Knowledge (XXG)

Simple extension

Source 📝

943: 1415: 1602: 861: 1642: 1343: 1042:, and that two such irreducible fractions are equal if and only if one may pass from one to the other by multiplying the numerator and the denominator by the same non zero element of 1470: 1290: 1182: 1534: 782: 673: 625: 856: 118: 1500: 438: 399: 230: 496: 1234: 1210: 1111: 1067: 1016: 969: 590: 269: 327: 723: 1730: 1082: 343: 1356: 817: 1562: 1718: 353: 237: 1607: 17: 1757: 737: 40: 29: 1307: 547: 357: 1436: 1243: 1135: 938:{\displaystyle {\begin{aligned}\varphi :K&\rightarrow L\\f(X)&\mapsto f(\theta )\,.\end{aligned}}} 690: 686: 330: 184: 1509: 742: 640: 595: 1035: 785: 1090: 85: 1481: 976: 192: 414: 375: 206: 446: 1726: 1219: 1195: 1096: 1052: 1001: 954: 848: 559: 280: 128: 1736: 1672: 1078: 298: 233: 44: 242: 1740: 1722: 1122: 841: 303: 25: 699: 1751: 1130: 441: 1710: 1540: 813: 539: 369: 1237: 543: 1213: 196: 972: 36:. Simple extensions are well understood and can be completely classified. 1114: 1658:
a field of rational functions, is generated by the formal variable
804:
To distinguish these meanings, one uses the term "generator" or
1410:{\displaystyle 1,\theta ,\theta ^{2},\ldots ,\theta ^{n-1}} 808:
for the weaker meaning, reserving "primitive element" or
170:
There are two different kinds of simple extensions (see
1675:
for the multiplication map on a simple field extension
732:
is usually reserved for a stronger notion, an element
1610: 1597:{\displaystyle \mathbf {Q} ({\sqrt {3}},{\sqrt {7}})} 1565: 1512: 1484: 1439: 1359: 1310: 1246: 1222: 1198: 1138: 1099: 1055: 1004: 957: 859: 745: 702: 643: 598: 562: 449: 417: 378: 306: 245: 209: 88: 151:by the field operations +, −, •, / . Equivalently, 1636: 1596: 1528: 1494: 1464: 1409: 1337: 1284: 1228: 1204: 1176: 1105: 1061: 1010: 963: 937: 776: 717: 667: 619: 584: 490: 432: 393: 321: 263: 224: 112: 1129:is an irreducible polynomial, and thus that the 728:However, in the case of finite fields, the term 1637:{\displaystyle \theta ={\sqrt {3}}+{\sqrt {7}}} 401:can be uniquely expressed as a polynomial in 8: 1279: 1264: 1171: 1156: 814:Finite field § Multiplicative structure 771: 765: 847:, one of its main properties is the unique 1338:{\displaystyle n=\operatorname {deg} p(X)} 1627: 1617: 1609: 1584: 1574: 1566: 1564: 1519: 1511: 1485: 1483: 1452: 1438: 1395: 1376: 1358: 1309: 1259: 1245: 1221: 1197: 1151: 1137: 1098: 1054: 1003: 956: 927: 860: 858: 750: 744: 701: 656: 652: 651: 642: 633:elements is a simple extension of degree 611: 607: 606: 597: 573: 561: 462: 448: 416: 377: 305: 244: 208: 155:is the smallest field that contains both 87: 975:, it may be extended injectively to the 1685: 679:is generated as a field by any element 1465:{\displaystyle \theta =i={\sqrt {-1}}} 1285:{\displaystyle K/\langle p(X)\rangle } 1177:{\displaystyle K/\langle p(X)\rangle } 1693: 1296:. This implies that every element of 1030:. This implies that every element of 7: 1529:{\displaystyle \theta ={\sqrt {2}}} 1300:is equal to a unique polynomial in 788:, so that every nonzero element of 777:{\displaystyle L^{\times }=L-\{0\}} 668:{\displaystyle K=\mathbb {F} _{p}.