Knowledge

Soft matter

Source 📝

672: 963: 49: 685: 1437:(AFM) are often used to characterize forms of soft matter due to their applicability to mapping systems at the nanoscale. These imaging techniques are not universally appropriate to all classes of soft matter and some systems may be more suited to one kind of analysis than another. For example, there are limited applications in imaging hydrogels with TEM due to the processes required for imaging. However, 1126: 1142: 4170: 1263:
Colloids are non-soluble particles suspended in a medium, such as proteins in an aqueous solution. Research into colloids is primarily focused on understanding the organization of matter, with the large structures of colloids, relative to individual molecules, large enough that they can be readily
1407:
methods are often employed to model and understand soft matter systems, as they have the ability to strictly control the composition and environment of the structures being investigated, as well as span from microscopic to macroscopic length scales. Computational methods are limited, however, by
1328:
Due to the importance of mesoscale structures in the overarching properties of soft matter, experimental work is primarily focused on the bulk properties of the materials. Rheology is often used to investigate the physical changes of the material under stress. Biological systems, such as protein
1007:), and yet are much smaller than the macroscopic (overall) scale of the material. The properties and interactions of these mesoscopic structures may determine the macroscopic behavior of the material. The large number of constituents forming these mesoscopic structures, and the large 1053:
Self-assembly is an inherent characteristic of soft matter systems. The characteristic complex behavior and hierarchical structures arise spontaneously as a system evolves towards equilibrium. Self-assembly can be classified as static when the resulting structure is due to a
982:
into mesoscopic physical structures. The assembly of the mesoscale structures that form the macroscale material is governed by low energies, and these low energy associations allow for the thermal and mechanical deformation of the material. By way of contrast, in hard
1461:
Soft materials are important in a wide range of technological applications, and each soft material can often be associated with multiple disciplines. Liquid crystals, for example, were originally discovered in the biological sciences when the botanist and chemist
1164:
Polymers are large molecules composed of repeating subunits whose characteristics are governed by their environment and composition. Polymers encompass synthetic plastics, natural fibers and rubbers, and biological proteins. Polymer research finds applications in
1030:
are mesoscopic because they individually consist of a vast number of molecules, and yet the foam itself consists of a great number of these bubbles, and the overall mechanical stiffness of the foam emerges from the combined interactions of the bubbles.
991:
with no changes in the pattern at any mesoscopic scale. Unlike hard materials, where only small distortions occur from thermal or mechanical agitation, soft matter can undergo local rearrangements of the microscopic building blocks.
1025:
are much smaller than the overall quantity of liquid and yet much larger than its individual molecules, and the emergence of these vortices controls the overall flowing behavior of the material. Also, the bubbles that compose a
911:. Together, they postulated that the chemical stability, ease of deformation, and permeability of certain polymer networks in aqueous environments would have a significant impact on medicine, and were the inventors of the soft 1241:, that have a high solvent/content ratio. Research into functionalizing gels that are sensitive to mechanical and thermal stress, as well as solvent choice, has given rise to diverse structures with characteristics such as 1149:
Soft matter consists of a diverse range of interrelated systems and can be broadly categorized into certain classes. These classes are by no means distinct, as often there are overlaps between two or more groups.
1278:
Liquid crystals can consist of proteins, small molecules, or polymers, that can be manipulated to form cohesive order in a specific direction. They exhibit liquid-like behavior in that they can
1521:. Polymers also encompass biological molecules such as proteins, where research insights from soft matter research have been applied to better understand topics like protein crystallization. 1563:
to the concepts of soft matter physics. Applications of soft matter characteristics are used to understand biologically relevant topics such as membrane mobility, as well as the rheology of
1555:
Historically the problems considered in the early days of soft matter science were those pertaining to the biological sciences. As such, an important application of soft matter research is
1058:
minimum, or dynamic when the system is caught in a metastable state. Dynamic self-assembly can be utilized in the functional design of soft materials with these metastable states through
873:
in 1889. The experimental setup that Lehmann used to investigate the two melting points of cholesteryl benzoate are still used in the research of liquid crystals as of about 2019.
1532:. The physical properties available to foams have resulted in applications which can be based on their viscosity, with more rigid and self-supporting forms of foams being used as 3758:
Wu, H.,  Friedrich, H.,  Patterson, J. P.,  Sommerdijk, N. A. J. M.,  de, N. (2020), "Liquid-Phase Electron Microscopy for Soft Matter Science and Biology".
1034:
Typical bond energies in soft matter structures are of similar scale to thermal energies. Therefore the structures are constantly affected by thermal fluctuations and undergo
716: 1011:
this causes, results in a general disorder between the large-scale structures. This disorder leads to the loss of long-range order that is characteristic of hard matter.
1137:
molecule; a common scaffold used in the formation of gels. The atoms are colored such that red represents oxygen, cyan represents carbon, and white represents hydrogen.
4194:- a blog run by graduate students and postdocs that makes soft matter more accessible through bite-sized posts that summarize current and classic soft matter research 1501:
found in tires. Polymers encompass a large range of soft matter, with applications in material science. An example of this is hydrogel. With the ability to undergo
4482: 2637: 2184: 4252: 1059: 1412:
in the prediction of soft matter properties is also a growing field in computer science thanks to the large amount of data available for soft matter systems.
892:
was unheard of at the time, with the scientific consensus being that the recorded high molecular weights of compounds like natural rubber were instead due to
4571: 2826:
Lin, Qianming; Li, Longyu; Tang, Miao; Uenuma, Shuntaro; Samanta, Jayanta; Li, Shangda; Jiang, Xuanfeng; Zou, Lingyi; Ito, Kohzo; Ke, Chenfeng (2021).
810:
aspects are generally unimportant. When soft materials interact favorably with surfaces, they become squashed without an external compressive force.
1386:
of the constituents in the system. There are limitations in the application of scattering techniques to some systems, as they can be more suited to
1338: 4450: 709: 671: 4110: 4020: 2613: 2424: 2160: 2062: 1922: 1700: 2136:
American Chemical Society International Historic Chemical Landmarks. Foundations of Polymer Science: Hermann Staudinger and Macromolecules.
1050:
states. This characteristic can allow for recovery of initial state through an external stimulus, which is often exploited in research.
4225: 2137: 1110: 4597: 4245: 4132: 2463: 702: 689: 3681:"General procedure for evaluating amorphous scattering and crystallinity from X-ray diffraction scans of semicrystalline polymers" 1831:"Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen" 1509:. Due to their stimuli responsive behavior, 3D printing of hydrogels has found applications in a diverse range of fields, such as 1430: 923: 1833:[On the Movement of Small Particles Suspended in Stationary Liquids Required by the Molecular-Kinetic Theory of Heat]. 1008: 970:
Interesting behaviors arise from soft matter in ways that cannot be predicted, or are difficult to predict, directly from its
4398: 454: 1408:
their suitability to the system and must be regularly validated against experimental results to ensure accuracy. The use of
1475: 1283: 109: 4238: 1374:
can also be used for materials when probing for the average properties of the constituents. These methods can determine
1363: 1200: 824:
in simple systems can be generalized to the more complex cases found in soft matter, in particular, to the behaviors of
629: 4157:"Soft Matter and Biomaterials on the Nanoscale: The WSPC Reference on Functional Nanomaterials — Part I (In 4 Volumes)" 4535: 1359: 4366: 4339: 4044: 2188: 1602: 1479: 1442: 1375: 634: 259: 978:
constituents. Materials termed soft matter exhibit this property due to a shared propensity of these materials to
3710:
Peerless, James S.; Milliken, Nina J. B.; Oweida, Thomas J.; Manning, Matthew D.; Yingling, Yaroslava G. (2019).
1114: 1055: 966:
The self-assembly of individual phospholipids into colloids (Liposome and Micelle) or a membrane (bilayer sheet).
524: 199: 1246: 962: 4472: 1371: 1313: 984: 881: 870: 748: 519: 514: 40: 987:
it is often possible to predict the overall behavior of a material because the molecules are organized into a
740:
that can be deformed or structurally altered by thermal or mechanical stress which is of similar magnitude to
604: 3784:"Nanomechanical mapping of soft materials with the atomic force microscope: methods, theory and applications" 2549: 2086: 1438: 1434: 1404: 1334: 1178: 919: 813: 614: 209: 4174: 3218:"Exploring Macrocycles in Functional Supramolecular Gels: From Stimuli Responsiveness to Systems Chemistry" 1486:
are another example of soft materials, where the constituent elements in liquid crystals can self-propel.
