254: 2253: 2223:Cosine similarity 2059:Hopkins statistic 1810:978-3-8423-7917-6 1791:978-0-13-030796-5 1572:978-988-19251-8-3 1432:Similarity search 1250:similarity matrix 1242:Cosine Similarity 1126:{\displaystyle j} 1106:{\displaystyle i} 1049:similarity matrix 999:{\displaystyle k} 905: 779:{\displaystyle S} 759:{\displaystyle p} 739:{\displaystyle j} 719:{\displaystyle i} 590: 289:Use in clustering 152:string similarity 65:Cosine similarity 51:similarity metric 32:Matrix similarity 16:(Redirected from 2289: 2246:Confusion matrix 2021:Logarithmic Loss 1886:Machine learning 1879: 1872: 1865: 1856: 1851: 1849: 1813: 1802: 1796: 1795: 1774: 1768: 1767: 1765: 1759:. Archived from 1726: 1717: 1711: 1710: 1700: 1680: 1674: 1673: 1672: 1670: 1657: 1651: 1650: 1631: 1625: 1624: 1608: 1599: 1598: 1592: 1584: 1557: 1551: 1550: 1540: 1522: 1498: 1492: 1486: 1480: 1479: 1473: 1460: 1410: 1252: 1251: 1244: 1243: 1236: 1235: 1213: 1211: 1210: 1205: 1203: 1202: 1201: 1200: 1188: 1183: 1182: 1173: 1172: 1160: 1159: 1132: 1130: 1129: 1124: 1112: 1110: 1109: 1104: 1088: 1086: 1085: 1080: 1056: 1051: 1050: 1044: 1042: 1041: 1036: 1005: 1003: 1002: 997: 985: 983: 982: 977: 975: 974: 952: 950: 949: 944: 942: 941: 919: 917: 916: 911: 906: 904: 903: 902: 886: 881: 865: 864: 863: 848: 847: 831: 826: 810: 805: 804: 786:is defined as: 785: 783: 782: 777: 765: 763: 762: 757: 745: 743: 742: 737: 725: 723: 722: 717: 704:Gower's distance 698: 696: 695: 690: 688: 684: 683: 682: 670: 669: 652: 648: 647: 646: 634: 633: 611:Taxicab geometry 601: 599: 598: 593: 591: 589: 578: 567: 521: 519: 518: 513: 508: 507: 498: 497: 485: 484: 469: 468: 459: 458: 446: 445: 414: 412: 411: 406: 401: 400: 388: 387: 368: 366: 365: 360: 355: 354: 342: 341: 301:Cluster analysis 179:Hamming distance 81:kernel functions 77:machine learning 59:distance metrics 21: 2297: 2296: 2292: 2291: 2290: 2288: 2287: 2286: 2257: 2256: 2255: 2250: 2237: 2211: 2188: 2179:Inception score 2167: 2144: 2122:Computer Vision 2116: 2088: 2025: 1957: 1889: 1883: 1819: 1816: 1803: 1799: 1792: 1782:Computer Vision 1776: 1775: 1771: 1763: 1724: 1719: 1718: 1714: 1698:10.1.1.114.8183 1682: 1681: 1677: 1668: 1666: 1659: 1658: 1654: 1633: 1632: 1628: 1610: 1609: 1602: 1585: 1573: 1559: 1558: 1554: 1500: 1499: 1495: 1487: 1483: 1471: 1462: 1461: 1457: 1453: 1444:Recurrence plot 1408: 1372: 1367: 1366: 1362: 1354: 1264: 1249: 1248: 1241: 1240: 1233: 1232: 1224: 1192: 1174: 1164: 1151: 1140: 1135: 1134: 1115: 1114: 1095: 1094: 1059: 1058: 1054: 1048: 1047: 1015: 1014: 988: 987: 960: 955: 954: 927: 922: 921: 888: 866: 849: 833: 811: 793: 788: 787: 768: 767: 748: 747: 728: 727: 708: 707: 674: 661: 660: 656: 638: 625: 624: 620: 615: 614: 579: 568: 540: 539: 499: 489: 476: 460: 450: 437: 417: 416: 392: 379: 371: 370: 346: 333: 325: 324: 297: 291: 93: 35: 28: 23: 22: 15: 12: 11: 5: 2295: 2293: 2285: 2284: 2279: 2274: 2269: 2259: 