Knowledge

Single-cell transcriptomics

Source 📝

378: 536:. As a result of the aforementioned properties of single-cell transcriptomic data, batch correction methods developed for bulk sequencing data were observed to perform poorly. Consequently, researchers developed statistical methods to correct for batch effects that are robust to the properties of single-cell transcriptomic data to integrate data from different sources or experimental batches. Laleh Haghverdi performed foundational work in formulating the use of mutual nearest neighbors between each batch to define batch correction vectors. With these vectors, you can merge datasets that each include at least one shared cell type. An orthogonal approach involves the projection of each dataset onto a shared low-dimensional space using 115: 540:. Mutual nearest neighbors and canonical correlation analysis have also been combined to define integration "anchors" comprising reference cells in one dataset, to which query cells in another dataset are normalized. Another class of methods (e.g., scDREAMER) uses deep generative models such as variational autoencoders for learning batch-invariant latent cellular representations which can be used for downstream tasks such as cell type clustering, denoising of single-cell gene expression vectors and trajectory inference. 477: 485:
bifurcate or follow more complex graph structures. The trajectory, therefore, enables the inference of gene expression dynamics and the ordering of cells by their progression through differentiation or response to external stimuli. The method relies on the assumptions that the cells follow the same path through the process of interest and that their transcriptional state correlates to their progression. The algorithm can be applied to both mixed populations and temporal samples.
78:
often form subpopulations with unique transcriptional profiles. Correlations in the gene expression of the subpopulations can often be missed due to the lack of subpopulation identification. Secondly, bulk assays fail to recognize whether a change in the expression profile is due to a change in regulation or composition — for example if one cell type arises to dominate the population. Lastly, when your goal is to study cellular progression through
326: 216: 334: 506:
represent the genes and edges indicate co-regulatory interactions. The method relies on the assumption that a strong statistical relationship between the expression of genes is an indication of a potential functional relationship. The most commonly used method to measure the strength of a statistical
484:
Pseudo-temporal ordering (or trajectory inference) is a technique that aims to infer gene expression dynamics from snapshot single-cell data. The method tries to order the cells in such a way that similar cells are closely positioned to each other. This trajectory of cells can be linear, but can also
493:
using the transformed data, orders cells in pseudo-time by following the longest connected path of the tree and consequently labels cells by type. Another example is the diffusion pseudotime (DPT) algorithm, which uses a diffusion map and diffusion process. Another class of methods such as MARGARET
488:
More than 50 methods for pseudo-temporal ordering have been developed, and each has its own requirements for prior information (such as starting cells or time course data), detectable topologies, and methodology. An example algorithm is the Monocle algorithm that carries out dimensionality reduction
368:
Biclustering provides several advantages by improving the resolution of clustering. Genes that are only informative to a subset of cells and are hence only expressed there can be identified through biclustering. Moreover, similarly behaving genes that differentiate one cell cluster from another can
415:
and transforms the data so that the first principal component has the largest possible variance, and successive principle components in turn each have the highest variance possible while remaining orthogonal to the preceding components. The contribution each gene makes to each component is used to
344:
allows for the formation of subgroups in the cell population. Cells can be clustered by their transcriptomic profile in order to analyse the sub-population structure and identify rare cell types or cell subtypes. Alternatively, genes can be clustered by their expression states in order to identify
77:
These studies are limited as they provide measurements for whole tissues and, as a result, show an average expression profile for all the constituent cells. This has a couple of drawbacks. Firstly, different cell types within the same tissue can have distinct roles in multicellular organisms. They
461:
is a technique used to identify which GO terms are over-represented or under-represented in a given set of genes. In single-cell analysis input list of genes of interest can be selected based on differentially expressed genes or groups of genes generated from biclustering. The number of genes
271:
A problem associated with single-cell data occurs in the form of zero inflated gene expression distributions, known as technical dropouts, that are common due to low mRNA concentrations of less-expressed genes that are not captured in the reverse transcription process. The percentage of mRNA
89:
have enabled the generation of single-cell transcriptomic data, they also presented new computational and analytical challenges. Bioinformaticians can use techniques from bulk RNA-seq for single-cell data. Still, many new computational approaches have had to be designed for this data type to
1009:
Zheng, Grace X. Y.; Terry, Jessica M.; Belgrader, Phillip; Ryvkin, Paul; Bent, Zachary W.; Wilson, Ryan; Ziraldo, Solongo B.; Wheeler, Tobias D.; McDermott, Geoff P.; Zhu, Junjie; Gregory, Mark T.; Shuga, Joe; Montesclaros, Luz; Underwood, Jason G.; Masquelier, Donald A. (2017-01-16).
424:
Detecting differences in gene expression level between two populations is used both single-cell and bulk transcriptomic data. Specialised methods have been designed for single-cell data that considers single cell features such as technical dropouts and shape of the distribution e.g.
260:(UMIs)-short DNA sequences (6–10nt) that are added to each cDNA before amplification and act as a bar code for each cDNA molecule. Normalisation is achieved by using the count number of unique UMIs associated with each gene to account for differences in amplification efficiency. 400:. The result of this method produces graphs with each cell as a point in a 2-D or 3-D space. Dimensionality reduction is frequently used before clustering as cells in high dimensions can wrongly appear to be close due to distance metrics behaving non-intuitively. 2042:
Moignard, Victoria; Macaulay, Iain C.; Swiers, Gemma; Buettner, Florian; Schütte, Judith; Calero-Nieto, Fernando J.; Kinston, Sarah; Joshi, Anagha; Hannah, Rebecca; Theis, Fabian J.; Jacobsen, Sten Eirik; de Bruijn, Marella F.; Göttgens, Berthold (1 April 2013).
