Knowledge (XXG)

Simple extension

Source 📝

954: 1426: 1613: 872: 1653: 1354: 1053:, and that two such irreducible fractions are equal if and only if one may pass from one to the other by multiplying the numerator and the denominator by the same non zero element of 1481: 1301: 1193: 1545: 793: 684: 636: 867: 129: 1511: 449: 410: 241: 507: 1245: 1221: 1122: 1078: 1027: 980: 601: 280: 338: 734: 1741: 1093: 354: 1367: 828: 1573: 1729: 364: 248: 1618: 28: 1768: 748: 51: 40: 1318: 558: 368: 1447: 1254: 1146: 949:{\displaystyle {\begin{aligned}\varphi :K&\rightarrow L\\f(X)&\mapsto f(\theta )\,.\end{aligned}}} 701: 697: 341: 195: 1520: 753: 651: 606: 1046: 796: 1101: 96: 1492: 987: 203: 425: 386: 217: 457: 1737: 1230: 1206: 1107: 1063: 1012: 965: 859: 570: 291: 139: 1747: 1683: 1089: 309: 244: 55: 253: 1751: 1733: 1133: 852: 314: 36: 710: 17: 1762: 1141: 452: 1721: 1551: 824: 550: 380: 1248: 554: 1224: 207: 983: 47:. Simple extensions are well understood and can be completely classified. 1125: 1669:
a field of rational functions, is generated by the formal variable
815:
To distinguish these meanings, one uses the term "generator" or
1421:{\displaystyle 1,\theta ,\theta ^{2},\ldots ,\theta ^{n-1}} 819:
for the weaker meaning, reserving "primitive element" or
181:
There are two different kinds of simple extensions (see
1686:
for the multiplication map on a simple field extension
743:
is usually reserved for a stronger notion, an element
1621: 1608:{\displaystyle \mathbf {Q} ({\sqrt {3}},{\sqrt {7}})} 1576: 1523: 1495: 1450: 1370: 1321: 1257: 1233: 1209: 1149: 1110: 1066: 1015: 968: 870: 756: 713: 654: 609: 573: 460: 428: 389: 317: 256: 220: 99: 162:by the field operations +, −, •, / . Equivalently, 1647: 1607: 1539: 1505: 1475: 1420: 1348: 1295: 1239: 1215: 1187: 1116: 1072: 1021: 974: 948: 787: 728: 678: 630: 595: 501: 443: 404: 332: 274: 235: 123: 1140:is an irreducible polynomial, and thus that the 739:However, in the case of finite fields, the term 1648:{\displaystyle \theta ={\sqrt {3}}+{\sqrt {7}}} 412:can be uniquely expressed as a polynomial in 8: 1290: 1275: 1182: 1167: 825:Finite field § Multiplicative structure 782: 776: 858:, one of its main properties is the unique 1349:{\displaystyle n=\operatorname {deg} p(X)} 1638: 1628: 1620: 1595: 1585: 1577: 1575: 1530: 1522: 1496: 1494: 1463: 1449: 1406: 1387: 1369: 1320: 1270: 1256: 1232: 1208: 1162: 1148: 1109: 1065: 1014: 967: 938: 871: 869: 761: 755: 712: 667: 663: 662: 653: 644:elements is a simple extension of degree 622: 618: 617: 608: 584: 572: 473: 459: 427: 388: 316: 255: 219: 166:is the smallest field that contains both 98: 986:, it may be extended injectively to the 1696: 690:is generated as a field by any element 1476:{\displaystyle \theta =i={\sqrt {-1}}} 1296:{\displaystyle K/\langle p(X)\rangle } 1188:{\displaystyle K/\langle p(X)\rangle } 1704: 1307:. This implies that every element of 1041:. This implies that every element of 7: 1540:{\displaystyle \theta ={\sqrt {2}}} 1311:is equal to a unique polynomial in 799:, so that every nonzero element of 788:{\displaystyle L^{\times }=L-\{0\}} 679:{\displaystyle K=\mathbb {F} _{p}.