Knowledge (XXG)

Simple theorems in the algebra of sets

Source 📝

202: 210: 1098: 206: 1138: 104: 33: 96: 218: 92: 41: 190: 166: 135: 233: 214: 116: 112: 21: 127: 25: 1111: 174: 895: 186: 120: 222: 194: 182: 159: 155: 139: 226: 986: 620: 198: 37: 29: 1132: 48: 143: 100: 169:
courses sometimes leave students with the impression that the subject matter of
178: 170: 173:
is no more than these properties. For more about elementary set theory, see
68: 56: 59:, denoted {}. The algebra of sets describes the properties of all possible 95:
under union, intersection, and set complement. The algebra of sets is an
60: 47:
These properties assume the existence of at least two sets: a given
1114:(1904) "Sets of independent postulates for the algebra of logic," 131: 236:, denoted by the infix operator "\". The "relative complement of 189:. For an introduction to set theory at a higher level, see also 130:, but can be derived from a small number of properties taken as 232:
The properties below include a defined binary operation,
134:. A "*" follows the algebra of sets interpretation of 1116:Transactions of the American Mathematical Society 158:. The properties followed by "L" interpret the 20:are some of the elementary properties of the 8: 107:, with union, intersection, set complement, 1101: – Equalities for combinations of sets 142:. These properties can be visualized with 126:The properties below are stated without 1125:. Addison-Wesley. Dover reprint, 1999. 146:. They also follow from the fact that 18:simple theorems in the algebra of sets 7: 1123:Boolean Algebra and Its Applications 1099:List of set identities and relations 211:Cantor's first uncountability proof 203:Cantor–Bernstein–Schroeder theorem 14: 138:(1904) classic postulate set for 111:, and {} interpreting Boolean 1: 1155: 207:Cantor's diagonal argument 123:, 1, and 0, respectively. 36:(infix operator: ∩), and 1121:Whitesitt, J. E. (1961) 973:. Some properties of ⊆: 342: ∩ {} = {}; 219:well-ordering theorem 191:axiomatic set theory 167:discrete mathematics 234:relative complement 1139:Operations on sets 348: ∪ {} = 325: \ {} = 1112:Edward Huntington 896:distributive laws 252:, is defined as ( 1146: 1044: 1037: 669: 664: 657: 651: 642: 458: 454: 435: 404: 387: 317: 304: 272: 266: 261: 215:Cantor's theorem 187:naive set theory 1154: 1153: 1149: 1148: 1147: 1145: 1144: 1143: 1129: 1128: 1108: 1095: 1056:if and only if 1042: 1035: 1032:if and only if 1010:if and only if 969: 667: 662: 655: 649: 640: 499:. For any sets 495: 456: 452: 433: 402: 385: 315: 302: 289:and any subset 281: 270: 264: 259: 223:axiom of choice 195:cardinal number 183:algebra of sets 156:Boolean lattice 140:Boolean algebra 105:Boolean algebra 12: 11: 5: 1152: 1150: 1142: 1141: 1131: 1130: 1127: 1126: 1119: 1107: 1104: 1103: 1102: 1094: 1091: 1090: 1089: 1088: 1087: 1065: 1047: 1023: 1001: 987:if and only if 967: 966: 965: 964: 933: 892: 891: 890: 889: 858: 819: 789: 759: 729: 702: 675: 635: 621:if and only if 610: 587: 569: 551: 533: 493: 492: 478: 464: 448: 438: 421: 411: 398: 381: 367: 353: 343: 337: 330: 