527:
The presence or strength of technical effects and the types of cells observed often differ in single-cell transcriptomics datasets generated using different experimental protocols and under different conditions. This difference results in strong
161:
Combining FACS with scRNA-seq has produced optimized protocols such as SORT-seq. A list of studies that utilized SORT-seq can be found here. Moreover, combining microfluidic devices with scRNA-seq has been optimized in 10x Genomics protocols.
202:
concentration. A plot of fluorescence vs. cycle number is made and a threshold fluorescence level is used to find cycle number at which the plot reaches this value. The cycle number at this point is known as the threshold cycle
927:
Muraro, Mauro J.; Dharmadhikari, Gitanjali; Grün, Dominic; Groen, Nathalie; Dielen, Tim; Jansen, Erik; van Gurp, Leon; Engelse, Marten A.; Carlotti, Francoise; de Koning, Eelco J. P.; van Oudenaarden, Alexander (2016-10-26).
291:
Insights based on single-cell data analysis assume that the input is a matrix of normalised gene expression counts, generated by the approaches outlined above, and can provide opportunities that are not obtainable by bulk.
1286:
Islam, Saiful; Zeisel, Amit; Joost, Simon; La Manno, Gioele; Zajac, Pawel; Kasper, Maria; Lönnerberg, Peter; Linnarsson, Sten (1 February 2014). "Quantitative single-cell RNA-seq with unique molecular identifiers".
122:
There are several methods available to isolate and amplify cells for single-cell analysis. Low throughput techniques are able to isolate hundreds of cells, are slow, and enable selection. These methods include:
875:
Poulin, Jean-Francois; Tasic, Bosiljka; Hjerling-Leffler, Jens; Trimarchi, Jeffrey M.; Awatramani, Rajeshwar (1 September 2016). "Disentangling neural cell diversity using single-cell transcriptomics".
1077:
Radonić, Aleksandar; Thulke, Stefanie; Mackay, Ian M.; Landt, Olfert; Siegert, Wolfgang; Nitsche, Andreas (23 January 2004). "Guideline to reference gene selection for quantitative real-time PCR".
1882:
Trapnell, Cole; Cacchiarelli, Davide; Grimsby, Jonna; Pokharel, Prapti; Li, Shuqiang; Morse, Michael; Lennon, Niall J.; Livak, Kenneth J.; Mikkelsen, Tarjei S.; Rinn, John L. (23 March 2017).
144:
High-throughput methods are able to quickly isolate hundreds to tens of thousands of cells. Common techniques include:
1499:
Buettner, Florian; Natarajan, Kedar N.; Casale, F. Paolo; Proserpio, Valentina; Scialdone, Antonio; Theis, Fabian J.; Teichmann, Sarah A.; Marioni, John C.; Stegle, Oliver (1 February 2015).
462:
annotated to a GO term in the input list is normalised against the number of genes annotated to a GO term in the background set of all genes in genome to determine statistical significance.
2247:
Stuart, Tim; Butler, Andrew; Hoffman, Paul; Hafemeister, Christoph; Papalexia, Efthymia; Mauck, William M III; Hao, Yuhan; Marlon, Stoeckius; Smibert, Peter; Satija, Rahul (6 June 2019).
82:, average expression profiles can only order cells by time rather than by developmental stage. Consequently, they cannot show trends in gene expression levels specific to certain stages. 1666:
Treutlein, Barbara; Brownfield, Doug G.; Wu, Angela R.; Neff, Norma F.; Mantalas, Gary L.; Espinoza, F. Hernan; Desai, Tushar J.; Krasnow, Mark A.; Quake, Stephen R. (15 May 2014).
283:
tail in spike-ins and therefore shorter length. Additionally, normalisation using UMIs assumes the cDNA library is sequenced to saturation, which is not always the case.
1395:
Svensson, Valentine; Natarajan, Kedar Nath; Ly, Lam-Ha; Miragaia, Ricardo J.; Labalette, Charlotte; Macaulay, Iain C.; Cvejic, Ana; Teichmann, Sarah A. (6 March 2017).
377: 241:
Normalisation of RNA-seq data accounts for cell to cell variation in the efficiencies of the cDNA library formation and sequencing. One method relies on the use of
85:
Recent advances in biotechnology allow the measurement of gene expression in hundreds to thousands of individual cells simultaneously. While these breakthroughs in
317:
The techniques outlined have been designed to help visualise and explore patterns in the data in order to facilitate the revelation of these three features.
66:. Higher throughput and speed allow researchers to frequently characterize the expression profiles of populations of thousands of cells. The data from bulk 190:, although the reliability of normalisation through this process is questionable as there is evidence that the level of expression can vary significantly. 279:
and spike-in RNA are the same. Evidence suggests that this is not the case given fundamental differences in size and features, such as the lack of a
2001:
Wei, J.; Hu, X.; Zou, X.; Tian, T. (1 December 2016). "Inference of genetic regulatory network for stem cell using single cells expression data".
38:
cell populations, reconstruct cellular developmental pathways, and model transcriptional dynamics — all previously masked in bulk RNA sequencing.
1448:
Stegle, Oliver; Teichmann, Sarah A.; Marioni, John C. (1 March 2015). "Computational and analytical challenges in single-cell transcriptomics".
2375: 2018: 1226:
Jiang, Lichun; Schlesinger, Felix; Davis, Carrie A.; Zhang, Yu; Li, Renhua; Salit, Marc; Gingeras, Thomas R.; Oliver, Brian (23 March 2017).
2045:"Characterization of transcriptional networks in blood stem and progenitor cells using high-throughput single-cell gene expression analysis" 182:, whose expression should be constant under the conditions, is used for normalisation. The most commonly used house keeping genes include 416:
infer which genes are contributing the most to variance in the population and are involved in differentiating different subpopulations.