4556: 4418: 3503: 1471: 1287: 849: 817: 599: 539: 509: 459: 179: 69: 4561: 4530: 4393: 4314: 1330: 1082: 1043: 865:
The crystalline optical properties of liquid crystals and their ability to flow were first described by
639: 254: 239: 31: 787:. These materials share an important common feature in that predominant physical behaviors occur at an 999:
of physical structures. The structures are much larger than the microscopic scale (the arrangement of
4592: 4520: 4344: 4304: 3909: 3627: 2888: 2773: 2708: 2561: 2505: 2364: 2322: 2215: 1994: 1842: 1775: 1577: 1518: 1498: 1282:, yet they can obtain close-to-crystal alignment. One feature of liquid crystals is their ability to 1242: 1066: 1039: 947: 893: 741: 229: 119: 4495: 4354: 4349: 4334: 4309: 4286: 4262: 2656:"Dynamic Macromolecular Material Design-The Versatility of Cyclodextrin-Based Host-Guest Chemistry" 2138:
http://www.acs.org/content/acs/en/education/whatischemistry/landmarks/staudingerpolymerscience.html
2085:
Hermann Staudinger – Biographical. NobelPrize.org. Nobel Prize Outreach AB 2023. Mon. 13 Feb 2023.
1463: 1399: 1299: 866: 469: 279: 129: 4551: 4428: 4423: 4376: 4038: 3933: 3821: 3741: 3591: 3565: 3553: 3479: 3383: 3284: 3264: 2920: 2878: 2847: 2827: 2805: 2631: 2404: 2291: 2239: 2178: 2068: 2022: 1975: 1816:
The Nobel Prize in Physics 1991. NobelPrize.org. Nobel Prize Outreach AB 2023. Mon. 13 Feb 2023.
1745: 1533: 1514: 1426: 1367: 1212: 1204: 1094: 1074: 935: 877: 649: 609: 584: 332: 323: 4181: 3839:
Miller, Daniel S.; Carlton, Rebecca J.; Mushenheim, Peter C.; Abbott, Nicholas L. (2013-03-12).
3680: 2310: 1548:
or makeup. Foams have also found biomedical applications in tissue engineering as scaffolds and
2405:"Fracture in soft elastic materials: Continuum description, molecular aspects and applications" 2099: 862:). This work built on established research into systems that would now be considered colloids. 4566: 4515: 4460: 4440: 4326: 4128: 4106: 4026: 4016: 3992: 3974: 3925: 3878: 3860: 3813: 3805: 3733: 3661: 3643: 3583: 3531: 3523: 3471: 3430: 3422: 3375: 3367: 3326: 3245: 3237: 3195: 3146: 3128: 3084: 3066: 3022: 2983: 2965: 2939: 2912: 2904: 2797: 2789: 2742: 2724: 2677: 2619: 2609: 2577: 2523: 2469: 2459: 2420: 2382: 2283: 2231: 2166: 2156: 2119: 2058: 2014: 1967: 1928: 1918: 1893: 1799: 1791: 1737: 1696: 1657: 1642: 1612: 1541: 1529: 1170: 1086: 979: 772: 579: 424: 314: 234: 3711: 3306: 3002: 2573: 4505: 4445: 4371: 3982: 3964: 3917: 3868: 3852: 3795: 3766: 3723: 3692: 3651: 3635: 3575: 3515: 3461: 3414: 3357: 3318: 3276: 3229: 3185: 3177: 3136: 3118: 3074: 3056: 3014: 2973: 2955: 2896: 2839: 2781: 2732: 2716: 2667: 2569: 2548:
Chen, Daniel T.N.; Wen, Qi; Janmey, Paul A.; Crocker, John C.; Yodh, Arjun G. (2010-08-10).
2513: 2412: 2372: 2330: 2273: 2223: 2111: 2050: 2006: 1959: 1883: 1850: 1783: 1729: 1688: 1637: 1145:
Cartoon representation of the molecular order of crystal, liquid crystal, and liquid states.
1078: 1038:. The ease of deformation and influence of low energy interactions regularly result in slow 996: 939: 904: 821: 792: 284: 249: 244: 204: 174: 144: 104: 64: 4152:
R.G. Larson, "The Structure and Rheology of Complex Fluids," Oxford University Press (1999)
922:. The work of de Gennes across different forms of soft matter was key to understanding its 4525: 4435: 4381: 4281: 3519: 3043:
Maimouni, Ilham; Cejas, Cesare M.; Cossy, Janine; Tabeling, Patrick; Russo, Maria (2020).
1817: 1035: 845: 841: 594: 544: 414: 169: 81: 4207: 3913: 3631: 2892: 2777: 2712: 2565: 2509: 2368: 2326: 2219: 1846: 1779: 4455: 4410: 4388: 4276: 4077: 3987: 3952: 3873: 3840: 3656: 3615: 3402: 3190: 3165: 3141: 3106: 3079: 3044: 2978: 2943: 2737: 2696: 1622: 1592: 1502: 1490: 1450: 1279: 1273: 1166: 1077:
induced flow or phase transitions. However, excessive external stimuli often result in
908: 825: 795: 776: 676: 644: 624: 619: 574: 494: 429: 327: 214: 59: 48: 2761: 1215:. Foams are also used in automotive for water and dust sealing and noise reduction. 4586: 3937: 3897: 3825: 3745: 3696: 3483: 3288: 2924: 2851: 2334: 2295: 2072: 1716:
Carroll, Gregory T.; Jongejan, Mahthild G. M.; Pijper, Dirk; Feringa, Ben L. (2010).
1652: 1627: 1510: 1379: 1309: 1234: 1174: 1098: 1047: 918:
These seemingly separate fields were dramatically influenced and brought together by
889: 885: 549: 355: 336: 318: 219: 139: 17: 3595: 2809: 2044: 2026: 1979: 1749: 1341:
can be used in understanding the average structure and lipid mobility of membranes.
4490: 3579: 3387: 2828:"Kinetic trapping of 3D-printable cyclodextrin-based poly(pseudo)rotaxane networks" 2243: 1582: 1560: 1494: 1483: 1305: 1134: 912: 569: 559: 529: 489: 484: 464: 309: 289: 149: 3841:"Introduction to Optical Methods for Characterizing Liquid Crystals at Interfaces" 3466: 3449: 2054: 1211:, and are undergoing active research in the biomedical field of drug delivery and 2843: 2518: 2493: 1286:. Liquid crystals have found significant applications in optical devices such as 4210:- a wiki dedicated to simple liquids, complex fluids, and soft condensed matter. 3418: 2416: 1647: 1506: 1467: 1446: 1409: 1125: 951: 858: 799: 784: 654: 589: 564: 534: 479: 474: 3921: 3639: 3181: 2720: 1089:, which differs significantly from the general fracture mechanics formulation. 4510: 4500: 3280: 2623: 2170: 1947: 1932: 1888: 1871: 1556: 1429:
can be used in the study of colloidal systems, but more advanced methods like
1421: 1355: 1350: 1238: 1230: 1118: 1015: 938:
structures the underlying chemistry creates. He extended the understanding of
499: 341: 134: 4030: 3978: 3929: 3864: 3809: 3737: 3647: 3527: 3475: 3426: 3371: 3265:"Naturally biomimicked smart shape memory hydrogels for biomedical functions" 3241: 3217: 3132: 3070: 2969: 2908: 2793: 2728: 2581: 2527: 2386: 2287: 2235: 2123: 2115: 2018: 1971: 1897: 1855: 1830: 1795: 1741: 4361: 4230: 4103:
Nanostructured Soft Matter - Experiment, Theory, Simulation and Perspectives
3362: 3345: 2785: 2473: 2377: 2352: 1549: 1525: 1445:
to determine the ordering of the material under various conditions, such as
1383: 1141: 1070: 950:
of polymer systems, and successfully mapped polymer behavior to that of the
943: 931: 927: 554: 504: 377: 224: 124: 4222:- A group dedicated to Soft Matter Engineering at the University of Florida 3996: 3882: 3817: 3770: 3728: 3665: 3587: 3535: 3434: 3379: 3330: 3322: 3249: 3199: 3150: 3088: 3026: 3018: 2987: 2916: 2801: 2746: 2681: 2672: 2655: 2603: 2311:"Exponents for the excluded volume problem as derived by the Wilson method" 2278: 2261: 2203: 2150: 2010: 1912: 1803: 1718:"Spontaneous generation and patterning of chiral polymeric surface toroids" 1682: 1109: 4169: 4010: 3616:"Pathways and challenges towards a complete characterization of microgels" 3123: 1559:, with a major goal of the discipline being the reduction of the field of 3969: 2960: 2697:"A comparative review of artificial muscles for microsystem applications" 2453: 2087:
https://www.nobelprize.org/prizes/chemistry/1953/staudinger/biographical/
1632: 1387: 1317: 1130: 1090: 1004: 975: 900: 816:, who has been called the "founding father of soft matter," received the 114: 3045:"Microfluidics Mediated Production of Foams for Biomedical Applications" 1042:
of the mesoscopic structures which allows some systems to remain out of
4213: 3800: 3783: 3061: 2900: 2866: 2654:
Schmidt, Bernhard V. K. J.; Barner-Kowollik, Christopher (2017-07-10).
1963: 1733: 1717: 1587: 1545: 1537: 1258: 1208: 1159: 988: 829: 807: 803: 760: 756: 434: 419: 382: 373: 368: 4127:, Springer Tracts in Modern Physics, v. 161. Springer, Berlin (2000). 3951:
Zhan, Shuai; Guo, Amy X. Y.; Cao, Shan Cecilia; Liu, Na (2022-03-30).