320: 310: 199:ordinal number 97:interpretation 38:set complement 30:infix operator 13: 10: 9: 6: 4: 3: 2: 1151: 1140: 1137: 1136: 1134: 1124: 1120: 1117: 1113: 1110: 1109: 1105: 1100: 1097: 1096: 1092: 1085: 1081: 1077: 1073: 1069: 1066: 1063: 1059: 1055: 1051: 1048: 1045: 1038: 1031: 1027: 1024: 1021: 1017: 1013: 1009: 1005: 1002: 999: 995: 991: 988: 985: 981: 978: 977: 976: 975: 974: 972: 971:PROPOSITION 3 962: 958: 954: 950: 946: 942: 938: 934: 931: 927: 923: 919: 915: 911: 907: 903: 902: 901: 900: 899: 897: 887: 884: \  883: 879: 876: ∪  875: 871: 867: 864: \  863: 859: 856: 853: \  852: 848: 844: 840: 837: ∩  836: 832: 828: 825: \  824: 820: 817: 814: ∩  813: 809: 806: \  805: 801: 798: \  797: 793: 790: 787: 784: \  783: 779: 776: \  775: 771: 768: ∪  767: 763: 760: 757: 754: \  753: 749: 746: \  745: 741: 738: ∩  737: 733: 730: 727: 724: ∪  723: 719: 715: 711: 708: ∪  707: 703: 700: 697: ∩  696: 692: 688: 684: 681: ∩  680: 676: 673: 665: 658: 647: 643: 636: 633: 629: 625: 622: 618: 614: 611: 608: 604: 600: 596: 592: 588: 585: 581: 577: 573: 570: 567: 563: 559: 555: 552: 549: 545: 541: 537: 534: 531: 527: 523: 519: 516: 515: 514: 513: 512: 510: 506: 502: 498: 497:PROPOSITION 2 490: 486: 482: 479: 476: 472: 468: 465: 462: 455: 449: 446: 442: 439: 436: 429: 425: 422: 419: 415: 412: 409: 405: 399: 396: 392: 388: 382: 379: 375: 371: 368: 365: 361: 357: 354: 351: 347: 344: 341: 338: 335: 331: 328: 324: 321: 318: 311: 308: 300: 299: 298: 296: 292: 288: 284: 283:PROPOSITION 1 279: 277: 273: 262: 255: 251: 247: 243: 239: 235: 230: 228: 224: 220: 216: 212: 208: 204: 200: 196: 192: 188: 184: 180: 176: 172: 168: 163: 161: 157: 153: 149: 145: 144:Venn diagrams 141: 137: 133: 129: 124: 122: 118: 114: 110: 106: 102: 98: 94: 91:) is assumed 90: 86: 82: 78: 75:and denoted 74: 70: 67:, called the 66: 62: 58: 54: 50: 49:universal set 45: 43: 39: 35: 31: 27: 23: 19: 1122: 1115: 1083: 1079: 1075: 1071: 1067: 1061: 1057: 1053: 1049: 1040: 1033: 1029: 1025: 1019: 1015: 1011: 1007: 1003: 997: 993: 989: 983: 979: 970: 968: 960: 956: 952: 948: 944: 940: 936: 929: 925: 921: 917: 913: 909: 905: 893: 885: 881: 877: 873: 869: 865: 861: 854: 850: 846: 842: 838: 834: 830: 826: 822: 815: 811: 807: 803: 799: 795: 791: 785: 781: 777: 773: 769: 765: 761: 755: 751: 747: 743: 739: 735: 731: 725: 721: 717: 713: 709: 705: 698: 694: 690: 686: 682: 678: 671: 660: 653: 645: 638: 631: 627: 623: 616: 612: 606: 602: 598: 594: 590: 583: 579: 575: 571: 565: 561: 557: 553: 547: 543: 539: 535: 529: 525: 521: 517: 508: 504: 500: 496: 494: 488: 484: 480: 474: 470: 466: 460: 450: 444: 440: 431: 427: 423: 417: 413: 407: 400: 394: 390: 383: 377: 373: 369: 363: 359: 355: 349: 345: 339: 333: 326: 322: 313: 306: 294: 290: 286: 282: 280: 275: 268: 257: 253: 249: 245: 241: 237: 231: 227:Zorn's lemma 164: 151: 147: 136:Huntington's 125: 108: 88: 84: 80: 76: 72: 64: 52: 46: 44:') of sets. 34:intersection 17: 15: 1118:5: 288-309. 