} 54:provides a characterization of the 631:{\displaystyle L=\mathbb {F} _{q}} 25: 811:using only the group operation • 525:for the extension; one says also 383:. In this case, every element of 134:This means that every element of 1578: 1315:of degree lower than the degree 829:Primitive element (finite field) 823:for the stronger meaning. (See 304:is a root of a polynomial over 202:, which means that it is not a 152:; that is, it is produced from 1602: 1582: 1343: 1337: 1287: 1281: 1267: 1261: 1179: 1173: 1159: 1153: 935: 929: 923: 916: 910: 897: 890: 884: 835:Structure of simple extensions 723: 717: 493: 490: 484: 478: 470: 464: 438: 432: 399: 393: 327: 321: 266: 260: 230: 224: 183:Structure of simple extensions 115: 109: 43:of a single element, called a 1: 1730:Graduate Texts in Mathematics 1554:(i.e., a finite extension of 553:is a simple extension of the 365:degree of the field extension 124:{\displaystyle L=K(\theta ).} 1732:. Vol. 158. New York: 1506:{\displaystyle {\sqrt {2}}} 511:In both cases, the element 249:field of rational functions 80:if there exists an element 1785: 444:{\displaystyle K(\theta )} 405:{\displaystyle K(\theta )} 236:{\displaystyle K(\theta )} 843:be a simple extension of 502:{\displaystyle K/(p(X)).} 353:as a root, is called the 52:primitive element theorem 39:that is generated by the 1558:) is a simple extension 1240:{\displaystyle \varphi } 1216:{\displaystyle \varphi } 1117:{\displaystyle \varphi } 1088:) be a generator of its 1073:{\displaystyle \varphi } 1022:{\displaystyle \varphi } 975:{\displaystyle \varphi } 807:, i.e. is produced from 596:{\displaystyle q=p^{n},} 363:. Its degree equals the 1029:is an isomorphism from 821:group primitive element 817:field primitive element 148:, with coefficients in 1649: 1609: 1541: 1507: 1477: 1422: 1350: 1297: 1241: 1217: 1189: 1118: 1080:is not injective, let 1074: 1023: 976: 950: 789: 730: 698:irreducible polynomial 680: 632: 597: 567:is a prime number and 503: 445: 406: 334: 276: 237: 138:can be expressed as a 125: 18:Simple field extension 1650: 1610: 1542: 1508: 1478: 1423: 1356:. That is, we have a 1351: 1298: 1242: 1218: 1190: 1119: 1075: 1024: 977: 959:Two cases may occur. 951: 790: 731: 696:that is a root of an 681: 633: 598: 561:. More precisely, if 504: 451:is isomorphic to the 446: 407: 335: 277: 275:{\displaystyle K(X).} 238: 210:with coefficients in 126: 1619: 1574: 1521: 1493: 1448: 1368: 1319: 1255: 1231: 1207: 1147: 1136:. This implies that 1108: 1092:, which is thus the 1064: 1047:irreducible fraction 1013: 1009:, this implies that 966: 868: 797:multiplicative group 754: 711: 652: 607: 571: 458: 426: 418:of degree less than 387: 333:{\displaystyle p(X)} 315: 254: 218: 97: 549:For example, every 58:simple extensions. 