3856: 3233: 4465: 4202: 3166:"Hydrogel: Preparation, characterization, and applications: A review" 2227: 1787: 1763: 1617: 1199:
has been dispersed to form cavities. This structure imparts a large
1022: 1018: 788: 752: 737: 387: 363: 94: 4216:- organizes, reviews, and summarizes academic papers on soft matter. 856:
must have a similar thermal energy to the fluid itself (of order of
4214:
Harvard School of Engineering and Applied Sciences Soft Matter Wiki
3570: 2883: 1692: 884:, was the first person to suggest that polymers are formed through 4186: 1564: 1140: 1124: 1108: 961: 853: 780: 392: 89: 4197: 4089:
Sensitive Matter: Foams, Gels, Liquid Crystals and Other Miracles
1917:(1st ed.). Oxford, United Kingdom: Oxford University Press. 1320:
allows for the elastic deformation of the large-scale structure.
4219: 4156: 4147:
Statistical thermodynamics of surfaces, interfaces and membranes
3403:"Liquid Crystals: Versatile Self-Organized Smart Soft Materials" 1607: 1597: 1470:. Now, however, liquid crystals have also found applications as 1190: 1027: 1000: 971: 764: 4234: 2104:
Berichte der Deutschen Chemischen Gesellschaft (A and B Series)
1540:, and foams that exhibit the ability to flow being used in the 1441:
can be readily applied. Liquid crystals are often probed using
1316:. The localized, low energy associated with the forming of the 4187:
American Physical Society Topical Group on Soft Matter (GSOFT)
2403:
Spagnoli, A.; Brighenti, R.; Cosma, M.P.; Terzano, M. (2022),
1224: 1196: 768: 99: 3105:
Jin, Fan-Long; Zhao, Miao; Park, Mira; Park, Soo-Jin (2019).
3896:
Zhang, Rui; Mozaffari, Ali; de Pablo, Juan J. (2021-02-25).
2865:
Cipelletti, Luca; Martens, Kirsten; Ramos, Laurence (2020).
2155:. Vijay Kumar Thakur, Manju Kumari Thakur. Singapore. 2018. 820:
in 1991 for discovering that methods developed for studying
4191: 3898:"Autonomous materials systems from active liquid crystals" 3712:"Soft Matter Informatics: Current Progress and Challenges" 3107:"Recent Trends of Foaming in Polymer Processing: A Review" 806:
is considered the dominant factor. At these temperatures,
3450:"Mirror symmetry breaking in liquids and liquid crystals" 3263:
Korde, Jay M.; Kandasubramanian, Balasubramanian (2020).
2760:
Whitesides, George M.; Grzybowski, Bartosz (2002-03-29).
1818:
https://www.nobelprize.org/prizes/physics/1991/summary/
2262:"Pierre-Gilles de Gennes. 24 October 1932—18 May 2007" 4015:. Paulo Netti. Cambridge: Woodhead Publishing. 2014. 3953:"3D Printing Soft Matters and Applications: A Review" 3554:"Soft matter perspective on protein crystal assembly" 1681:
Kleman, Maurice; Lavrentovich, Oleg D., eds. (2003).
4012:
Biomedical foams for tissue engineering applications
2266:
Biographical Memoirs of Fellows of the Royal Society
888:
that link smaller molecules together. The idea of a
4544: 4481: 4409: 4325: 4297: 4269: 3305:Hamley, Ian W.; Castelletto, Valeria (2007-06-11). 1505:, hydrogels are well suited for the development of 1489:Polymers have found diverse applications, from the 1195:Foams consist of a liquid or solid through which a 840:The current understanding of soft matter grew from 4072:Structured Fluids: Polymers, Colloids, Surfactants 3346:"Colloidal matter: Packing, geometry, and entropy" 3216:Qi, Zhenhui; Schalley, Christoph A. (2014-07-15). 2867:"Microscopic precursors of failure in soft matter" 926:, where material properties are not based on the 903:in the biomedical field was pioneered in 1960 by 1329:crystallization, are often investigated through 1203:on the system. Foams have found applications in 995:A defining characteristic of soft matter is the 2260:Joanny, Jean-François; Cates, Michael (2019). 4246: 3401:Bisoyi, Hari Krishna; Li, Quan (2022-03-09). 710: 8: 2411:, vol. 55, Elsevier, pp. 255–307, 747:The science of soft matter is a subfield of 4060:(2nd edition), J. Wiley, Chichester (2000). 3957:International Journal of Molecular Sciences 3552:Fusco, Diana; Charbonneau, Patrick (2016). 3504:"Soft Matter in Lipid–Protein Interactions" 2948:International Journal of Molecular Sciences 2695:Shi, Mayue; Yeatman, Eric M. (2021-11-23). 1304:Biological membranes consist of individual 942:in liquid crystals, introduced the idea of 4253: 4239: 4231: 2636:: CS1 maint: location missing publisher ( 2183:: CS1 maint: location missing publisher ( 1528:, or be created intentionally, such as by 1308:molecules that have self-assembled into a 1129:Host-guest complex of polyethylene glycol 717: 703: 47: 36: 4067:, Oxford University Press, Oxford (2002). 3986: 3968: 3872: 3799: 3727: 3655: 3569: 3465: 3361: 3189: 3140: 3122: 3078: 3060: 2977: 2959: 2882: 2736: 2671: 2554:Annual Review of Condensed Matter Physics 2517: 2376: 2353:"Grand Challenges in Soft Matter Physics" 2277: 1952:Monatshefte für Chemie - Chemical Monthly 1948:"Beiträge zur Kenntniss des Cholesterins" 1887: 1854: 2574:10.1146/annurev-conmatphys-070909-104120 4125:Pattern Formation in Granular Materials 3311:Angewandte Chemie International Edition 3007:Angewandte Chemie International Edition 2660:Angewandte Chemie International Edition 1670: 1524:Foams can naturally occur, such as the 1339:nuclear magnetic resonance spectroscopy 39: 4451:Atomic, molecular, and optical physics 4182:Pierre-Gilles de Gennes' Nobel Lecture 4036: 3609: 3607: 3605: 3558:Colloids and Surfaces B: Biointerfaces 3547: 3545: 3497: 3495: 3493: 3300: 3298: 3211: 3209: 3100: 3098: 3038: 3036: 2821: 2819: 2629: 2597: 2595: 2593: 2591: 2176: 2038: 2036: 1914:Soft Matter: a Very Short Introduction 1249:molecules selectively and reversibly. 1081:responses. Soft matter becomes highly 1073:responses to external stimuli such as 1021:that naturally occur within a flowing 869:in 1888, and further characterized by 3520:10.1146/annurev-biophys-070816-033843 3344:Manoharan, Vinothan N. (2015-08-28). 2649: 2647: 2543: 2541: 2539: 2537: 2487: 2485: 2483: 2447: 2445: 2443: 2441: 2398: 2396: 2346: 2344: 2255: 2253: 2204:"Hydrophilic Gels for Biological Use" 7: 4082:Soft Matter Physics: An Introduction 3003:"Nanotechnology with Soft Materials" 2938:Mashaghi, Samaneh; Jadidi, Tayebeh; 2351:van der Gucht, Jasper (2018-08-22). 1999:Zeitschrift für Physikalische Chemie 1684:Soft Matter Physics: An Introduction 1676: 1674: 27:Subfield of condensed matter physics 4159:, World Scientific Publisher (2020) 4116:M. Daoud, C.E. Williams (editors), 2458:. Oxford: Oxford University Press. 