198:
to detect the PCR product and monitor the progress of the amplification - the increase in fluorescence intensity is proportional to the
238:
techniques and the reads are mapped back to the reference genome, providing a count of the number of reads associated with each gene.
98:
There is so far no standardized technique to generate single-cell data: all methods must include cell isolation from the population,
718: 1501:"Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells" 2298:"scDREAMER for atlas-level integration of single-cell datasets using deep generative model paired with adversarial classifier" 537: 275:
When using RNA spike-ins for normalisation the assumption is made that the amplification and sequencing efficiencies for the
494:
employ graph partitioning for capturing complex trajectory topologies such as disconnected and multifurcating trajectories.
519:
is used as an alternative. Gene clusters linked in a network signify genes that undergo coordinated changes in expression.
137: 791:
Stegle, O.; Teichmann, S.; Marioni, J. (2015). "Computational and analytical challenges in single-cell transcriptomics".
458: 389: 257: 86: 834:
Kolodziejczyk, Aleksandra A.; Kim, Jong Kyoung; Svensson, Valentine; Marioni, John C.; Teichmann, Sarah A. (May 2015).
349:, has been used to simultaneously cluster by genes and cells to find genes that behave similarly within cell clusters. 106:
and quantification of expression levels. Common techniques for measuring expression are quantitative PCR or RNA-seq.
114: 235: 171: 502:
Gene regulatory network inference is a technique that aims to construct a network, shown as a graph, in which the
396:
can be used to simplify data for visualisation and pattern detection by transforming cells from a high to a lower
175: 385: 303: 263:
A combination of both spike-ins, UMIs and other approaches have been combined for more accurate normalisation.
79: 985: 709:
Szabo, David T. (2014). "Chapter 62 - Transcriptomic biomarkers in safety and risk assessment of chemicals".
245:
RNA spike-ins (RNA sequences of known sequence and quantity) that are added in equal quantities to each cell
2370: 1789:
Haghverdi, Laleh; Büttner, Maren; Wolf, F. Alexander; Buettner, Florian; Theis, Fabian J. (1 October 2016).
357: 55: 2380: 559: 532:
that may bias the findings of statistical methods applied across batches, particularly in the presence of
224: 1724: 503: 490: 476: 178:
and as a result data is usually only obtained for sample sizes of less than 100 genes. The inclusion of
103: 2354: 54:
has made gene expression analysis a routine. RNA analysis was previously limited to tracing individual
1729:"A statistical approach for identifying differential distributions in single-cell RNA-seq experiments" 2151:"Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors" 1884:"Pseudo-temporal ordering of individual cells reveals dynamics and regulators of cell fate decisions" 1679: 1023: 554: 471: 412: 2200:"Integrating single-cell transcriptomic data across different conditions, technologies, and species" 127: 34:(mRNA)) of hundreds to thousands of genes. Single-cell transcriptomics makes it possible to unravel 1548:
Ntranos, Vasilis; Kamath, Govinda M.; Zhang, Jesse M.; Pachter, Lior; Tse, David N. (26 May 2016).
1849:"A comparison of single-cell trajectory inference methods: towards more accurate and robust tools" 132: 2198:
Butler, Andrew; Hoffman, Paul; Smibert, Peter; Papalexi, Efthymia; Satija, Rahul (2 April 2018).
2024: 1829: 1550:"Fast and accurate single-cell RNA-seq analysis by clustering of transcript-compatibility counts" 1481: 1320: 909: 816: 516: 353: 179: 1723:
Korthauer, Keegan D.; Chu, Li-Fang; Newton, Michael A.; Li, Yuan; Thomson, James; Stewart, Ron;
1120:
Wildsmith, S. E.; Archer, G. E.; Winkley, A. J.; Lane, P. W.; Bugelski, P. J. (1 January 2001).
444:
terms describe gene functions and the relationships between those functions into three classes:
2329: 2278: 2229: 2180: 2131: 2100:
Hicks, Stephanie C; Townes, William F; Teng, Mingxiang; Irizarry, Rafael A (6 November 2017).
2082: 2064: 2014: 1983: 1965: 1921: 1903: 1821: 1813: 1768: 1750: 1705: 1648: 1630: 1589: 1571: 1530: 1522: 1473: 1465: 1430: 1412: 1377: 1359: 1312: 1304: 1265: 1247: 1208: 1190: 1151: 1143: 1102: 1094: 1059: 1041: 967: 949: 901: 893: 857: 808: 773: 755: 714: 691: 673: 632: 614: 397: 341: 1944:"Inference of cell state transitions and cell fate plasticity from single-cell with MARGARET" 30:
in a given population by simultaneously measuring the RNA concentration (conventionally only
2319: 2309: 2268: 2260: 2219: 2211: 2170: 2162: 2121: 2113: 2072: 2056: 2006: 1973: 1955: 1911: 1895: 1856: 1805: 1758: 1740: 1695: 1687: 1668:"Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq" 1638: 1620: 1579: 1561: 1512: 1457: 1420: 1404: 1367: 1351: 1296: 1255: 1239: 1198: 1182: 1133: 1086: 1049: 1031: 957: 941: 885: 847: 800: 763: 747: 681: 663: 622: 604: 191: 63: 1848: 569: 280: 170:
To measure the level of expression of each transcript qPCR can be applied. Gene specific
2324: 2297: 1683: 1027: 381:
PCA example of Guinean and other African populations Y chromosome haplogroup frequencies
299:
Identification and characterization of cell types and their spatial organisation in time
70:
has led to identifying genes differentially expressed in distinct cell populations, and
2273: 2248: 2224: 2199: 2175: 2150: 2126: 2101: 2077: 2044: 1978: 1943: 1916: 1883: 1763: 1728: 1700: 1667: 1643: 1609:"ZIFA: Dimensionality reduction for zero-inflated single-cell gene expression analysis" 1608: 1584: 1549: 1425: 1396: 1372: 1339: 1260: 1227: 1203: 1170: 1054: 1011: 962: 929: 768: 735: 686: 651: 627: 592: 148: 47: 27: 408:
The most frequently used technique is PCA, which identifies the directions of largest
2364: 2149:
Haghverdi, Laleh; Lun, Aaron T L; Morgan, Michael D; Marioni, John C (2 April 2018).