2258: 2252: 2251: 2249: 2248: 2242: 2239: 2238: 2236: 2235: 2230: 2225: 2219: 2217: 2213: 2212: 2210: 2209: 2204: 2198: 2196: 2190: 2189: 2187: 2186: 2181: 2175: 2173: 2169: 2168: 2166: 2165: 2160: 2154: 2152: 2146: 2145: 2143: 2142: 2137: 2132: 2126: 2124: 2118: 2117: 2115: 2114: 2109: 2104: 2098: 2096: 2090: 2089: 2087: 2086: 2081: 2076: 2071: 2066: 2061: 2056: 2051: 2049:Davies-Bouldin 2046: 2041: 2035: 2033: 2027: 2026: 2024: 2023: 2018: 2013: 2008: 2003: 1998: 1993: 1988: 1983: 1978: 1973: 1967: 1965: 1963:Classification 1959: 1958: 1956: 1955: 1950: 1945: 1940: 1935: 1930: 1925: 1920: 1915: 1910: 1905: 1899: 1897: 1891: 1890: 1884: 1882: 1881: 1874: 1867: 1859: 1853: 1852: 1815: 1814: 1797: 1790: 1778:Shapiro, Linda 1769: 1766:on 2006-09-03. 1712: 1675: 1652: 1636:Neurocomputing 1626: 1600: 1571: 1552: 1493: 1481: 1454: 1452: 1449: 1448: 1447: 1441: 1435: 1429: 1423: 1417: 1411: 1402: 1396: 1391: 1385: 1379: 1371: 1368: 1363: 1355: 1353: 1350: 1263: 1260: 1246:to generate a 1223: 1220: 1199: 1195: 1191: 1187: 1181: 1177: 1171: 1167: 1163: 1158: 1154: 1150: 1147: 1143: 1122: 1102: 1078: 1075: 1072: 1069: 1066: 1034: 1031: 1028: 1025: 1022: 1006:-th variable. 995: 973: 970: 967: 963: 940: 937: 934: 930: 909: 901: 898: 895: 891: 885: 880: 877: 874: 870: 862: 859: 856: 852: 846: 843: 840: 836: 830: 825: 822: 819: 815: 808: 803: 800: 796: 775: 755: 735: 715: 687: 681: 677: 673: 668: 664: 659: 655: 651: 645: 641: 637: 632: 628: 623: 588: 585: 582: 577: 574: 571: 565: 562: 559: 556: 553: 550: 547: 511: 506: 502: 496: 492: 488: 483: 479: 475: 472: 467: 463: 457: 453: 449: 444: 440: 436: 433: 430: 427: 424: 404: 399: 395: 391: 386: 382: 378: 358: 353: 349: 345: 340: 336: 332: 299:Clustering or 290: 287: 286: 285: 271: 270: 265: 227: 226: 221: 187: 186: 181: 176: 171: 166: 143: 142: 137: 132: 127: 92: 89: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2294: 2283: 2280: 2278: 2275: 2273: 2270: 2268: 2265: 2264: 2262: 2247: 2244: 2243: 2240: 2234: 2231: 2229: 2226: 2224: 2221: 2220: 2218: 2214: 2208: 2205: 2203: 2200: 2199: 2197: 2195: 2191: 2185: 2182: 2180: 2177: 2176: 2174: 2170: 2164: 2161: 2159: 2156: 2155: 2153: 2151: 2147: 2141: 2138: 2136: 2133: 2131: 2128: 2127: 2125: 2123: 2119: 2113: 2110: 2108: 2105: 2103: 2100: 2099: 2097: 2095: 2091: 2085: 2082: 2080: 2077: 2075: 2072: 2070: 2067: 2065: 2064:Jaccard index 2062: 2060: 2057: 2055: 2052: 2050: 2047: 2045: 2042: 2040: 2037: 2036: 2034: 2032: 2028: 2022: 2019: 2017: 2014: 2012: 2009: 2007: 2004: 2002: 1999: 1997: 1994: 1992: 1989: 1987: 1984: 1982: 1979: 1977: 1974: 1972: 1969: 1968: 1966: 1964: 1960: 1954: 1951: 1949: 1946: 1944: 1941: 1939: 1936: 1934: 1931: 1929: 1926: 1924: 1921: 1919: 1916: 1914: 1911: 1909: 1906: 1904: 1901: 1900: 1898: 1896: 1892: 1887: 1880: 1875: 1873: 1868: 1866: 1861: 1860: 1857: 1848: 1843: 1839: 1835: 1831: 1827: 1823: 1818: 1817: 1811: 1807: 1801: 1798: 1793: 1787: 1783: 1779: 1773: 1770: 1762: 1758: 1754: 1750: 1746: 1742: 1738: 1735:(8): 1035–6. 