1687:. New York, NY: Springer New York. 1097:, is often used to investigate the 4226:Google Scholar page on soft matter 4091:, Harvard University Press (2012). 4070:T. A. Witten (with P. A. Pincus), 3448:Tschierske, Carsten (2018-12-08). 2942:; Mashaghi, Alireza (2013-02-21). 2701:Microsystems & Nanoengineering 2494:"Experimental soft-matter science" 2046:An Introduction to Liquid Crystals 1065:Soft materials often exhibit both 25: 4142:, Nobel Lecture, December 9, 1991 4120:, Springer Verlag, Berlin (1999). 4096:Intermolecular and Surface Forces 1872:"Grand Challenges in Soft Matter" 1870:Mezzenga, Raffaele (2021-12-22). 1093:, the study of deformation under 4168: 3679:Murthy, N.S.; Minor, H. (1990). 3502:Brown, Michael F. (2017-05-22). 2152:Hydrogels : recent advances 1431:transmission electron microscopy 1233:3D polymer scaffolds, which are 848:, understanding that a particle 684: 683: 670: 4572:Timeline of physics discoveries 3716:Advanced Theory and Simulations 3614:Scheffold, Frank (2020-09-04). 2492:Nagel, Sidney R. (2017-04-12). 2202:Wichterle, O.; Lím, D. (1960). 3782:Garcia, Ricardo (2020-08-17). 3580:10.1016/j.colsurfb.2015.07.023 1764:"Soft matter: more than words" 1476:liquid crystal tunable filters 1: 4105:, Springer/Dordrecht (2007), 4101:A. V. Zvelindovsky (editor), 3467:10.1080/02678292.2018.1501822 3222:Accounts of Chemical Research 2762:"Self-Assembly at All Scales" 2605:Foams: Structure and Dynamics 2452:Jones, Richard A. L. (2002). 2409:Advances in Applied Mechanics 2098:Staudinger, H. (1920-06-12). 1946:Reinitzer, Friedrich (1888). 1324:Experimental characterization 4058:Introduction to Soft Matter 3697:10.1016/0032-3861(90)90243-R 3269:Chemical Engineering Journal 3170:Journal of Advanced Research 2844:10.1016/j.chempr.2021.06.004 2550:"Rheology of Soft Materials" 2519:10.1103/RevModPhys.89.025002 2335:10.1016/0375-9601(72)90149-1 1364:small-angle X-ray scattering 1284:spontaneously break symmetry 1229:Gels consist of non-solvent- 1201:surface-area-to-volume ratio 4536:Quantum information science 3508:Annual Review of Biophysics 3419:10.1021/acs.chemrev.1c00761 3307:"Biological Soft Materials" 2417:10.1016/bs.aams.2021.07.001 2055:10.1088/2053-2571/ab2a6fch1 1995:"Über fliessende Krystalle" 1480:liquid crystal thermometers 1360:wide-angle X-ray scattering 4614: 4367:Classical electromagnetism 4138:de Gennes, Pierre-Gilles, 3922:10.1038/s41578-020-00272-x 3640:10.1038/s41467-020-17774-5 3182:10.1016/j.jare.2013.07.006 2721:10.1038/s41378-021-00323-5 2140:(accessed Feb 13th, 2023). 2043:DiLisi, Gregory A (2019). 1993:Lehmann, O. (1889-07-01). 1603:Fracture of soft materials 1443:polarized light microscopy 1419: 1397: 1376:particle-size distribution 1348: 1297: 1271: 1256: 1222: 1188: 1157: 260:Spin gapless semiconductor 29: 3281:10.1016/j.cej.2019.122430 2602:Cantat, Isabelle (2013). 2498:Reviews of Modern Physics 1889:10.3389/frsfm.2021.811842 1829:Einstein, Albert (1905). 1314:non-covalent interactions 1245:, or the ability to bind 751:. Soft materials include 200:Electronic band structure 4598:Condensed matter physics 4473:Condensed matter physics 4098:, Academic Press (2010). 4080:and O. D. Lavrentovich, 3902:Nature Reviews Materials 3788:Chemical Society Reviews 2608:(1st ed.). Oxford. 2309:de Gennes, P.G. (1972). 2116:10.1002/cber.19200530627 1876:Frontiers in Soft Matter 1856:10.1002/andp.19053220806 1372:dynamic light scattering 985:condensed matter physics 882:Nobel Prize in Chemistry 880:, recipient of the 1953 749:condensed matter physics 110:Bose–Einstein condensate 41:Condensed matter physics 4220:Soft Matter Engineering 4203:Softmatterresources.com 4149:, Westview Press (2003) 3363:10.1126/science.1253751 3164:Ahmed, Enas M. (2015). 3001:Hamley, Ian W. (2003). 2786:10.1126/science.1070821 2378:10.3389/fphy.2018.00087 1472:liquid-crystal displays 1439:fluorescence microscopy 1435:atomic force microscopy 1335:neutron crystallography 1288:liquid-crystal displays 1179:protein crystallization 920:Pierre-Gilles de Gennes 814:Pierre-Gilles de Gennes 4557:Nobel Prize in Physics 4419:Relativistic mechanics 4043:: CS1 maint: others ( 3771:10.1002/adma.202001582 3729:10.1002/adts.201800129 3323:10.1002/anie.200603922 3019:10.1002/anie.200200546 2944:"Lipid Nanotechnology" 2673:10.1002/anie.201612150 2279:10.1098/rsbm.2018.0033 2011:10.1515/zpch-1889-0434 1484:Active liquid crystals 1146: 1138: 1122: 1105:Classes of soft matter 967: 818:Nobel Prize in Physics 791:scale comparable with 4562:Philosophy of physics 4177:at Wikimedia Commons 4094:J. N. Israelachvili, 4065:Soft Condensed Matter 3620:Nature Communications 3124:10.3390/polym11060953 2455:Soft condensed matter 2187:) CS1 maint: others ( 2100:"Über Polymerisation" 1911:McLeish, Tom (2020). 1144: 1128: 1112: 965: 734:soft condensed matter 255:Topological insulator 32:Soft Matter (journal) 30:For the journal, see 18:Soft condensed matter 4521:Mathematical physics 3970:10.3390/ijms23073790 3460:(13–15): 2221–2252. 2961:10.3390/ijms14024242 2357:Frontiers in Physics 1578:Biological membranes 1519:flexible electronics 1390:and dilute samples. 1358:techniques, such as 1294:Biological membranes 894:particle aggregation 742:thermal fluctuations 273:Electronic phenomena 120:Fermionic condensate 4496:Atmospheric physics 4335:Classical mechanics 4263:branches of physics 4198:Softmatterworld.org 4118:Soft Matter Physics 3914:2021NatRM...6..437Z 3632:2020NatCo..11.4315S 2893:2020SMat...16...82C 2778:2002Sci...295.2418W 2772:(5564): 2418–2421. 2713:2021MicNa...7...95S 2566:2010ARCMP...1..301C 2510:2017RvMP...89b5002N 2369:2018FrP.....6...87V 2327:1972PhLA...38..339D 2220:1960Natur.185..117W 1847:1905AnP...322..549E 1780:2005SMat....1...16. 1464:Friedrich Reinitzer 1400:Computer simulation 1300:Biological membrane 989:crystalline lattice 958:Distinctive physics 867:Friedrich Reinitzer 280:Quantum Hall effect 4552:History of physics 4123:Gerald H. Ristow, 4084:, Springer (2003). 3801:10.1039/D0CS00318B 3062:10.3390/mi11010083 2940:Koenderink, Gijsje 2901:10.1039/C9SM01730E 2049:. IOP Publishing. 