1485: 820: 564: 529: 441: 250: 195: 59: 31: 2028: 913: 325: 2117: 1833: 1324: 346: 154: 35: 2102:"Missing data and technical variability in single-cell RNA-sequencing experiments" 668: 215: 852: 835: 1847:
Saelens, Wouter; Cannoodt, Robrecht; Todorov, Helena; Saeys, Yvan (2018-03-05).
1790: 652:"Single-cell transcriptome sequencing: recent advances and remaining challenges" 533: 508: 51: 2314: 2264: 1090: 945: 2349: 2010: 1745: 1625: 1566: 512: 333: 310: 276: 2068: 1969: 1907: 1817: 1754: 1634: 1575: 1526: 1469: 1416: 1363: 1308: 1251: 1194: 1147: 1098: 1045: 953: 897: 759: 677: 618: 90:
facilitate a complete and detailed study of single-cell expression profiles.
609: 242: 71: 2333: 2282: 2233: 2184: 2135: 2086: 2003:
2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
1987: 1925: 1825: 1772: 1709: 1652: 1593: 1534: 1477: 1434: 1381: 1316: 1269: 1212: 1155: 1106: 1063: 971: 905: 861: 812: 777: 695: 636: 249:
and used to normalise read count by the number of reads mapped to spike-in
1960: 1243: 751: 1338:
Kharchenko, Peter V.; Silberstein, Lev; Scadden, David T. (1 July 2014).
430: 409: 199: 1691: 1036: 2357:
by single-cell RNA sequencing service provider Single Cell Discoveries.
1809: 1408: 1355: 1300: 549: 426: 345:
covarying genes. A combination of both clustering approaches, known as
227: 2296:
Shree, Ajita; Pavan, Musale Krushna; Zafar, Hamim (27 November 2023).
1281: 1279: 1138: 1121: 1012:"Massively parallel digital transcriptional profiling of single cells" 2215: 2166: 1899: 1517: 1500: 272:
molecules in the cell lysate that are detected is often only 10-20%.
246: 99: 67: 2060: 1461: 1186: 889: 804: 1861: 1340:"Bayesian approach to single-cell differential expression analysis" 393: 376: 337:
Iris dendrogram produced using a Hierarchical clustering algorithm
332: 324: 214: 187: 183: 231: 23: 2350:
Dissecting Tumor Heterogeneity with Single-Cell Transcriptomics
1791:"Diffusion pseudotime robustly reconstructs lineage branching" 1169:
Wang, Zhong; Gerstein, Mark; Snyder, Michael (23 March 2017).
234:
fragments. These fragments are sequenced by high-throughput
174:
are used to amplify the corresponding gene as with regular
1397:"Power analysis of single-cell RNA-sequencing experiments" 836:"The Technology and Biology of Single-Cell RNA Sequencing" 736:"Defining cell types and states with single-cell genomics" 930:"A Single-Cell Transcriptome Atlas of the Human Pancreas" 230:
technique converts a population of RNAs to a library of
593:"Single cell transcriptomics: methods and applications" 1228:"Synthetic spike-in standards for RNA-seq experiments" 1122:"Maximization of signal derived from cDNA microarrays" 1171:"RNA-Seq: a revolutionary tool for transcriptomics" 1079:
Biochemical and Biophysical Research Communications
1607:Pierson, Emma; Yau, Christopher (1 January 2015). 118:Fluorescence Assisted Cell Sorting workflow (FACS) 586: 584: 2249:"Comprehensive Integration of Single-Cell Data" 2355:The ultimate single-cell RNA sequencing guide 8: 1403:. advance online publication (4): 381–387. 306:and their strength across individual cells 2323: 2313: 2272: 2223: 2174: 2125: 2076: 1977: 1959: 1915: 1860: 1762: 1744: 1699: 1642: 1624: 1583: 1565: 1516: 1424: 1371: 1259: 1202: 1137: 1053: 1035: 961: 851: 767: 685: 667: 626: 608: 511:. However, correlation fails to identify 475: 113: 1942:Pandey, Kushagra; Zafar, Hamim (2022). 1937: 1935: 1784: 1782: 591:Kanter, Itamar; Kalisky, Tomer (2015). 580: 713:. Academic Press. pp. 1033–1038. 7: 650:Liu, Serena; Trapnell, Cole (2016). 149:Fluorescence activated cell sorting 46:The development of high-throughput 459:Gene Ontology (GO) term enrichment 352:Clustering methods applied can be 14: 369:be identified using this method. 207:) and is measured for each gene. 102:formation, amplification through 480:Graph with minimal spanning tree 734:Trapnell, Cole (October 2015). 