} 43:provides a characterization of the 620:{\displaystyle L=\mathbb {F} _{q}} 14: 800:using only the group operation • 514:for the extension; one says also 372:. In this case, every element of 123:This means that every element of 1567: 1304:of degree lower than the degree 818:Primitive element (finite field) 812:for the stronger meaning. (See 293:is a root of a polynomial over 191:, which means that it is not a 141:; that is, it is produced from 1591: 1571: 1332: 1326: 1276: 1270: 1256: 1250: 1168: 1162: 1148: 1142: 924: 918: 912: 905: 899: 886: 879: 873: 824:Structure of simple extensions 712: 706: 482: 479: 473: 467: 459: 453: 427: 421: 388: 382: 316: 310: 255: 249: 219: 213: 172:Structure of simple extensions 104: 98: 32:of a single element, called a 1: 1719:Graduate Texts in Mathematics 1543:(i.e., a finite extension of 542:is a simple extension of the 354:degree of the field extension 113:{\displaystyle L=K(\theta ).} 1721:. Vol. 158. New York: 1495:{\displaystyle {\sqrt {2}}} 500:In both cases, the element 238:field of rational functions 69:if there exists an element 1774: 433:{\displaystyle K(\theta )} 394:{\displaystyle K(\theta )} 225:{\displaystyle K(\theta )} 832:be a simple extension of 491:{\displaystyle K/(p(X)).} 342:as a root, is called the 41:primitive element theorem 28:that is generated by the 1547:) is a simple extension 1229:{\displaystyle \varphi } 1205:{\displaystyle \varphi } 1106:{\displaystyle \varphi } 1077:) be a generator of its 1062:{\displaystyle \varphi } 1011:{\displaystyle \varphi } 964:{\displaystyle \varphi } 796:, i.e. is produced from 585:{\displaystyle q=p^{n},} 352:. Its degree equals the 1018:is an isomorphism from 810:group primitive element 806:field primitive element 137:, with coefficients in 1638: 1598: 1530: 1496: 1466: 1411: 1339: 1286: 1230: 1206: 1178: 1107: 1069:is not injective, let 1063: 1012: 965: 939: 778: 719: 687:irreducible polynomial 669: 621: 586: 556:is a prime number and 492: 434: 395: 323: 265: 226: 127:can be expressed as a 114: 1639: 1599: 1531: 1497: 1467: 1412: 1345:. That is, we have a 1340: 1287: 1231: 1207: 1179: 1108: 1064: 1013: 966: 948:Two cases may occur. 940: 779: 720: 685:that is a root of an 670: 622: 587: 550:. More precisely, if 493: 440:is isomorphic to the 435: 396: 324: 266: 264:{\displaystyle K(X).} 227: 199:with coefficients in 115: 1608: 1563: 1510: 1482: 1437: 1357: 1308: 1244: 1220: 1196: 1136: 1125:. This implies that 1097: 1081:, which is thus the 1053: 1036:irreducible fraction 1002: 998:, this implies that 955: 857: 786:multiplicative group 743: 700: 641: 596: 560: 447: 415: 407:of degree less than 376: 322:{\displaystyle p(X)} 304: 243: 207: 86: 538:For example, every 47:simple extensions. 