1964:10.1007/BF01516710 1835:Annalen der Physik 1734:10.1039/c0sc00159g 1613:Granular materials 1530:fire extinguishers 1515:tissue engineering 1466:was investigating 1427:Optical microscopy 1368:neutron scattering 1213:tissue engineering 1147: 1139: 1123: 1117:, an example of a 1009:degrees of freedom 968: 930:of the underlying 878:Hermann Staudinger 783:, and a number of 773:granular materials 677:Physics portal 4580: 4579: 4567:Physics education 4516:Materials science 4483:Interdisciplinary 4441:Quantum mechanics 4173:Media related to 4111:978-1-4020-6329-9 4022:978-1-306-47861-8 3857:10.1021/la304679f 3851:(10): 3154–3169. 3794:(16): 5850–5884. 3356:(6251): 1253751. 3317:(24): 4442–4455. 3234:10.1021/ar500193z 3013:(15): 1692–1712. 2666:(29): 8350–8369. 2615:978-0-19-966289-0 2426:978-0-12-824617-7 2315:Physics Letters A 2214:(4706): 117–118. 2162:978-981-10-6077-9 2064:978-1-64327-684-7 1924:978-0-19-880713-1 1702:978-0-387-95267-3 1643:Protein structure 1542:cosmetic industry 1499:vulcanized rubber 1312:structure due to 1171:materials science 1113:A portion of the 1087:crack propagation 1014:For example, the 934:, more so on the 842:Albert Einstein's 727: 726: 425:Granular material 193:Electronic phases 16:(Redirected from 4605: 4506:Chemical physics 4446:Particle physics 4372:Classical optics 4255: 4248: 4241: 4232: 4172: 4074:, Oxford (2004). 4063:R. A. L. Jones, 4049: 4048: 4042: 4034: 4007: 4001: 4000: 3990: 3972: 3948: 3942: 3941: 3893: 3887: 3886: 3876: 3836: 3830: 3829: 3803: 3779: 3773: 3756: 3750: 3749: 3731: 3707: 3701: 3700: 3676: 3670: 3669: 3659: 3611: 3600: 3599: 3573: 3549: 3540: 3539: 3499: 3488: 3487: 3469: 3445: 3439: 3438: 3413:(5): 4887–4926. 3407:Chemical Reviews 3398: 3392: 3391: 3365: 3341: 3335: 3334: 3302: 3293: 3292: 3260: 3254: 3253: 3228:(7): 2222–2233. 3213: 3204: 3203: 3193: 3161: 3155: 3154: 3144: 3126: 3102: 3093: 3092: 3082: 3064: 3040: 3031: 3030: 2998: 2992: 2991: 2981: 2963: 2954:(2): 4242–4282. 2935: 2929: 2928: 2886: 2862: 2856: 2855: 2838:(9): 2442–2459. 2823: 2814: 2813: 2757: 2751: 2750: 2740: 2692: 2686: 2685: 2675: 2651: 2642: 2641: 2635: 2627: 2599: 2586: 2585: 2545: 2532: 2531: 2521: 2489: 2478: 2477: 2449: 2436: 2435: 2434: 2433: 2400: 2391: 2390: 2380: 2348: 2339: 2338: 2306: 2300: 2299: 2281: 2257: 2248: 2247: 2228:10.1038/185117a0 2199: 2193: 2192: 2182: 2174: 2147: 2141: 2134: 2128: 2127: 2110:(6): 1073–1085. 2095: 2089: 2083: 2077: 2076: 2040: 2031: 2030: 1990: 1984: 1983: 1943: 1937: 1936: 1908: 1902: 1901: 1891: 1867: 1861: 1860: 1858: 1826: 1820: 1814: 1808: 1807: 1788:10.1039/b419223k 1760: 1754: 1753: 1722:Chemical Science 1713: 1707: 1706: 1678: 1638:Protein dynamics 1133:bound within an 1115:DNA double helix 1101:of soft matter. 1060:kinetic trapping 997:mesoscopic scale 793:room temperature 719: 712: 705: 692: 687: 686: 679: 675: 674: 285:Spin Hall effect 175:Phase transition 145:Luttinger liquid 82:States of matter 65:Phase transition 51: 37: 21: 4613: 4612: 4608: 4607: 4606: 4604: 4603: 4602: 4583: 4582: 4581: 4576: 4540: 4526:Medical physics 4477: 4436:Nuclear physics 4405: 4399:Non-equilibrium 4321: 4293: 4265: 4259: 4166: 4053: 4052: 4035: 4023: 4009: 4008: 4004: 3950: 3949: 3945: 3895: 3894: 3890: 3838: 3837: 3833: 3781: 3780: 3776: 3757: 3753: 3709: 3708: 3704: 3691:(6): 996–1002. 3678: 3677: 3673: 3613: 3612: 3603: 3551: 3550: 3543: 3501: 3500: 3491: 3454:Liquid Crystals 3447: 3446: 3442: 3400: 3399: 3395: 3343: 3342: 3338: 3304: 3303: 3296: 3262: 3261: 3257: 3215: 3214: 3207: 3163: 3162: 3158: 3104: 3103: 3096: 3042: 3041: 3034: 3000: 2999: 2995: 2937: 2936: 2932: 2864: 2863: 2859: 2825: 2824: 2817: 2759: 2758: 2754: 2694: 2693: 2689: 2653: 2652: 2645: 2628: 2616: 2601: 2600: 2589: 2547: 2546: 2535: 2491: 2490: 2481: 2466: 2451: 2450: 2439: 2431: 2429: 2427: 2402: 2401: 2394: 2350: 2349: 2342: 2308: 2307: 2303: 2259: 2258: 2251: 2201: 2200: 2196: 2175: 2163: 2149: 2148: 2144: 2135: 2131: 2097: 2096: 2092: 2084: 2080: 2065: 2042: 2041: 2034: 1992: 1991: 1987: 1945: 1944: 1940: 1925: 1910: 1909: 1905: 1869: 1868: 1864: 1828: 1827: 1823: 1815: 1811: 1774:(1): 16. 2005. 1762: 1761: 1757: 1715: 1714: 1710: 1703: 1680: 1679: 1672: 1667: 1662: 1623:Liquid crystals 1573: 1459: 1424: 1418: 1402: 1396: 1353: 1347: 1326: 1302: 1296: 1276: 1270: 1268:Liquid crystals 1261: 1255: 1227: 1221: 1193: 1187: 1162: 1156: 1107: 1099:bulk properties 1036:Brownian motion 960: 846:Brownian motion 838: 826:liquid crystals 822:order phenomena 777:liquid crystals 723: 682: 669: 668: 661: 660: 659: 449: 441: 440: 439: 415:Amorphous solid 409: 399: 398: 397: 376: 358: 348: 347: 346: 335: 333:Antiferromagnet 326: 324:Superparamagnet 317: 304: 303:Magnetic phases 296: 295: 294: 274: 266: 265: 264: 194: 186: 185: 184: 170:Order parameter 164: 163:Phase phenomena 156: 155: 154: 84: 74: 35: 28: 23: 22: 15: 12: 11: 5: 4611: 4609: 4601: 4600: 4595: 4585: 4584: 4578: 4577: 4575: 4574: 4569: 4564: 4559: 4554: 4548: 4546: 4542: 4541: 4539: 4538: 4533: 4528: 4523: 4518: 4513: 4508: 4503: 4498: 4493: 4487: 4485: 4479: 4478: 4476: 4475: 4470: 4469: 4468: 4463: 4458: 4448: 4443: 4438: 4433: 4432: 4431: 4426: 4415: 4413: 4407: 4406: 4404: 4403: 4402: 4401: 4396: 4389:Thermodynamics 4386: 4385: 4384: 4379: 4369: 4364: 4359: 4358: 4357: 4352: 4347: 4342: 4331: 4329: 4323: 4322: 4320: 4319: 4318: 4317: 4307: 4301: 4299: 4295: 4294: 4292: 4291: 4290: 4289: 4279: 4273: 4271: 4267: 4266: 4260: 4258: 4257: 4250: 4243: 4235: 4229: 4228: 4223: 4217: 4211: 4205: 4200: 4195: 4189: 4184: 4165: 4164:External links 4162: 4161: 4160: 4153: 4150: 4143: 4136: 4121: 4114: 4099: 4092: 4085: 4075: 4068: 4061: 4051: 4050: 4021: 4002: 3943: 3908:(5): 437–453. 3888: 3831: 3774: 3751: 3722:(1): 1800129. 3702: 3671: 3601: 3541: 3514:(1): 379–410. 3489: 3440: 3393: 3336: 3294: 3255: 3205: 3176:(2): 105–121. 3156: 3094: 3032: 2993: 2930: 2857: 2815: 2752: 2687: 2643: 2614: 2587: 2560:(1): 301–322. 2533: 2479: 2464: 2437: 2425: 2392: 2340: 2321:(5): 339–340. 2301: 2249: 2194: 2161: 2142: 2129: 2090: 2078: 2063: 2032: 2005:(1): 462–472. 1985: 1958:(1): 421–441. 1938: 1923: 1903: 1862: 1841:(8): 549–560. 