1734: 1730: 1723: 1716: 1713: 1708: 1704: 1699: 1694: 1690: 1686: 1679: 1676: 1665: 1664: 1656: 1653: 1649: 1645: 1641: 1637: 1630: 1627: 1622: 1618: 1614: 1607: 1605: 1601: 1596: 1590: 1582: 1578: 1574: 1568: 1564: 1563: 1556: 1553: 1548: 1544: 1539: 1534: 1530: 1526: 1521: 1516: 1512: 1508: 1504: 1497: 1494: 1490: 1485: 1482: 1477: 1470: 1466: 1459: 1456: 1450: 1445: 1442: 1439: 1436: 1433: 1430: 1427: 1426:String metric 1424: 1421: 1418: 1415: 1412: 1406: 1403: 1400: 1397: 1395: 1392: 1389: 1386: 1383: 1380: 1377: 1374: 1373: 1369: 1360: 1351: 1349: 1345: 1343: 1338: 1334: 1329: 1327: 1323: 1319: 1315: 1312: 1308: 1303: 1299: 1295: 1291: 1287: 1283: 1279: 1275: 1271: 1269: 1261: 1259: 1256: 1253: 1245: 1237: 1229: 1221: 1219: 1215: 1197: 1193: 1189: 1185: 1179: 1169: 1165: 1161: 1156: 1152: 1145: 1141: 1120: 1100: 1092: 1073: 1070: 1067: 1053:for a set of 1052: 1029: 1026: 1023: 1012: 1007: 993: 971: 968: 965: 961: 938: 935: 932: 928: 907: 899: 896: 893: 889: 883: 878: 875: 872: 868: 860: 857: 854: 850: 844: 841: 838: 834: 828: 823: 820: 817: 813: 806: 801: 798: 794: 773: 753: 733: 713: 705: 700: 685: 679: 675: 671: 666: 662: 657: 653: 649: 643: 639: 635: 630: 626: 621: 612: 607: 603: 586: 583: 580: 575: 572: 569: 563: 557: 554: 551: 545: 536: 535:Jaccard index 527: 523: 504: 494: 490: 486: 481: 477: 470: 465: 455: 451: 447: 442: 438: 425: 422: 397: 393: 389: 384: 380: 351: 347: 343: 338: 334: 322: 318: 314: 309: 305: 302: 296: 288: 284: 281: 280: 279: 276: 275: 269: 266: 264: 263:Jaccard index 261: 260: 259: 257: 253: 249: 245: 241: 237: 236:Jaccard index 232: 231: 225: 222: 220: 217: 216: 215: 213: 209: 205: 201: 197: 192: 191: 185: 184:Jaro distance 182: 180: 177: 175: 172: 170: 167: 165: 164:Edit distance 162: 161: 160: 158: 153: 148: 147: 141: 138: 136: 133: 131: 128: 126: 123: 122: 121: 119: 115: 105: 101: 100: 96: 90: 88: 86: 82: 78: 74: 70: 66: 62: 60: 56: 52: 48: 44: 40: 33: 19: 2073: 1832:(12): 4116. 1829: 1826:Scholarpedia 1825: 1800: 1781: 1772: 1761:the original 1732: 1728: 1715: 1688: 1684: 1678: 1667:, retrieved 1662: 1655: 1639: 1635: 1629: 1620: 1616: 1561: 1555: 1513:(S15): 644. 1510: 1506: 1496: 1484: 1475: 1458: 1382:Latent space 1346: 1330: 1322:genetic code 1316: 1278:nucleic acid 1272: 1265: 1257: 1247: 1239: 1231: 1225: 1216: 1046: 1008: 701: 608: 604: 532: 310: 306: 298: 277: 273: 272: 233: 229: 228: 193: 189: 188: 174:Lee distance 149: 145: 144: 110: 98: 97: 94: 83:such as the 63: 50: 46: 42: 36: 1642:: 125–130, 2261:Categories 2216:Similarity 2158:Perplexity 2069:Rand index 2054:Dunn index 2039:Silhouette 2031:Clustering 1895:Regression 1451:References 1318:Amino acid 1307:pyrimidine 1274:Nucleotide 920:where the 293:See also: 85:RBF kernel 39:statistics 1986:Precision 1938:RMSE/RMSD 1757:205269887 1693:CiteSeerX 1691:(1): 66. 