1645: 1605: 1537: 1503: 1473: 1418: 1346: 1293: 1237: 1213: 1185: 1114: 1094:minimal polynomial 1070: 1049:of polynomials in 1019: 988:field of fractions 972: 946: 944: 785: 726: 676: 628: 593: 519:generating element 499: 441: 402: 355:minimal polynomial 330: 272: 233: 121: 66:A field extension 1643: 1633: 1600: 1590: 1535: 1501: 1471: 860:ring homomorphism 741:primitive element 729:{\displaystyle K} 523:primitive element 140:rational fraction 45:primitive element 16:(Redirected from 1776: 1769:Field extensions 1755: 1708: 1701: 1684:Companion matrix 1654: 1652: 1651: 1646: 1644: 1639: 1634: 1629: 1615:is generated by 1614: 1612: 1611: 1606: 1601: 1596: 1591: 1586: 1581: 1546: 1544: 1543: 1538: 1536: 1531: 1512: 1510: 1509: 1504: 1502: 1497: 1482: 1480: 1479: 1474: 1472: 1464: 1427: 1425: 1424: 1419: 1417: 1416: 1392: 1391: 1355: 1353: 1352: 1347: 1302: 1300: 1299: 1294: 1274: 1246: 1244: 1243: 1238: 1222: 1220: 1219: 1214: 1199:is generated by 1194: 1192: 1191: 1186: 1166: 1123: 1121: 1120: 1115: 1079: 1077: 1076: 1071: 1028: 1026: 1025: 1020: 1005:is generated by 981: 979: 978: 973: 955: 953: 952: 947: 945: 794: 792: 791: 786: 766: 765: 735: 733: 732: 727: 695: 685: 683: 682: 677: 672: 671: 666: 643: 637: 635: 634: 629: 627: 626: 621: 602: 600: 599: 594: 589: 588: 566: 545: 539: 530: 516: 508: 506: 505: 500: 477: 450: 448: 447: 442: 421: 417: 411: 409: 408: 403: 378: 374: 362: 352: 346: 339: 337: 336: 331: 310:monic polynomial 307: 303: 297: 289: 281: 279: 278: 273: 242: 240: 239: 234: 213: 201: 193: 177: 170: 165: 161: 158:and elements of 157: 151: 147: 137: 130: 128: 127: 122: 85: 78:simple extension 75: 33:simple extension 21: 1784: 1783: 1779: 1778: 1777: 1775: 1774: 1773: 1759: 1758: 1744: 1734:Springer-Verlag 1720: 1717: 1712: 1711: 1702: 1698: 1693: 1680: 1617: 1616: 1572: 1571: 1570:. For example, 1519: 1518: 1491: 1490: 1446: 1445: 1434: 1402: 1383: 1366: 1365: 1317: 1316: 1253: 1252: 1229: 1228: 1205: 1204: 1195:is a field. As 1145: 1144: 1134:integral domain 1106: 1105: 1062: 1061: 1045:is equal to an 1011: 1010: 964: 963: 943: 942: 919: 904: 903: 893: 866: 865: 853:polynomial ring 837: 757: 752: 751: 709: 708: 691: 661: 650: 649: 639: 616: 605: 604: 580: 569: 568: 562: 541: 535: 526: 512: 456: 455: 424: 423: 419: 413: 385: 384: 376: 372: 367:, that is, the 358: 348: 344: 313: 312: 305: 299: 295: 285: 252: 251: 216: 215: 214:. In this case 211: 199: 189: 173: 168: 163: 159: 153: 149: 143: 135: 95: 94: 81: 67: 64: 37:field extension 23: 22: 15: 12: 11: 5: 1782: 1780: 1772: 1771: 1761: 1760: 1757: 1756: 1742: 1716: 1713: 1710: 1709: 1695: 1694: 1692: 1689: 1688: 1687: 1679: 1676: 1675: 1674: 1656: 1642: 1637: 1632: 1627: 1624: 1604: 1599: 1594: 1589: 1584: 1580: 1548: 1534: 1529: 1526: 1500: 1484: 1470: 1467: 1462: 1459: 1456: 1453: 1433: 1430: 1415: 1412: 1409: 1405: 1401: 1398: 1395: 1390: 1386: 1382: 1379: 1376: 1373: 1345: 1342: 1339: 1336: 1333: 1330: 1327: 1324: 1292: 1289: 1286: 1283: 1280: 1277: 1273: 1269: 1266: 1263: 1260: 1236: 1212: 1184: 1181: 1178: 1175: 1172: 1169: 1165: 1161: 1158: 1155: 1152: 1132:, and thus an 1113: 1069: 1018: 971: 957: 956: 941: 937: 934: 931: 928: 925: 922: 920: 918: 915: 912: 909: 