1821: 1809: 1755: 1708: 1701: 1693:10.1007/b97416 1669: 1668: 1666: 1663: 1661: 1660: 1655: 1650: 1645: 1640: 1635: 1630: 1628:Microemulsions 1625: 1620: 1615: 1610: 1605: 1600: 1595: 1593:Complex fluids 1590: 1585: 1580: 1574: 1572: 1569: 1526:head on a beer 1503:shear thinning 1491:natural rubber 1458: 1455: 1451:electric field 1420:Main article: 1417: 1414: 1398:Main article: 1395: 1392: 1349:Main article: 1346: 1343: 1325: 1322: 1298:Main article: 1295: 1292: 1274:Liquid crystal 1272:Main article: 1269: 1266: 1257:Main article: 1254: 1251: 1237:or physically 1223:Main article: 1220: 1217: 1189:Main article: 1186: 1183: 1167:nanotechnology 1158:Main article: 1155: 1152: 1135:α-cyclodextrin 1106: 1103: 959: 956: 946:regarding the 909:Otto Wichterle 886:covalent bonds 837: 834: 796:thermal energy 725: 724: 722: 721: 714: 707: 699: 696: 695: 694: 693: 680: 663: 662: 658: 657: 652: 647: 642: 637: 632: 627: 622: 617: 612: 607: 602: 597: 592: 587: 582: 577: 572: 567: 562: 557: 552: 547: 542: 537: 532: 527: 522: 517: 512: 507: 502: 497: 492: 487: 482: 477: 472: 467: 462: 457: 451: 450: 447: 446: 443: 442: 438: 437: 432: 430:Liquid crystal 427: 422: 417: 411: 410: 405: 404: 401: 400: 396: 395: 390: 385: 380: 371: 366: 360: 359: 356:Quasiparticles 354: 353: 350: 349: 345: 344: 339: 330: 321: 315:Superdiamagnet 312: 306: 305: 302: 301: 298: 297: 293: 292: 287: 282: 276: 275: 272: 271: 268: 267: 263: 262: 257: 252: 247: 242: 240:Thermoelectric 237: 235:Superconductor 232: 227: 222: 217: 215:Mott insulator 212: 207: 202: 196: 195: 192: 191: 188: 187: 183: 182: 177: 172: 166: 165: 162: 161: 158: 157: 153: 152: 147: 142: 137: 132: 127: 122: 117: 112: 107: 102: 97: 92: 86: 85: 80: 79: 76: 75: 73: 72: 67: 62: 56: 53: 52: 44: 43: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 4610: 4599: 4596: 4594: 4591: 4590: 4588: 4573: 4570: 4568: 4565: 4563: 4560: 4558: 4555: 4553: 4550: 4549: 4547: 4543: 4537: 4534: 4532: 4531:Ocean physics 4529: 4527: 4524: 4522: 4519: 4517: 4514: 4512: 4509: 4507: 4504: 4502: 4499: 4497: 4494: 4492: 4489: 4488: 4486: 4484: 4480: 4474: 4471: 4467: 4466:Modern optics 4464: 4462: 4459: 4457: 4454: 4453: 4452: 4449: 4447: 4444: 4442: 4439: 4437: 4434: 4430: 4427: 4425: 4422: 4421: 4420: 4417: 4416: 4414: 4412: 4408: 4400: 4397: 4395: 4392: 4391: 4390: 4387: 4383: 4380: 4378: 4375: 4374: 4373: 4370: 4368: 4365: 4363: 4360: 4356: 4353: 4351: 4348: 4346: 4343: 4341: 4338: 4337: 4336: 4333: 4332: 4330: 4328: 4324: 4316: 4315:Computational 4313: 4312: 4311: 4308: 4306: 4303: 4302: 4300: 4296: 4288: 4285: 4284: 4283: 4280: 4278: 4275: 4274: 4272: 4268: 4264: 4256: 4251: 4249: 4244: 4242: 4237: 4236: 4233: 4227: 4224: 4221: 4218: 4215: 4212: 4209: 4206: 4204: 4201: 4199: 4196: 4193: 4190: 4188: 4185: 4183: 4180: 4179: 4178: 4176: 4171: 4163: 4158: 4154: 4151: 4148: 4145:S. A. Safran, 4144: 4141: 4137: 4134: 4133:3-540-66701-6 4130: 4126: 4122: 4119: 4115: 4112: 4108: 4104: 4100: 4097: 4093: 4090: 4086: 4083: 4079: 4076: 4073: 4069: 4066: 4062: 4059: 4055: 4054: 4046: 4040: 4032: 4028: 4024: 4018: 4014: 4013: 4006: 4003: 3998: 3994: 3989: 3984: 3980: 3976: 3971: 3966: 3962: 3958: 3954: 3947: 3944: 3939: 3935: 3931: 3927: 3923: 3919: 3915: 3911: 3907: 3903: 3899: 3892: 3889: 3884: 3880: 3875: 3870: 3866: 3862: 3858: 3854: 3850: 3846: 3842: 3835: 3832: 3827: 3823: 3819: 3815: 3811: 3807: 3802: 3797: 3793: 3789: 3785: 3778: 3775: 3772: 3768: 3764: 3761: 3755: 3752: 3747: 3743: 3739: 3735: 3730: 3725: 3721: 3717: 3713: 3706: 3703: 3698: 3694: 3690: 3686: 3682: 3675: 3672: 3667: 3663: 3658: 3653: 3649: 3645: 3641: 3637: 3633: 3629: 3625: 3621: 3617: 3610: 3608: 3606: 3602: 3597: 3593: 3589: 3585: 3581: 3577: 3572: 3567: 3563: 3559: 3555: 3548: 3546: 3542: 3537: 3533: 3529: 3525: 3521: 3517: 3513: 3509: 3505: 3498: 3496: 3494: 3490: 3485: 3481: 3477: 3473: 3468: 3463: 3459: 3455: 3451: 3444: 3441: 3436: 3432: 3428: 3424: 3420: 3416: 3412: 3408: 3404: 3397: 3394: 3389: 3385: 3381: 3377: 3373: 3369: 3364: 3359: 3355: 3351: 3347: 3340: 3337: 3332: 3328: 3324: 3320: 3316: 3312: 3308: 3301: 3299: 3295: 3290: 3286: 3282: 3278: 3274: 3270: 3266: 3259: 3256: 3251: 3247: 3243: 3239: 3235: 3231: 3227: 3223: 3219: 3212: 3210: 3206: 3201: 3197: 3192: 3187: 3183: 3179: 3175: 3171: 3167: 3160: 3157: 3152: 3148: 3143: 3138: 3134: 3130: 3125: 3120: 3116: 3112: 3108: 3101: 3099: 3095: 3090: 3086: 3081: 3076: 3072: 3068: 3063: 3058: 3054: 3050: 3049:Micromachines 3046: 3039: 3037: 3033: 3028: 3024: 3020: 3016: 3012: 3008: 3004: 2997: 2994: 2989: 2985: 2980: 2975: 2971: 2967: 2962: 2957: 2953: 2949: 2945: 2941: 2934: 2931: 2926: 2922: 2918: 2914: 2910: 2906: 2902: 2898: 2894: 2890: 2885: 2880: 2876: 2872: 2868: 2861: 2858: 2853: 2849: 2845: 2841: 2837: 2833: 2829: 2822: 2820: 2816: 2811: 2807: 2803: 2799: 2795: 2791: 2787: 2783: 2779: 2775: 2771: 2767: 2763: 2756: 2753: 2748: 2744: 2739: 2734: 2730: 2726: 2722: 2718: 2714: 2710: 2706: 2702: 2698: 2691: 2688: 2683: 2679: 2674: 2669: 2665: 2661: 2657: 2650: 2648: 2644: 2639: 2633: 2625: 2621: 2617: 2611: 2607: 2606: 2598: 2596: 2594: 2592: 2588: 2583: 2579: 2575: 2571: 2567: 2563: 2559: 2555: 2551: 2544: 2542: 2540: 2538: 2534: 2529: 2525: 2520: 2515: 2511: 2507: 2504:(2): 025002. 2503: 2499: 2495: 2488: 2486: 2484: 2480: 2475: 2471: 2467: 2465:0-19-850590-6 2461: 2457: 2456: 2448: 2446: 2444: 2442: 2438: 2428: 2422: 2418: 2414: 2410: 2406: 2399: 2397: 2393: 2388: 2384: 2379: 2374: 2370: 2366: 2362: 2358: 2354: 2347: 2345: 2341: 2336: 2332: 2328: 2324: 2320: 2316: 2312: 2305: 2302: 2297: 2293: 2289: 2285: 2280: 2275: 2271: 2267: 2263: 2256: 2254: 2250: 2245: 2241: 2237: 2233: 2229: 2225: 2221: 2217: 2213: 2209: 2205: 2198: 2195: 2190: 2186: 2180: 2172: 2168: 2164: 2158: 2154: 2153: 2146: 2143: 2139: 2133: 2130: 2125: 2121: 2117: 2113: 2109: 2105: 2101: 2094: 2091: 2088: 2082: 2079: 2074: 2070: 2066: 2060: 2056: 2052: 2048: 2047: 2039: 2037: 2033: 2028: 2024: 2020: 2016: 2012: 2008: 2004: 2000: 1996: 1989: 1986: 1981: 1977: 1973: 1969: 1965: 1961: 1957: 1954:(in German). 1953: 1949: 1942: 1939: 1934: 1930: 1926: 1920: 1916: 1915: 1907: 1904: 1899: 1895: 1890: 1885: 1881: 1877: 1873: 1866: 1863: 1857: 1852: 1848: 1844: 1840: 1837:(in German). 