1634: 1594: 1526: 1492: 1462: 1407: 1335: 1282: 1226: 1202: 1174: 1103: 1083:minimal polynomial 1059: 1038:of polynomials in 1008: 977:field of fractions 961: 935: 933: 774: 715: 665: 617: 582: 508:generating element 488: 430: 391: 344:minimal polynomial 319: 261: 222: 110: 55:A field extension 1632: 1622: 1589: 1579: 1524: 1490: 1460: 849:ring homomorphism 730:primitive element 718:{\displaystyle K} 512:primitive element 129:rational fraction 34:primitive element 1765: 1758:Field extensions 1744: 1697: 1690: 1673:Companion matrix 1643: 1641: 1640: 1635: 1633: 1628: 1623: 1618: 1604:is generated by 1603: 1601: 1600: 1595: 1590: 1585: 1580: 1575: 1570: 1535: 1533: 1532: 1527: 1525: 1520: 1501: 1499: 1498: 1493: 1491: 1486: 1471: 1469: 1468: 1463: 1461: 1453: 1416: 1414: 1413: 1408: 1406: 1405: 1381: 1380: 1344: 1342: 1341: 1336: 1291: 1289: 1288: 1283: 1263: 1235: 1233: 1232: 1227: 1211: 1209: 1208: 1203: 1188:is generated by 1183: 1181: 1180: 1175: 1155: 1112: 1110: 1109: 1104: 1068: 1066: 1065: 1060: 1017: 1015: 1014: 1009: 994:is generated by 970: 968: 967: 962: 944: 942: 941: 936: 934: 783: 781: 780: 775: 755: 754: 724: 722: 721: 716: 684: 674: 672: 671: 666: 661: 660: 655: 632: 626: 624: 623: 618: 616: 615: 610: 591: 589: 588: 583: 578: 577: 555: 534: 528: 519: 505: 497: 495: 494: 489: 466: 439: 437: 436: 431: 410: 406: 400: 398: 397: 392: 367: 363: 351: 341: 335: 328: 326: 325: 320: 299:monic polynomial 296: 292: 286: 278: 270: 268: 267: 262: 231: 229: 228: 223: 202: 190: 182: 166: 159: 154: 150: 147:and elements of 146: 140: 136: 126: 119: 117: 116: 111: 74: 67:simple extension 64: 22:simple extension 1773: 1772: 1768: 1767: 1766: 1764: 1763: 1762: 1748: 1747: 1733: 1723:Springer-Verlag 1709: 1706: 1701: 1700: 1691: 1687: 1682: 1669: 1606: 1605: 1561: 1560: 1559:. For example, 1508: 1507: 1480: 1479: 1435: 1434: 1423: 1391: 1372: 1355: 1354: 1306: 1305: 1242: 1241: 1218: 1217: 1194: 1193: 1184:is a field. As 1134: 1133: 1123:integral domain 1095: 1094: 1051: 1050: 1034:is equal to an 1000: 999: 953: 952: 932: 931: 908: 893: 892: 882: 855: 854: 842:polynomial ring 826: 746: 741: 740: 698: 697: 680: 650: 639: 638: 628: 605: 594: 593: 569: 558: 557: 551: 530: 524: 515: 501: 445: 444: 413: 412: 408: 402: 374: 373: 365: 361: 356:, that is, the 347: 337: 333: 302: 301: 294: 288: 284: 274: 241: 240: 205: 204: 203:. In this case 200: 188: 178: 162: 157: 152: 148: 142: 138: 132: 124: 84: 83: 70: 56: 53: 26:field extension 12: 11: 5: 1771: 1769: 1761: 1760: 1750: 1749: 1746: 1745: 1731: 1705: 1702: 1699: 1698: 1684: 1683: 1681: 1678: 1677: 1676: 1668: 1665: 1664: 1663: 1645: 1631: 1626: 1621: 1616: 1613: 1593: 1588: 1583: 1578: 1573: 1569: 1537: 1523: 1518: 1515: 1489: 1473: 1459: 1456: 1451: 1448: 1445: 1442: 1422: 1419: 1404: 1401: 1398: 1394: 1390: 1387: 1384: 1379: 1375: 1371: 1368: 1365: 1362: 1334: 1331: 1328: 1325: 1322: 1319: 1316: 1313: 1281: 1278: 1275: 1272: 1269: 1266: 1262: 1258: 1255: 1252: 1249: 1225: 1201: 1173: 1170: 1167: 1164: 1161: 1158: 1154: 1150: 1147: 1144: 1141: 1121:, and thus an 1102: 1058: 1007: 960: 946: 945: 930: 926: 923: 920: 917: 914: 911: 909: 907: 904: 