26:expression level of individual 538:canonical correlation analysis 295:Three main insights provided: 1: 669:10.12688/f1000research.7223.1 360:, forming nested partitions. 356:, forming disjoint groups or 138:Laser capture microdissection 2376:Molecular biology techniques 2118:10.1093/biostatistics/kxx053 853:10.1016/j.molcel.2015.04.005 404:Principal component analysis 390:Principal component analysis 258:unique molecular identifiers 87:transcriptomics technologies 20:Single-cell transcriptomics 16:Analysis technique of genes 2397: 2315:10.1038/s41467-023-43590-8 2265:10.1016/j.cell.2019.05.031 1091:10.1016/j.bbrc.2003.11.177 946:10.1016/j.cels.2016.09.002 469: 313:component of transcription 236:next generation sequencing 2011:10.1109/BIBM.2016.7822521 1746:10.1186/s13059-016-1077-y 1626:10.1186/s13059-015-0805-z 1567:10.1186/s13059-016-0970-8 662:: F1000 Faculty Rev–182. 1175:Nature Reviews. Genetics 711:Biomarkers in Toxicology 437:Gene ontology enrichment 386:Dimensionality reduction 373:Dimensionality reduction 304:gene regulatory networks 1450:Nature Reviews Genetics 990:Single Cell Discoveries 793:Nature Reviews Genetics 610:10.3389/fonc.2015.00053 466:Pseudotemporal ordering 420:Differential expression 358:Hierarchical clustering 166:Quantitative PCR (qPCR) 1948:Nucleic Acids Research 1725:Kendziorski, Christina 560:Single-cell sequencing 489:of the data, builds a 481: 382: 338: 330: 309:Classification of the 220: 133:Cytoplasmic aspiration 119: 110:Isolating single cells 2302:Nature Communications 1244:10.1101/gr.121095.111 1016:Nature Communications 752:10.1101/gr.190595.115 597:Frontiers in Oncology 491:minimal spanning tree 479: 380: 336: 329:K-Means-Gaussian-data 328: 256:Another control uses 218: 117: 104:reverse transcription 2204:Nature Biotechnology 2155:Nature Biotechnology 2005:. pp. 217–222. 1888:Nature Biotechnology 1505:Nature Biotechnology 555:Single-cell analysis 472:Trajectory inference 413:principal components 2049:Nature Cell Biology 1961:10.1093/nar/gkac412 1692:10.1038/nature13173 1684:2014Natur.509..371T 1132:(1): 202–206, 208. 1037:10.1038/ncomms14049 1028:2017NatCo...814049Z 986:"SORT-seq Archives" 878:Nature Neuroscience 388:algorithms such as 211:Single-cell RNA-seq 1810:10.1038/nmeth.3971 1727:(1 January 2016). 1409:10.1038/nmeth.4220 1356:10.1038/nmeth.2967 1301:10.1038/nmeth.2772 517:mutual information 515:relationships and 482: 454:Biological process 451:Cellular component 448:Molecular function 383: 354:K-means clustering 339: 331: 221: 219:RNA Seq Experiment 196:reporter molecules 180:housekeeping genes 120: 94:Experimental steps 2020:978-1-5090-1611-2 1678:(7500): 371–375. 1139:10.2144/01301dd04 940:(4): 385–394.e3. 746:(10): 1491–1498. 498:Network inference 398:dimensional space 2388: 2338: 2337: 2327: 2317: 2293: 2287: 2286: 2276: 2259:(7): 1888–1902. 2244: 2238: 2237: 2227: 2216:10.1038/nbt.4096 2195: 2189: 2188: 2178: 2167:10.1038/nbt.4091 2146: 2140: 2139: 2129: 2097: 2091: 2090: 2080: 2039: 2033: 2032: 1998: 1992: 1991: 1981: 1963: 1939: 1930: 1929: 1919: 1900:10.1038/nbt.2859 1879: 1873: 1872: 1870: 1869: 1864: 1844: 1838: 1837: 1795: 1786: 1777: 1776: 1766: 1748: 1720: 1714: 1713: 1703: 1663: 1657: 1656: 1646: 1628: 1604: 1598: 1597: 1587: 1569: 1545: 1539: 1538: 1520: 1518:10.1038/nbt.3102 1496: 1490: 1489: 1445: 1439: 1438: 1428: 1392: 1386: 1385: 1375: 1335: 1329: 1328: 1283: 1274: 1273: 1263: 1238:(9): 1543–1551. 1223: 1217: 1216: 1206: 1166: 1160: 1159: 1141: 1117: 1111: 1110: 1074: 1068: 1067: 1057: 1039: 1006: 1000: 999: 997: 996: 982: 976: 975: 965: 924: 918: 917: 884:(9): 1131–1141. 872: 866: 865: 855: 831: 825: 824: 788: 782: 781: 771: 731: 725: 724: 706: 700: 699: 689: 671: 647: 641: 640: 630: 612: 588: 507:relationship is 192:Fluorescent dyes 64:quantitative PCR 2396: 2395: 2391: 2390: 2389: 2387: 2386: 2385: 2361: 2360: 2346: 2341: 2295: 2294: 2290: 2246: 2245: 2241: 2197: 2196: 2192: 2148: 2147: 2143: 2099: 2098: 2094: 2061:10.1038/ncb2709 2041: 2040: 2036: 2021: 2000: 1999: 1995: 1941: 1940: 1933: 1881: 1880: 1876: 1867: 1865: 1846: 1845: 1841: 1804:(10): 845–848. 