1836: 1832: 1825: 1822: 1819: 1813: 1810: 1805: 1801: 1797: 1793: 1789: 1785: 1781: 1777: 1773: 1769: 1765: 1759: 1756: 1751: 1747: 1743: 1739: 1735: 1731: 1727: 1723: 1719: 1712: 1709: 1704: 1698: 1694: 1690: 1686: 1685: 1677: 1675: 1671: 1664: 1659: 1656: 1654: 1653:Active matter 1651: 1649: 1646: 1644: 1641: 1639: 1636: 1634: 1631: 1629: 1626: 1624: 1621: 1619: 1616: 1614: 1611: 1609: 1606: 1604: 1601: 1599: 1596: 1594: 1591: 1589: 1586: 1584: 1581: 1579: 1576: 1575: 1570: 1568: 1566: 1562: 1558: 1553: 1551: 1547: 1543: 1539: 1535: 1531: 1527: 1522: 1520: 1516: 1512: 1511:soft robotics 1508: 1504: 1500: 1496: 1492: 1487: 1485: 1481: 1477: 1473: 1469: 1465: 1456: 1454: 1452: 1448: 1444: 1440: 1436: 1432: 1428: 1423: 1415: 1413: 1411: 1406: 1405:Computational 1401: 1394:Computational 1393: 1391: 1389: 1385: 1381: 1380:crystallinity 1377: 1373: 1369: 1365: 1361: 1357: 1352: 1344: 1342: 1340: 1336: 1332: 1323: 1321: 1319: 1315: 1311: 1307: 1301: 1293: 1291: 1289: 1285: 1281: 1275: 1267: 1265: 1260: 1252: 1250: 1248: 1244: 1240: 1236: 1232: 1226: 1218: 1216: 1214: 1210: 1206: 1202: 1198: 1192: 1184: 1182: 1180: 1176: 1175:drug delivery 1172: 1168: 1161: 1153: 1151: 1143: 1136: 1132: 1127: 1120: 1116: 1111: 1104: 1102: 1100: 1096: 1092: 1088: 1084: 1080: 1076: 1072: 1068: 1063: 1061: 1057: 1051: 1049: 1045: 1041: 1037: 1032: 1029: 1024: 1020: 1017: 1012: 1010: 1006: 1002: 998: 993: 990: 986: 981: 980:self-organize 977: 973: 964: 957: 955: 953: 949: 945: 941: 940:phase changes 937: 933: 929: 925: 921: 916: 914: 910: 906: 905:Drahoslav Lím 902: 897: 895: 891: 890:macromolecule 887: 883: 879: 874: 872: 868: 863: 861: 860: 855: 851: 847: 843: 835: 833: 831: 827: 823: 819: 815: 811: 809: 805: 801: 798:(of order of 797: 794: 790: 786: 782: 778: 774: 770: 766: 762: 758: 754: 750: 745: 743: 739: 736:is a type of 735: 731: 720: 715: 713: 708: 706: 701: 700: 698: 697: 691: 681: 678: 673: 667: 666: 665: 664: 656: 653: 651: 648: 646: 643: 641: 638: 636: 633: 631: 628: 626: 623: 621: 618: 616: 613: 611: 608: 606: 603: 601: 598: 596: 593: 591: 588: 586: 583: 581: 578: 576: 573: 571: 568: 566: 563: 561: 558: 556: 553: 551: 548: 546: 543: 541: 538: 536: 533: 531: 528: 526: 523: 521: 518: 516: 513: 511: 508: 506: 503: 501: 498: 496: 493: 491: 488: 486: 483: 481: 478: 476: 473: 471: 468: 466: 463: 461: 458: 456: 455:Van der Waals 453: 452: 445: 444: 436: 433: 431: 428: 426: 423: 421: 418: 416: 413: 412: 408: 403: 402: 394: 391: 389: 386: 384: 381: 379: 375: 372: 370: 367: 365: 362: 361: 357: 352: 351: 343: 340: 338: 334: 331: 329: 325: 322: 320: 316: 313: 311: 308: 307: 300: 299: 291: 288: 286: 283: 281: 278: 277: 270: 269: 261: 258: 256: 253: 251: 250:Ferroelectric 248: 246: 245:Piezoelectric 243: 241: 238: 236: 233: 231: 228: 226: 223: 221: 220:Semiconductor 218: 216: 213: 211: 208: 206: 203: 201: 198: 197: 190: 189: 181: 178: 176: 173: 171: 168: 167: 160: 159: 151: 148: 146: 143: 141: 140:Superfluidity 138: 136: 133: 131: 128: 126: 123: 121: 118: 116: 113: 111: 108: 106: 103: 101: 98: 96: 93: 91: 88: 87: 83: 78: 77: 71: 68: 66: 63: 61: 58: 57: 55: 54: 50: 46: 45: 42: 38: 33: 19: 4491:Astrophysics 4305:Experimental 4167: 4155:Gang, Oleg, 4146: 4139: 4124: 4117: 4102: 4095: 4088: 4081: 4071: 4064: 4057: 4011: 4005: 3960: 3956: 3946: 3905: 3901: 3891: 3848: 3844: 3834: 3791: 3787: 3777: 3762: 3759: 3754: 3719: 3715: 3705: 3688: 3684: 3674: 3623: 3619: 3561: 3557: 3511: 3507: 3457: 3453: 3443: 3410: 3406: 3396: 3353: 3349: 3339: 3314: 3310: 3272: 3268: 3258: 3225: 3221: 3173: 3169: 3159: 3114: 3110: 3052: 3048: 3010: 3006: 2996: 2951: 2947: 2933: 2877:(1): 82–93. 2874: 2870: 2860: 2835: 2831: 2769: 2765: 2755: 2704: 2700: 2690: 2663: 2659: 2604: 2557: 2553: 2501: 2497: 2454: 2430:, retrieved 2408: 2360: 2356: 2318: 2314: 2304: 2269: 2265: 2211: 2207: 2197: 2151: 2145: 2132: 2107: 2103: 2093: 2081: 2045: 2002: 1998: 1988: 1955: 1951: 1941: 1913: 1906: 1879: 1875: 1865: 1838: 1834: 1824: 1812: 1771: 1767: 1758: 1725: 1721: 1711: 1683: 1583:Biomaterials 1561:cell biology 1554: 1523: 1495:latex gloves 1488: 1468:cholesterols 1460: 1457:Applications 1425: 1403: 1354: 1327: 1306:phospholipid 1303: 1277: 1262: 1243:shape-memory 1239:cross-linked 1228: 1194: 1163: 1148: 1064: 1052: 1033: 1013: 994: 969: 924:universality 917: 913:contact lens 898: 875: 871:Otto Lehmann 864: 857: 839: 812: 802:), and that 785:biomaterials 746: 733: 729: 728: 585:von Klitzing 406: 290:Kondo effect 150:Time crystal 130:Fermi liquid 4593:Soft matter 4394:Statistical 4310:Theoretical 4287:Engineering 4175:Soft matter 4140:Soft Matter 4056:I. Hamley, 3963:(7): 3790. 3760:Adv. Mater. 3626:(1): 4315. 2871:Soft Matter 2272:: 143–158. 1768:Soft Matter 1648:Surfactants 1507:3D printing 1447:temperature 1410:informatics 1056:free energy 1044:equilibrium 952:Ising model 899:The use of 730:Soft matter 407:Soft matter 328:Ferromagnet 4587:Categories 4511:Geophysics 4501:Biophysics 4345:Analytical 4298:Approaches 4087:M. Mitov, 3571:1505.05214 3275:: 122430. 3117:(6): 953. 2884:1909.11961 2624:1011990362 2432:2023-02-13 2171:1050163199 1933:1202271044 1882:: 811842. 1728:(4): 469. 1665:References 1557:biophysics 1550:biosensors 1534:insulation 1433:(TEM) and 1422:Microscopy 1416:Microscopy 1356:Scattering 1351:Scattering 1345:Scattering 1264:observed. 1235:covalently 1205:insulation 1119:biopolymer 1067:elasticity 1048:metastable 948:relaxation 936:mesoscopic 550:Louis Néel 540:Schrieffer 448:Scientists 342:Spin glass 337:Metamagnet 319:Paramagnet 135:Supersolid 4461:Molecular 4362:Acoustics 4355:Continuum 4350:Celestial 4340:Newtonian 4327:Classical 4270:Divisions 4208:SklogWiki 4192:Softbites 4078:M. Kleman 4039:cite book 4031:872654628 3979:1422-0067 3938:232044197 3930:2058-8437 3865:0743-7463 3826:220519766 3810:1460-4744 3765:2001582. 3746:139778116 3738:2513-0390 3648:2041-1723 3564:: 22–31. 3528:1936-122X 3484:125652009 3476:0267-8292 3427:0009-2665 3372:0036-8075 3289:201216064 3242:0001-4842 3133:2073-4360 3071:2072-666X 3055:(1): 83. 2970:1422-0067 2925:202889185 2909:1744-683X 2852:237139764 2794:0036-8075 2729:2055-7434 2707:(1): 95. 2632:cite book 2582:1947-5454 2528:0034-6861 2387:2296-424X 2296:127231807 2288:0080-4606 2236:0028-0836 2179:cite book 2124:0365-9488 2073:239330818 2019:2196-7156 1972:0026-9247 1898:2813-0499 1796:1744-683X 1742:2041-6520 1658:Roughness 1493:found in 1388:isotropic 1384:diffusion 1378:, shape, 1079:nonlinear 1016:turbulent 1005:molecules 976:molecular 944:reptation 932:structure 928:chemistry 876:In 1920, 850:suspended 650:Wetterich 630:Abrikosov 545:Josephson 515:Van Vleck 505:Luttinger 378:Polariton 310:Diamagnet 230:Conductor 225:Semimetal 210:Insulator 125:Fermi gas 3997:35409150 3883:23347378 3845:Langmuir 3818:32662499 3666:32887886 3596:13969559 3588:26236019 3536:28532212 3435:34941251 3380:26315444 3331:17516592 3250:24937365 3200:25750745 3151:31159423 3111:Polymers 3089:31940876 3027:12707884 2988:23429269 2917:31720666 2810:40684317 2802:11923529 2747:34858630 2682:28245083 2474:48753186 2027:92908969 1980:97166902 1804:32521835 1750:96957407 1633:Polymers 1588:Colloids 1571:See also 1546:shampoos 1538:cushions 1337:, while 1318:membrane 1253:Colloids 1209:textiles 1154:Polymers 1131:oligomer 1091:Rheology 1083:deformed 1040:dynamics 1019:vortices 901:hydrogel 844:work on 830:polymers 761:polymers 757:colloids 690:Category 635:Ginzburg 610:Laughlin 570:Kadanoff 525:Shockley 510:Anderson 465:von Laue 115:Bose gas 4545:Related 4429:General 4424:Special 4282:Applied 3988:8998766 3910:Bibcode 3874:3711186 3685:Polymer 3657:7473851 3628:Bibcode 3388:5727282 3350:Science 3191:4348459 3142:6631771 3080:7019871 2979:3588097 2889:Bibcode 2774:Bibcode 2766:Science 2738:8611050 2709:Bibcode 2562:Bibcode 2506:Bibcode 2365:Bibcode 2323:Bibcode 2244:4211987 2216:Bibcode 1843:Bibcode 1776:Bibcode 1618:Liquids 1497:to the 1310:bilayer 1290:(LCD). 