901: 898: 895: 894: 891: 888: 885: 883: 881: 878: 875: 872: 869: 866: 863: 862: 825: 822: 792:is a power of 773: 770: 767: 764: 761: 758: 753: 749: 714: 711: 708: 705: 664: 659: 654: 649: 646: 614: 609: 604: 601: 581: 576: 572: 568: 565: 548:characteristic 522:generated over 487: 484: 481: 478: 475: 472: 469: 465: 461: 458: 455: 452: 429: 426: 423: 420: 390: 387: 384: 381: 318: 315: 312: 309: 260: 257: 254: 251: 248: 221: 218: 215: 212: 185:transcendental 121: 120: 109: 106: 103: 100: 97: 94: 91: 52: 49: 13: 10: 9: 6: 4: 3: 2: 1770: 1759: 1756: 1755: 1753: 1742: 1738: 1734: 1732:0-387-94408-7 1728: 1724: 1720: 1716: 1712: 1711:Roman, Steven 1708: 1707: 1703: 1695: 1689: 1686: 1679: 1674: 1671: 1670: 1666: 1661: 1657: 1653: 1649: 1646: 1629: 1624: 1619: 1614: 1611: 1586: 1581: 1576: 1558: 1554: 1550: 1546: 1542: 1538: 1521: 1516: 1513: 1506:generated by 1505: 1487: 1477: 1474: 1457: 1454: 1449: 1446: 1443: 1440: 1433:generated by 1432: 1428: 1425: 1424: 1420: 1418: 1402: 1399: 1396: 1392: 1388: 1385: 1382: 1377: 1373: 1369: 1366: 1363: 1360: 1352: 1348: 1329: 1323: 1320: 1317: 1314: 1311: 1303: 1299: 1295: 1273: 1267: 1260: 1253: 1247: 1239: 1223: 1215: 1199: 1191: 1187: 1165: 1159: 1152: 1145: 1139: 1132: 1131:quotient ring 1128: 1124: 1120: 1116: 1100: 1092: 1088: 1084: 1080: 1076: 1072: 1056: 1047: 1045: 1041: 1037: 1033: 1029: 1025: 1021: 1005: 997: 993: 989: 985: 981: 978: 974: 958: 949: 928: 921: 915: 910: 902: 896: 889: 884: 876: 870: 867: 864: 853: 852: 851: 850: 846: 843: 839: 836:generated by 835: 831: 823: 821: 819: 815: 811: 807: 803: 799: 795: 791: 787: 768: 762: 759: 756: 751: 747: 739: 735: 731: 726: 709: 703: 695: 692: 688: 683: 678: 662: 657: 647: 644: 636: 631: 612: 602: 599: 579: 574: 570: 566: 563: 554: 549: 545: 541: 536: 533: 527: 523: 518: 513: 509: 504: 498: 485: 476: 470: 463: 456: 450: 443: 442:quotient ring 424: 418: 405: 385: 379: 371: 359: 355: 350: 345: 340: 332: 313: 307: 300: 291: 282: 277: 271: 258: 252: 246: 239: 235: 216: 210: 198: 194: 186: 181: 175: 173: 168: 165: 160: 145: 135: 130: 107: 101: 95: 92: 89: 82: 81: 80: 78: 73: 68: 63: 59: 50: 48: 46: 42: 37: 35: 31: 27: 23: 19: 1715:Field Theory 1714: 1688: 1659: 1655: 1651: 1647: 1556: 1552: 1548: 1544: 1541:number field 1503: 1475: 1430: 1426: 1350: 1346: 1301: 1297: 1293: 1189: 1185: 1126: 1118: 1086: 1074: 1070: 1048: 1043: 1039: 1031: 1027: 1023: 1019: 995: 991: 987: 983: 979: 950: 947: 844: 837: 833: 829: 827: 809: 805: 801: 797: 793: 789: 733: 729: 727: 693: 681: 676: 634: 629: 552: 546:of the same 540:finite field 537: 531: 525: 521: 516: 511: 507: 506:is called a 502: 499: 403: 370:vector space 364:viewed as a 348: 338: 289: 275: 272: 179: 177:The element 176: 171: 169: 163: 156: 143: 133: 122: 76: 71: 66: 65:is called a 61: 57: 54: 38: 33: 21: 18:field theory 15: 1555:) for some 1238:isomorphism 1236:induces an 544:prime field 329:of minimal 287:; that is, 273:Otherwise, 1741:0816.12001 1704:Literature 1694:Roman 1995 1680:References 1214:surjective 840:. For the 592:the field 234:isomorphic 197:polynomial 51:Definition 30:adjunction 1612:θ 1514:θ 1455:− 1441:θ 1400:− 1393:θ 1386:… 1374:θ 1367:θ 1353:given by 1349:basis of 1321:⁡ 1280:⟩ 1265:⟨ 1224:φ 1200:φ 1172:⟩ 1157:⟨ 1101:φ 1057:φ 1006:φ 973:injective 959:φ 922:θ 913:↦ 887:→ 865:φ 763:− 752:× 738:generates 675:In fact, 425:θ 386:θ 358:dimension 281:algebraic 217:θ 102:θ 1752:Category 1713:(1995). 