1793: 1788: 1787: 1780: 1722: 1721: 1717: 1665: 1664: 1660: 1606: 1605: 1601: 1547: 1546: 1542: 1498: 1497: 1493: 1462:10.1038/nrg3833 1447: 1446: 1442: 1394: 1393: 1389: 1337: 1336: 1332: 1285: 1284: 1277: 1232:Genome Research 1225: 1224: 1220: 1187:10.1038/nrg2484 1168: 1167: 1163: 1119: 1118: 1114: 1076: 1075: 1071: 1008: 1007: 1003: 994: 992: 984: 983: 979: 926: 925: 921: 890:10.1038/nn.4366 874: 873: 869: 833: 832: 828: 805:10.1038/nrg3833 790: 789: 785: 740:Genome Research 733: 732: 728: 721: 708: 707: 703: 649: 648: 644: 590: 589: 582: 578: 570:Transcriptomics 546: 525: 500: 474: 468: 439: 422: 406: 375: 366: 323: 289: 269: 213: 206: 168: 112: 96: 80:differentiation 44: 17: 12: 11: 5: 2394: 2392: 2384: 2383: 2378: 2373: 2371:DNA sequencing 2363: 2362: 2359: 2358: 2352: 2345: 2344:External links 2342: 2340: 2339: 2288: 2239: 2210:(5): 421–427. 2190: 2161:(5): 421–427. 2141: 2112:(4): 562–578. 2092: 2055:(4): 363–372. 2034: 2019: 1993: 1931: 1894:(4): 381–386. 1874: 1862:10.1101/276907 1839: 1798:Nature Methods 1778: 1733:Genome Biology 1715: 1658: 1613:Genome Biology 1599: 1554:Genome Biology 1540: 1511:(2): 155–160. 1491: 1456:(3): 133–145. 1440: 1401:Nature Methods 1387: 1350:(7): 740–742. 1344:Nature Methods 1330: 1295:(2): 163–166. 1289:Nature Methods 1275: 1218: 1161: 1112: 1085:(4): 856–862. 1069: 1001: 977: 919: 867: 846:(4): 610–620. 840:Molecular Cell 826: 799:(3): 133–145. 783: 726: 719: 701: 642: 579: 577: 574: 573: 572: 567: 562: 557: 552: 545: 542: 524: 521: 499: 496: 470:Main article: 467: 464: 456: 455: 452: 449: 438: 435: 421: 418: 405: 402: 374: 371: 365: 362: 322: 319: 315: 314: 307: 300: 288: 285: 281:polyadenylated 268: 267:Considerations 265: 212: 209: 204: 167: 164: 159: 158: 152: 142: 141: 135: 130: 128:Micropipetting 111: 108: 95: 92: 60:Northern blots 50:(RNA-seq) and 48:RNA sequencing 43: 40: 15: 13: 10: 9: 6: 4: 3: 2: 2393: 2382: 2381:Biotechnology 2379: 2377: 2374: 2372: 2369: 2368: 2366: 2356: 2353: 2351: 2348: 2347: 2343: 2335: 2331: 2326: 2321: 2316: 2311: 2307: 2303: 2299: 2292: 2289: 2284: 2280: 2275: 2270: 2266: 2262: 2258: 2254: 2250: 2243: 2240: 2235: 2231: 2226: 2221: 2217: 2213: 2209: 2205: 2201: 2194: 2191: 2186: 2182: 2177: 2172: 2168: 2164: 2160: 2156: 2152: 2145: 2142: 2137: 2133: 2128: 2123: 2119: 2115: 2111: 2107: 2106:Biostatistics 2103: 2096: 2093: 2088: 2084: 2079: 2074: 2070: 2066: 2062: 2058: 2054: 2050: 2046: 2038: 2035: 2030: 2026: 2022: 2016: 2012: 2008: 2004: 1997: 1994: 1989: 1985: 1980: 1975: 1971: 1967: 1962: 1957: 1953: 1949: 1945: 1938: 1936: 1932: 1927: 1923: 1918: 1913: 1909: 1905: 1901: 1897: 1893: 1889: 1885: 1878: 1875: 1863: 1858: 1854: 1850: 1843: 1840: 1835: 1831: 1827: 1823: 1819: 1815: 1811: 1807: 1803: 1799: 1792: 1785: 1783: 1779: 1774: 1770: 1765: 1760: 1756: 1752: 1747: 1742: 1738: 1734: 1730: 1726: 1719: 1716: 1711: 1707: 1702: 1697: 1693: 1689: 1685: 1681: 1677: 1673: 1669: 1662: 1659: 1654: 1650: 1645: 1640: 1636: 1632: 1627: 1622: 1618: 1614: 1610: 1603: 1600: 1595: 1591: 1586: 1581: 1577: 1573: 1568: 1563: 1559: 1555: 1551: 1544: 1541: 1536: 1532: 1528: 1524: 1519: 1514: 1510: 1506: 1502: 1495: 1492: 1487: 1483: 1479: 1475: 1471: 1467: 1463: 1459: 1455: 1451: 1444: 1441: 1436: 1432: 1427: 1422: 1418: 1414: 1410: 1406: 1402: 1398: 1391: 1388: 1383: 1379: 1374: 1369: 1365: 1361: 1357: 1353: 1349: 1345: 1341: 1334: 1331: 1326: 1322: 1318: 1314: 1310: 1306: 1302: 1298: 1294: 1290: 1282: 1280: 1276: 1271: 1267: 1262: 1257: 1253: 1249: 1245: 1241: 1237: 1233: 1229: 1222: 1219: 1214: 1210: 1205: 1200: 1196: 1192: 1188: 1184: 1180: 1176: 1172: 1165: 1162: 1157: 1153: 1149: 1145: 1140: 1135: 1131: 1127: 1126:BioTechniques 1123: 1116: 1113: 1108: 1104: 1100: 1096: 1092: 1088: 1084: 1080: 1073: 1070: 1065: 1061: 1056: 1051: 