1589:cite book 1581:842831996 1529:1471-2105 1326:symmetric 1194:σ 1176:‖ 1162:− 1149:‖ 1146:− 869:∑ 814:∑ 672:− 636:− 584:⋃ 573:⋂ 487:− 448:− 429:√ 79:, common 2202:Coverage 1981:Accuracy 1749:15286655 1669:25 April 1547:31874610 1467:(2004). 1370:See also 1296:(G) and 1290:Cytosine 1093:between 746:having 202:and the 198:are the 2094:Ranking 2084:SimHash 1971:F-score 1834:Bibcode 1538:6929325 1333:Dayhoff 1302:protein 1298:Thymine 1294:Guanine 1286:Adenine 1045:-sized 256:biology 1991:Recall 1808:  1788:  1755:  1747:  1695:  1579:  1569:  1545:  1535:  1527:  1438:tf–idf 1342:BLOSUM 1311:purine 250:. The 212:metric 1996:Kappa 1913:sMAPE 1764:(PDF) 1753:S2CID 1725:(PDF) 1472:(PDF) 1292:(C), 1288:(A), 75:. In 53:is a 2163:BLEU 2135:SSIM 2130:PSNR 2107:NDCG 1928:MSPE 1923:MASE 1918:MAPE 1806:ISBN 1786:ISBN 1745:PMID 1671:2023 1595:link 1577:OCLC 1567:ISBN 1543:PMID 1525:ISSN 1113:and 726:and 369:and 319:and 246:and 240:sets 234:The 2184:FID 2150:NLP 2140:IoU 2102:MRR 2079:SMC 2011:ROC 2006:AUC 2001:MCC 1953:MAD 1948:MDA 1933:RMS 1908:MAE 1903:MSE 1842:doi 1737:doi 1703:doi 1644:doi 1533:PMC 1515:doi 1337:PAM 1282:DNA 1238:or 1009:In 114:GPS 49:or 45:or 37:In 2263:: 2112:AP 1976:P4 1840:. 1828:. 1824:. 1751:. 1743:. 1733:22 1731:. 1727:. 1701:. 1687:. 1640:97 1638:, 1621:14 1619:, 1615:, 1603:^ 1591:}} 1587:{{ 1575:. 1541:. 1531:. 1523:. 1511:20 1509:. 1505:. 1474:. 699:. 602:. 522:. 1943:R 1878:e 1871:t 1864:v 1850:. 1844:: 1836:: 1830:2 1812:. 1794:. 1739:: 1709:. 1705:: 1689:3 1646:: 1597:) 1583:. 1549:. 1517:: 1478:. 1361:. 1284:( 1198:2 1190:2 1186:/ 1180:2 1170:2 1166:s 1157:1 1153:s 1142:e 1121:j 1101:i 1077:) 1074:j 1071:, 1068:i 1065:( 1055:n 1033:) 1030:n 1027:, 1024:n 1021:( 994:k 972:k 969:j 966:i 962:s 939:k 936:j 933:i 929:w 908:, 900:k 897:j 894:i 890:w 884:p 879:1 876:= 873:k 861:k 858:j 855:i 851:s 845:k 842:j 839:i 835:w 829:p 824:1 821:= 818:k 807:= 802:j 799:i 795:S 774:S 754:p 734:j 714:i 686:| 680:2 676:y 667:1 663:y 658:| 654:+ 650:| 644:2 640:x 631:1 627:x 622:| 587:B 581:A 576:B 570:A 564:= 561:) 558:B 555:, 552:A 549:( 546:J 510:] 505:2 501:) 495:1 491:y 482:2 478:y 474:( 471:+ 466:2 462:) 456:1 452:x 443:2 439:x 435:( 432:[ 426:= 423:d 403:) 398:2 394:y 390:, 385:2 381:x 377:( 357:) 352:1 348:y 344:, 339:1 335:x 331:( 34:. 20:)

Index

Similarity function
Matrix similarity
statistics
real-valued function
distance metrics
Cosine similarity
information retrieval
vector space model
machine learning
kernel functions
RBF kernel

GPS
Minkowski distance
Euclidean distance
Manhattan distance
Minkowski distance
Chebyshev distance
string similarity
natural language processing
Edit distance
Levenshtein distance
Lee distance
Hamming distance
Jaro distance
probability distributions
Bhattacharyya distance
Hellinger distance
triangle inequality
metric

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.