906: 905: 902: 899: 896: 894: 892: 889: 886: 883: 880: 877: 874: 873: 836: 833: 803:is a power of 784: 781: 778: 775: 772: 769: 764: 760: 725: 722: 719: 716: 675: 670: 665: 660: 657: 625: 620: 615: 612: 592: 587: 583: 579: 576: 559:characteristic 533:generated over 498: 495: 492: 489: 486: 483: 480: 476: 472: 469: 466: 463: 440: 437: 434: 431: 401: 398: 395: 392: 329: 326: 323: 320: 271: 268: 265: 262: 259: 232: 229: 226: 223: 196:transcendental 132: 131: 120: 117: 114: 111: 108: 105: 102: 63: 60: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1781: 1770: 1767: 1766: 1764: 1753: 1749: 1745: 1743:0-387-94408-7 1739: 1735: 1731: 1727: 1723: 1722:Roman, Steven 1719: 1718: 1714: 1706: 1700: 1697: 1690: 1685: 1682: 1681: 1677: 1672: 1668: 1664: 1660: 1657: 1640: 1635: 1630: 1625: 1622: 1597: 1592: 1587: 1569: 1565: 1561: 1557: 1553: 1549: 1532: 1527: 1524: 1517:generated by 1516: 1498: 1488: 1485: 1468: 1465: 1460: 1457: 1454: 1451: 1444:generated by 1443: 1439: 1436: 1435: 1431: 1429: 1413: 1410: 1407: 1403: 1399: 1396: 1393: 1388: 1384: 1380: 1377: 1374: 1371: 1363: 1359: 1340: 1334: 1331: 1328: 1325: 1322: 1314: 1310: 1306: 1284: 1278: 1271: 1264: 1258: 1250: 1234: 1226: 1210: 1202: 1198: 1176: 1170: 1163: 1156: 1150: 1143: 1142:quotient ring 1139: 1135: 1131: 1127: 1111: 1103: 1099: 1095: 1091: 1087: 1083: 1067: 1058: 1056: 1052: 1048: 1044: 1040: 1036: 1032: 1016: 1008: 1004: 1000: 996: 992: 989: 985: 969: 960: 939: 932: 926: 921: 913: 907: 900: 895: 887: 881: 878: 875: 864: 863: 862: 861: 857: 854: 850: 847:generated by 846: 842: 834: 832: 830: 826: 822: 818: 814: 810: 806: 802: 798: 779: 773: 770: 767: 762: 758: 750: 746: 742: 737: 720: 714: 706: 703: 699: 694: 689: 673: 668: 658: 655: 647: 642: 623: 613: 610: 590: 585: 581: 577: 574: 565: 560: 556: 552: 547: 544: 538: 534: 529: 524: 520: 515: 509: 496: 487: 481: 474: 467: 461: 454: 453:quotient ring 435: 429: 416: 396: 390: 382: 370: 366: 361: 356: 351: 343: 324: 318: 311: 302: 293: 288: 282: 269: 263: 257: 250: 246: 227: 221: 209: 205: 197: 192: 186: 184: 179: 176: 171: 156: 146: 141: 118: 112: 106: 103: 100: 93: 92: 91: 89: 84: 79: 74: 70: 61: 59: 57: 53: 48: 46: 42: 38: 34: 30: 19: 1726:Field Theory 1725: 1699: 1670: 1666: 1662: 1658: 1567: 1563: 1559: 1555: 1552:number field 1514: 1486: 1441: 1437: 1361: 1357: 1312: 1308: 1304: 1200: 1196: 1137: 1129: 1097: 1085: 1081: 1059: 1054: 1050: 1042: 1038: 1034: 1030: 1006: 1002: 998: 994: 990: 961: 958: 855: 848: 844: 840: 838: 820: 816: 812: 808: 804: 800: 744: 740: 738: 704: 692: 687: 645: 640: 563: 557:of the same 551:finite field 548: 542: 536: 532: 527: 522: 518: 517:is called a 513: 510: 414: 381:vector space 375:viewed as a 359: 349: 300: 286: 283: 190: 188:The element 187: 182: 180: 174: 167: 154: 144: 133: 87: 82: 77: 76:is called a 72: 68: 65: 49: 44: 32: 29:field theory 26: 1566:) for some 1249:isomorphism 1247:induces an 555:prime field 340:of minimal 298:; that is, 284:Otherwise, 1752:0816.12001 1715:Literature 1705:Roman 1995 1691:References 1225:surjective 851:. For the 603:the field 245:isomorphic 208:polynomial 62:Definition 41:adjunction 1623:θ 1525:θ 1466:− 1452:θ 1411:− 1404:θ 1397:… 1385:θ 1378:θ 1364:given by 1360:basis of 1332:⁡ 1291:⟩ 1276:⟨ 1235:φ 1211:φ 1183:⟩ 1168:⟨ 1112:φ 1068:φ 1017:φ 984:injective 970:φ 933:θ 924:↦ 898:→ 876:φ 774:− 763:× 749:generates 686:In fact, 436:θ 397:θ 369:dimension 292:algebraic 228:θ 113:θ 1763:Category 1724:(1995). 