1047: 1043: 1038: 1033: 1029: 1025: 1021: 1017: 1013: 1005: 1002: 991: 987: 981: 978: 973: 969: 964: 959: 955: 951: 947: 943: 939: 935: 931: 923: 920: 915: 911: 907: 903: 899: 895: 891: 887: 883: 879: 871: 868: 863: 859: 854: 849: 845: 841: 837: 830: 827: 822: 818: 814: 810: 806: 802: 798: 794: 787: 784: 779: 775: 770: 765: 761: 757: 753: 749: 745: 741: 737: 730: 727: 722: 720:9780124046306 716: 712: 705: 702: 697: 693: 688: 683: 679: 675: 670: 665: 661: 657: 656:F1000Research 653: 646: 643: 638: 634: 629: 624: 620: 616: 611: 606: 602: 598: 594: 587: 585: 581: 575: 571: 568: 566: 565:Transcriptome 563: 561: 558: 556: 553: 551: 548: 547: 543: 541: 539: 535: 531: 530:batch effects 522: 520: 518: 514: 510: 505: 497: 495: 492: 486: 478: 473: 465: 463: 460: 453: 450: 447: 446: 445: 443: 442:Gene ontology 436: 434: 432: 428: 419: 417: 414: 411: 403: 401: 399: 395: 391: 387: 379: 372: 370: 363: 361: 359: 355: 350: 348: 343: 335: 327: 320: 318: 312: 308: 305: 302:Inference of 301: 298: 297: 296: 293: 287:Data analysis 286: 284: 282: 278: 273: 266: 264: 261: 259: 254: 252: 248: 244: 239: 237: 233: 229: 226: 217: 210: 208: 201: 197: 193: 189: 185: 181: 177: 173: 165: 163: 156: 153: 150: 147: 146: 145: 139: 136: 134: 131: 129: 126: 125: 124: 116: 109: 107: 105: 101: 93: 91: 88: 83: 81: 75: 73: 69: 65: 61: 57: 53: 49: 41: 39: 37: 36:heterogeneous 33: 32:messenger RNA 29: 25: 22:examines the 21: 2305: 2301: 2291: 2256: 2252: 2242: 2207: 2203: 2193: 2158: 2154: 2144: 2109: 2105: 2095: 2052: 2048: 2037: 2002: 1996: 1951: 1947: 1891: 1887: 1877: 1866:. Retrieved 1852: 1842: 1801: 1797: 1736: 1732: 1718: 1675: 1671: 1661: 1616: 1612: 1602: 1557: 1553: 1543: 1508: 1504: 1494: 1453: 1449: 1443: 1400: 1390: 1347: 1343: 1333: 1292: 1288: 1235: 1231: 1221: 1181:(1): 57–63. 1178: 1174: 1164: 1129: 1125: 1115: 1082: 1078: 1072: 1022:(1): 14049. 1019: 1015: 1004: 993:. Retrieved 989: 980: 937: 934:Cell Systems 933: 922: 881: 877: 870: 843: 839: 829: 796: 792: 786: 743: 739: 729: 710: 704: 659: 655: 645: 600: 596: 526: 501: 487: 483: 457: 440: 423: 407: 384: 367: 364:Biclustering 351: 347:biclustering 340: 316: 294: 290: 274: 270: 262: 255: 240: 222: 194:are used as 169: 160: 155:Microfluidic 143: 121: 97: 84: 76: 45: 19: 18: 2308:(1): 7781. 1954:(15): e86. 534:confounding 523:Integration 509:correlation 225:single-cell 74:discovery. 56:transcripts 52:microarrays 2365:Categories 1868:2018-03-12 1855:: 276907. 1739:(1): 222. 1560:(1): 112. 995:2022-11-15 576:References 513:non-linear 392:(PCA) and 342:Clustering 321:Clustering 311:stochastic 277:endogenous 42:Background 2069:1465-7392 1970:0305-1048 1908:1087-0156 1818:1548-7091 1755:1474-760X 1635:1474-760X 1576:1474-7596 1527:1087-0156 1486:205486032 1470:1471-0056 1417:1548-7105 1364:1548-7091 1309:1548-7091 1252:1088-9051 1195:1471-0056 1148:0736-6205 1099:0006-291X 1046:2041-1723 954:2405-4712 898:1097-6256 821:205486032 760:1549-5469 678:2046-1402 619:2234-943X 243:extrinsic 72:biomarker 2334:38012145 2325:10682386 2283:31178118 2234:29608179 2185:29608177 2136:29121214 2087:23524953 2029:27737735 1988:35639499 1926:24658644 1826:27571553 1773:27782827 1710:24739965 1653:26527291 1594:27230763 1535:25599176 1478:25628217 1435:28263961 1382:24836921 1317:24363023 1270:21816910 1213:19015660 1156:11196312 1107:14706621 1064:28091601 972:27693023 914:14461377 906:27571192 862:26000846 813:25628217 778:26430159 696:26949524 637:25806353 544:See also 431:unimodal 410:variance 200:amplicon 2274:6687398 2225:6700744 2176:6152897 2127:6215955 2078:3796878 1979:9410915 1917:4122333 1853:bioRxiv 1834:3594049 1764:5080738 1701:4145853 1680:Bibcode 1644:4630968 1619:: 241. 