1667:See also 1421:Examples 990:. Since 174:below). 1115:subring 1026:) onto 336:, with 236:to the 195:of any 183:may be 1739:  1729:  1216:, and 1089:. The 1079:kernel 691:degree 411:, and 331:degree 297:. The 45:finite 1292:onto 1240:from 1113:is a 1091:image 986:) of 820:). 784:as a 736:that 283:over 187:over 79:with 24:is a 1727:ISBN 1654:) / 1539:Any 1502:) / 828:Let 816:and 725:. 193:root 161:and 39:The 20:, a 1737:Zbl 1417:. 1318:deg 1212:is 1117:of 1093:of 1085:of 1049:If 971:is 951:If 696:in 689:of 637:of 627:of 529:by 520:is 510:or 360:of 346:of 279:is 232:is 131:in 75:in 16:In 1754:: 1735:. 1725:. 1717:. 1656:F, 1429:/ 1347:K- 1192:, 1046:. 535:. 167:. 1743:. 1696:) 1692:( 1662:. 1660:X 1652:X 1650:( 1648:F 1644:. 1630:7 1625:+ 1620:3 1615:= 1592:) 1587:7 1582:, 1577:3 1572:( 1568:Q 1557:θ 1553:θ 1551:( 1549:Q 1545:Q 1536:. 1522:2 1517:= 1504:Q 1488:2 1478:( 1476:Q 1472:. 1458:1 1450:= 1447:i 1444:= 1431:R 1427:C 1403:1 1397:n 1389:, 1383:, 1378:2 1370:, 1364:, 1361:1 1351:L 1333:) 1330:X 1327:( 1324:p 1315:= 1312:n 1302:θ 1298:L 1294:L 1277:) 1274:X 1271:( 1268:p 1261:/ 1257:] 1254:X 1251:[ 1248:K 1190:θ 1186:L 1169:) 1166:X 1163:( 1160:p 1153:/ 1149:] 1146:X 1143:[ 1140:K 1127:p 1119:L 1087:θ 1075:X 1073:( 1071:p 1044:K 1040:θ 1032:L 1028:L 1024:X 1022:( 1020:K 996:θ 992:L 988:K 984:X 982:( 980:K 929:. 925:) 919:( 916:f 906:) 903:X 900:( 897:f 890:L 880:] 877:X 874:[ 871:K 868:: 845:K 838:θ 834:K 830:L 802:. 798:γ 794:γ 790:L 772:} 769:0 766:{ 760:L 757:= 748:L 734:γ 713:] 710:X 707:[ 704:K 694:n 682:θ 677:L 663:. 658:p 653:F 648:= 645:K 635:n 630:q 613:q 608:F 603:= 600:L 580:, 575:n 571:p 567:= 564:q 553:p 532:θ 526:K 517:L 503:θ 486:. 483:) 480:) 477:X 474:( 471:p 468:( 464:/ 460:] 457:X 454:[ 451:K 428:) 422:( 419:K 409:n 404:θ 389:) 383:( 380:K 368:- 366:K 362:L 349:θ 339:θ 334:n 317:) 314:X 311:( 308:p 295:K 290:θ 285:K 276:θ 259:. 256:) 253:X 250:( 247:K 220:) 214:( 211:K 201:K 189:K 180:θ 164:θ 158:K 153:L 149:K 144:θ 139:K 134:θ 125:L 108:. 105:) 99:( 96:K 93:= 90:L 77:L 72:θ 62:K 60:/ 58:L

Index

field theory
field extension
adjunction
primitive element theorem
finite
rational fraction
transcendental
root
polynomial
isomorphic
field of rational functions
algebraic
monic polynomial
degree
minimal polynomial
degree of the field extension
dimension
vector space
quotient ring
finite field
prime field
characteristic
irreducible polynomial
degree
generates
multiplicative group
Finite field § Multiplicative structure
Primitive element (finite field)
polynomial ring
ring homomorphism

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.