1678:See also 1432:Examples 1001:. Since 185:below). 1126:subring 1037:) onto 347:, with 247:to the 206:of any 194:may be 1750:  1740:  1227:, and 1100:. The 1090:kernel 702:degree 422:, and 342:degree 308:. The 56:finite 1303:onto 1251:from 1124:is a 1102:image 997:) of 831:). 795:as a 747:that 294:over 198:over 90:with 35:is a 1738:ISBN 1665:) / 1550:Any 1513:) / 839:Let 827:and 736:. 204:root 172:and 50:The 31:, a 1748:Zbl 1428:. 1329:deg 1223:is 1128:of 1104:of 1096:of 1060:If 982:is 962:If 707:in 700:of 648:of 638:of 540:by 531:is 521:or 371:of 357:of 290:is 243:is 142:in 86:in 27:In 1765:: 1746:. 1736:. 1728:. 1667:F, 1440:/ 1358:K- 1203:, 1057:. 546:. 178:. 1754:. 1707:) 1703:( 1673:. 1671:X 1663:X 1661:( 1659:F 1655:. 1641:7 1636:+ 1631:3 1626:= 1603:) 1598:7 1593:, 1588:3 1583:( 1579:Q 1568:θ 1564:θ 1562:( 1560:Q 1556:Q 1547:. 1533:2 1528:= 1515:Q 1499:2 1489:( 1487:Q 1483:. 1469:1 1461:= 1458:i 1455:= 1442:R 1438:C 1414:1 1408:n 1400:, 1394:, 1389:2 1381:, 1375:, 1372:1 1362:L 1344:) 1341:X 1338:( 1335:p 1326:= 1323:n 1313:θ 1309:L 1305:L 1288:) 1285:X 1282:( 1279:p 1272:/ 1268:] 1265:X 1262:[ 1259:K 1201:θ 1197:L 1180:) 1177:X 1174:( 1171:p 1164:/ 1160:] 1157:X 1154:[ 1151:K 1138:p 1130:L 1098:θ 1086:X 1084:( 1082:p 1055:K 1051:θ 1043:L 1039:L 1035:X 1033:( 1031:K 1007:θ 1003:L 999:K 995:X 993:( 991:K 940:. 936:) 930:( 927:f 917:) 914:X 911:( 908:f 901:L 891:] 888:X 885:[ 882:K 879:: 856:K 849:θ 845:K 841:L 813:. 809:γ 805:γ 801:L 783:} 780:0 777:{ 771:L 768:= 759:L 745:γ 724:] 721:X 718:[ 715:K 705:n 693:θ 688:L 674:. 669:p 664:F 659:= 656:K 646:n 641:q 624:q 619:F 614:= 611:L 591:, 586:n 582:p 578:= 575:q 564:p 543:θ 537:K 528:L 514:θ 497:. 494:) 491:) 488:X 485:( 482:p 479:( 475:/ 471:] 468:X 465:[ 462:K 439:) 433:( 430:K 420:n 415:θ 400:) 394:( 391:K 379:- 377:K 373:L 360:θ 350:θ 345:n 328:) 325:X 322:( 319:p 306:K 301:θ 296:K 287:θ 270:. 267:) 264:X 261:( 258:K 231:) 225:( 222:K 212:K 200:K 191:θ 175:θ 169:K 164:L 160:K 155:θ 150:K 145:θ 136:L 119:. 116:) 110:( 107:K 104:= 101:L 88:L 83:θ 73:K 71:/ 69:L 20:)

Index

Simple field extension
field theory
field extension
adjunction
primitive element theorem
finite
rational fraction
transcendental
root
polynomial
isomorphic
field of rational functions
algebraic
monic polynomial
degree
minimal polynomial
degree of the field extension
dimension
vector space
quotient ring
finite field
prime field
characteristic
irreducible polynomial
degree
generates
multiplicative group
Finite field § Multiplicative structure
Primitive element (finite field)
polynomial ring

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.