1585:4881296 1426:5376499 1373:4112276 1325:6765530 1261:3166838 1204:2949280 1055:5241818 1024:Bibcode 963:5092539 769:4579334 687:4758375 628:4354386 550:RNA-Seq 427:Bimodal 228:RNA-seq 172:primers 157:devices 2332:  2322:  2281:  2271:  2232:  2222:  2183:  2173:  2134:  2124:  2085:  2075:  2067:  2027:  2017:  1986:  1976:  1968:  1924:  1914:  1906:  1832:  1824:  1816:  1771:  1761:  1753:  1708:  1698:  1672:Nature 1651:  1641:  1633:  1592:  1582:  1574:  1533:  1525:  1484:  1476:  1468:  1433:  1423:  1415:  1380:  1370:  1362:  1323:  1315:  1307:  1268:  1258:  1250:  1211:  1201:  1193:  1154:  1146:  1105:  1097:  1062:  1052:  1044:  970:  960:  952:  912:  904:  896:  860:  819:  811:  776:  766:  758:  717:  694:  684:  676:  635:  625:  617:  603:: 53. 247:lysate 186:and α- 151:(FACS) 100:lysate 68:assays 2025:S2CID 1830:S2CID 1794:(PDF) 1482:S2CID 1321:S2CID 910:S2CID 817:S2CID 504:nodes 394:t-SNE 188:actin 184:GAPDH 28:cells 2330:PMID 2279:PMID 2253:Cell 2230:PMID 2181:PMID 2132:PMID 2083:PMID 2065:ISSN 2015:ISBN 1984:PMID 1966:ISSN 1922:PMID 1904:ISSN 1822:PMID 1814:ISSN 1769:PMID 1751:ISSN 1706:PMID 1649:PMID 1631:ISSN 1590:PMID 1572:ISSN 1531:PMID 1523:ISSN 1474:PMID 1466:ISSN 1431:PMID 1413:ISSN 1378:PMID 1360:ISSN 1313:PMID 1305:ISSN 1266:PMID 1248:ISSN 1209:PMID 1191:ISSN 1152:PMID 1144:ISSN 1103:PMID 1095:ISSN 1060:PMID 1042:ISSN 968:PMID 950:ISSN 902:PMID 894:ISSN 858:PMID 809:PMID 774:PMID 756:ISSN 715:ISBN 692:PMID 674:ISSN 633:PMID 615:ISSN 429:vs. 251:mRNA 232:cDNA 223:The 24:gene 2320:PMC 2310:doi 2269:PMC 2261:doi 2257:177 2220:PMC 2212:doi 2171:PMC 2163:doi 2122:PMC 2114:doi 2073:PMC 2057:doi 2007:doi 1974:PMC 1956:doi 1912:PMC 1896:doi 1857:doi 1806:doi 1759:PMC 1741:doi 1696:PMC 1688:doi 1676:509 1639:PMC 1621:doi 1580:PMC 1562:doi 1513:doi 1458:doi 1421:PMC 1405:doi 1368:PMC 1352:doi 1297:doi 1256:PMC 1240:doi 1199:PMC 1183:doi 1134:doi 1087:doi 1083:313 1050:PMC 1032:doi 958:PMC 942:doi 886:doi 848:doi 801:doi 764:PMC 748:doi 682:PMC 664:doi 623:PMC 605:doi 176:PCR 62:or 58:by 2367:: 2328:. 2318:. 2306:14 2304:. 2300:. 2277:. 2267:. 2255:. 2251:. 2228:. 2218:. 2208:36 2206:. 2202:. 2179:. 2169:. 2159:36 2157:. 2153:. 2130:. 2120:. 2110:19 2108:. 2104:. 2081:. 2071:. 2063:. 2053:15 2051:. 2047:. 2023:. 2013:. 1982:. 1972:. 1964:. 1952:50 1950:. 1946:. 1934:^ 1920:. 1910:. 1902:. 1892:32 1890:. 1886:. 1851:. 1828:. 1820:. 1812:. 1802:13 1800:. 1796:. 1781:^ 1767:. 1757:. 1749:. 1737:17 1735:. 1731:. 1704:. 1694:. 1686:. 1674:. 1670:. 1647:. 1637:. 1629:. 1617:16 1615:. 1611:. 1588:. 1578:. 1570:. 1558:17 1556:. 1552:. 1529:. 1521:. 1509:33 1507:. 1503:. 1480:. 1472:. 1464:. 1454:16 1452:. 1429:. 1419:. 1411:. 1399:. 1376:. 1366:. 1358:. 1348:11 1346:. 1342:. 1319:. 1311:. 1303:. 1293:11 1291:. 1278:^ 1264:. 1254:. 1246:. 1236:21 1234:. 1230:. 1207:. 1197:. 1189:. 1179:10 1177:. 1173:. 1150:. 1142:. 1130:30 1128:. 1124:. 1101:. 1093:. 1081:. 1058:. 1048:. 1040:. 1030:. 1018:. 1014:. 988:. 966:. 956:. 948:. 936:. 932:. 908:. 900:. 892:. 882:19 880:. 856:. 844:58 842:. 838:. 815:. 807:. 797:16 795:. 772:. 762:. 754:. 744:25 742:. 738:. 690:. 680:. 672:. 658:. 654:. 631:. 621:. 613:. 599:. 595:. 583:^ 433:. 253:. 203:(C 2336:. 2312:: 2285:. 2263:: 2236:. 2214:: 2187:. 2165:: 2138:. 2116:: 2089:. 2059:: 2031:. 2009:: 1990:. 1958:: 1928:. 1898:: 1871:. 1859:: 1836:. 1808:: 1775:. 1743:: 1712:. 1690:: 1682:: 1655:. 1623:: 1596:. 1564:: 1537:. 1515:: 1488:. 1460:: 1437:. 1407:: 1384:. 1354:: 1327:. 1299:: 1272:. 1242:: 1215:. 1185:: 1158:. 1136:: 1109:. 1089:: 1066:. 1034:: 1026:: 1020:8 998:. 974:. 944:: 938:3 916:. 888:: 864:. 850:: 823:. 803:: 780:. 750:: 723:. 698:. 666:: 660:5 639:. 607:: 601:5 205:t 140:.

Index

gene
cells
messenger RNA
heterogeneous
RNA sequencing
microarrays
transcripts
Northern blots
quantitative PCR
assays
biomarker
differentiation
transcriptomics technologies
lysate
reverse transcription

Micropipetting
Cytoplasmic aspiration
Laser capture microdissection
Fluorescence activated cell sorting
Microfluidic
primers
PCR
housekeeping genes
GAPDH
actin
Fluorescent dyes
reporter molecules
amplicon

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.