1064: = {}; 619: = {} 447: = {}; 420: = {}; 336: = {}; 244:," denoted 165:Elementary 1106:References 955:) ∩ ( 947:) = ( 924:) ∪ ( 916:) = ( 880:) \ ( 780:) ∩ ( 772:) = ( 750:) ∪ ( 742:) = ( 332:{} \ 285:. For any 179:set theory 171:set theory 121:complement 55:, and the 51:, denoted 939: ∪ ( 908: ∩ ( 872: = ( 868:) ∪ 849: ∩ ( 841:) \ 833: = ( 829:) ∩ 810:) ∪( 794: \ ( 764: \ ( 734: \ ( 720: ∪ ( 712:) ∪ 693: ∩ ( 685:) ∩ 69:power set 57:empty set 1133:Category 1093:See also 1078: ⊆ 1074: ⊆ 1070: ∩ 1060: \ 1052: ⊆ 1039: ⊆ 1028: ⊆ 1018: = 1014: ∪ 1006: ⊆ 996: = 992: ∩ 982: ⊆ 959: ∪ 951: ∪ 943: ∩ 928: ∩ 920: ∩ 912: ∪ 845: = 716: = 689: = 630: = 626: \ 615: ∩ 546: ∪ 542: = 538: ∪ 528: ∩ 524: = 520: ∩ 487: = 483: ∪ 473: = 469: ∩ 459: = 443: \ 430: = 426: \ 416: \ 376: = 372: ∪ 362: = 358: ∩ 162:axioms. 1080:A  410:= {}; * 274: ∩ 267:and as 256: ∪ 248: \ 160:lattice 154:) is a 117:product 61:subsets 42:postfix 22:algebra 935:  904:  507:, and 225:, and 185:, and 132:axioms 93:closed 32:: ∪), 802:) = ( 550:; * L 532:; * L 319:= {}; 128:proof 101:model 26:union 963:). * 932:); * 894:The 728:); L 701:); L 597:) \ 582:) = 564:) = 63:of 16:The 652:∪ ( 586:; L 574:∩ ( 568:; L 556:∪ ( 397:; * 366:; * 352:; * 293:of 240:in 175:set 113:sum 103:of 99:or 83:). 71:of 24:of 1135:: 1082:∪ 898:: 888:). 857:); 818:); 788:); 758:); 670:= 659:∪ 644:∪ 605:\ 601:= 593:∪ 578:∪ 560:∩ 511:: 503:, 406:∩ 393:= 389:∪ 314:U' 305:= 301:{} 297:: 278:. 229:. 221:, 217:, 213:, 209:, 205:, 201:, 197:, 193:, 181:, 177:, 119:, 115:, 1086:. 1084:B 1076:A 1072:B 1068:A 1062:B 1058:A 1054:B 1050:A 1046:; 1043:′ 1041:A 1036:′ 1034:B 1030:B 1026:A 1022:; 1020:B 1016:B 1012:A 1008:B 1004:A 1000:; 998:A 994:B 990:A 984:B 980:A 961:C 957:A 953:B 949:A 945:C 941:B 937:A 930:C 926:A 922:B 918:A 914:C 910:B 906:A 886:C 882:A 878:C 874:B 870:C 866:A 862:B 860:( 855:A 851:C 847:B 843:A 839:C 835:B 831:C 827:A 823:B 821:( 816:A 812:C 808:B 804:C 800:A 796:B 792:C 786:B 782:C 778:A 774:C 770:B 766:A 762:C 756:B 752:C 748:A 744:C 740:B 736:A 732:C 726:C 722:B 718:A 714:C 710:B 706:A 704:( 699:C 695:B 691:A 687:C 683:B 679:A 677:( 674:; 672:A 668:′ 666:) 663:′ 661:B 656:′ 654:A 650:′ 648:) 646:B 641:′ 639:A 637:( 634:; 632:B 628:A 624:B 617:B 613:A 609:; 607:A 603:B 599:A 595:B 591:A 589:( 584:A 580:B 576:A 572:A 566:A 562:B 558:A 554:A 548:A 544:B 540:B 536:A 530:A 526:B 522:B 518:A 509:C 505:B 501:A 491:. 489:A 485:A 481:A 477:; 475:A 471:A 467:A 463:; 461:A 457:′ 453:′ 451:A 445:U 441:A 437:; 434:′ 432:A 428:A 424:U 418:A 414:A 408:A 403:′ 401:A 395:U 391:A 386:′ 384:A 380:; 378:U 374:U 370:A 364:A 360:U 356:A 350:A 346:A 340:A 334:A 329:; 327:A 323:A 316:′ 312:' 309:; 307:U 303:′ 295:U 291:A 287:U 276:B 271:′ 269:A 265:′ 263:) 260:′ 258:B 254:A 250:A 246:B 242:B 238:A 152:U 150:( 148:P 109:U 89:U 87:( 85:P 81:U 79:( 77:P 73:U 65:U 53:U 40:( 28:(

Index

algebra
union
infix operator
intersection
set complement
postfix
universal set
empty set
subsets
power set
closed
interpretation
model
Boolean algebra
sum
product
complement
proof
axioms
Huntington's
Boolean algebra
Venn diagrams
Boolean lattice
lattice
discrete mathematics
set theory
set
set theory
algebra of sets
naive set theory

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.