1259:Colloid 1231:soluble 1169:, from 1160:Polymer 1085:before 1071:viscous 836:History 808:quantum 804:entropy 753:liquids 640:Leggett 615:Störmer 600:Bednorz 560:Giaever 530:Bardeen 520:Hubbard 495:Peierls 485:Onsager 435:Polymer 420:Colloid 383:Polaron 374:Plasmon 369:Exciton 4456:Atomic 4411:Modern 4261:Major 4131:  4109:  4029:  4019:  3995:  3985:  3977:  3936:  3928:  3881:  3871:  3863:  3824:  3816:  3808:  3744:  3736:  3664:  3654:  3646:  3594:  3586:  3534:  3526:  3482:  3474:  3433:  3425:  3386:  3378:  3370:  3329:  3287:  3248:  3240:  3198:  3188:  3149:  3139:  3131:  3087:  3077:  3069:  3025:  2986:  2976:  2968:  2923:  2915:  2907:  2850:  2808:  2800:  2792:  2745:  2735:  2727:  2680:  2622:  2612:  2580:  2526:  2472:  2462:  2423:  2385:  2363:: 87. 2294:  2286:  2242:  2234:  2208:Nature 2169:  2159:  2122:  2071:  2061:  2025:  2017:  1978:  1970:  1931:  1921:  1896:  1802:  1794:  1748:  1740:  1699:  1517:, and 1478:, and 1370:, and 1095:stress 1023:liquid 972:atomic 789:energy 738:matter 688:  655:Perdew 645:Parisi 605:Müller 595:Rohrer 590:Binnig 580:Wilson 575:Fisher 535:Cooper 500:Landau 388:Magnon 364:Phonon 205:Plasma 105:Plasma 95:Liquid 60:Phases 3934:S2CID 3822:S2CID 3742:S2CID 3592:S2CID 3566:arXiv 3480:S2CID 3384:S2CID 3285:S2CID 2921:S2CID 2879:arXiv 2848:S2CID 2806:S2CID 2292:S2CID 2240:S2CID 2069:S2CID 2023:S2CID 1976:S2CID 1746:S2CID 1598:Foams 1565:blood 1331:X-ray 1247:guest 1185:Foams 1075:shear 1001:atoms 854:fluid 852:in a 781:flesh 765:foams 555:Esaki 480:Bloch 475:Debye 470:Bragg 460:Onnes 393:Roton 90:Solid 4382:Wave 4277:Pure 4129:ISBN 4107:ISBN 4045:link 4027:OCLC 4017:ISBN 3993:PMID 3975:ISSN 3926:ISSN 3879:PMID 3861:ISSN 3814:PMID 3806:ISSN 3734:ISSN 3662:PMID 3644:ISSN 3584:PMID 3532:PMID 3524:ISSN 3472:ISSN 3431:PMID 3423:ISSN 3376:PMID 3368:ISSN 3327:PMID 3246:PMID 3238:ISSN 3196:PMID 3147:PMID 3129:ISSN 3085:PMID 3067:ISSN 3023:PMID 2984:PMID 2966:ISSN 2913:PMID 2905:ISSN 2832:Chem 2798:PMID 2790:ISSN 2743:PMID 2725:ISSN 2678:PMID 2638:link 2620:OCLC 2610:ISBN 2578:ISSN 2524:ISSN 2470:OCLC 2460:ISBN 2421:ISBN 2383:ISSN 2284:ISSN 2232:ISSN 2189:link 2185:link 2167:OCLC 2157:ISBN 2120:ISSN 2059:ISBN 2015:ISSN 1968:ISSN 1929:OCLC 1919:ISBN 1894:ISSN 1800:PMID 1792:ISSN 1738:ISSN 1697:ISBN 1608:Gels 1382:and 1333:and 1280:flow 1219:Gels 1207:and 1191:Foam 1173:and 1069:and 1028:foam 1003:and 907:and 828:and 769:gels 625:Tsui 620:Yang 565:Kohn 490:Mott 4377:Ray 3983:PMC 3965:doi 3918:doi 3869:PMC 3853:doi 3796:doi 3767:doi 3763:32, 3724:doi 3693:doi 3652:PMC 3636:doi 3576:doi 3562:137 3516:doi 3462:doi 3415:doi 3411:122 3358:doi 3354:349 3319:doi 3277:doi 3273:379 3230:doi 3186:PMC 3178:doi 3137:PMC 3119:doi 3075:PMC 3057:doi 3015:doi 2974:PMC 2956:doi 2897:doi 2840:doi 2782:doi 2770:295 2733:PMC 2717:doi 2668:doi 2570:doi 2514:doi 2413:doi 2373:doi 2331:doi 2274:doi 2224:doi 2212:185 2112:doi 2051:doi 2007:doi 1960:doi 1884:doi 1851:doi 1839:322 1784:doi 1730:doi 1689:doi 1544:as 1536:or 1449:or 1225:Gel 1197:gas 1177:to 1062:. 1046:in 974:or 732:or 180:QCP 100:Gas 70:QCP 4589:: 4041:}} 4037:{{ 4025:. 3991:. 3981:. 3973:. 3961:23 3959:. 3955:. 3932:. 3924:. 3916:. 3904:. 3900:. 3877:. 3867:. 3859:. 3849:29 3847:. 3843:. 3820:. 3812:. 3804:. 3792:49 3790:. 3786:. 3740:. 3732:. 3718:. 3714:. 3689:31 3687:. 3683:. 3660:. 3650:. 3642:. 3634:. 3624:11 3622:. 3618:. 3604:^ 3590:. 3582:. 3574:. 3560:. 3556:. 3544:^ 3530:. 3522:. 3512:46 3510:. 3506:. 3492:^ 3478:. 3470:. 3458:45 3456:. 3452:. 3429:. 3421:. 3409:. 3405:. 3382:. 3374:. 3366:. 3352:. 3348:. 3325:. 3315:46 3313:. 3309:. 3297:^ 3283:. 3271:. 3267:. 3244:. 3236:. 3226:47 3224:. 3220:. 3208:^ 3194:. 3184:. 3172:. 3168:. 3145:. 3135:. 3127:. 3115:11 3113:. 3109:. 3097:^ 3083:. 3073:. 3065:. 3053:11 3051:. 3047:. 3035:^ 3021:. 3011:42 3009:. 3005:. 2982:. 2972:. 2964:. 2952:14 2950:. 2946:. 2919:. 2911:. 2903:. 2895:. 2887:. 2875:16 2873:. 2869:. 2846:. 2834:. 2830:. 2818:^ 2804:. 2796:. 2788:. 2780:. 2768:. 2764:. 2741:. 2731:. 2723:. 2715:. 2703:. 2699:. 2676:. 2664:56 2662:. 2658:. 2646:^ 2634:}} 2630:{{ 2618:. 2590:^ 2576:. 2568:. 2556:. 2552:. 2536:^ 2522:. 2512:. 2502:89 2500:. 2496:. 2482:^ 2468:. 2440:^ 2419:, 2407:, 2395:^ 2381:. 2371:. 2359:. 2355:. 2343:^ 2329:. 2319:38 2317:. 2313:. 2290:. 2282:. 2270:66 2268:. 2264:. 2252:^ 2238:. 2230:. 2222:. 2210:. 2206:. 2181:}} 2177:{{ 2165:. 2118:. 2108:53 2106:. 2102:. 2067:. 2057:. 2035:^ 2021:. 2013:. 2003:4U 2001:. 1997:. 1974:. 1966:. 1950:. 1927:. 1892:. 1878:. 1874:. 1849:. 1798:. 1790:. 1782:. 1770:. 1766:. 1744:. 1736:. 1724:. 1720:. 1695:. 1673:^ 1567:. 1552:. 1513:, 1482:. 1474:, 1453:. 1366:, 1362:, 1181:. 954:. 915:. 896:. 859:kT 832:. 800:kT 779:, 775:, 771:, 767:, 763:, 759:, 755:, 744:. 4254:e 4247:t 4240:v 4135:. 4113:. 4047:) 4033:. 3999:. 3967:: 3940:. 3920:: 3912:: 3906:6 3885:. 3855:: 3828:. 3798:: 3769:: 3748:. 3726:: 3720:2 3699:. 3695:: 3668:. 3638:: 3630:: 3598:. 3578:: 3568:: 3538:. 3518:: 3486:. 3464:: 3437:. 3417:: 3390:. 3360:: 3333:. 3321:: 3291:. 3279:: 3252:. 3232:: 3202:. 3180:: 3174:6 3153:. 3121:: 3091:. 3059:: 3029:. 3017:: 2990:. 2958:: 2927:. 2899:: 2891:: 2881:: 2854:. 2842:: 2836:7 2812:. 2784:: 2776:: 2749:. 2719:: 2711:: 2705:7 2684:. 2670:: 2640:) 2626:. 2584:. 2572:: 2564:: 2558:1 2530:. 2516:: 2508:: 2476:. 2415:: 2389:. 2375:: 2367:: 2361:6 2337:. 2333:: 2325:: 2298:. 2276:: 2246:. 2226:: 2218:: 2191:) 2173:. 2126:. 2114:: 2075:. 2053:: 2029:. 2009:: 1982:. 1962:: 1956:9 1935:. 1900:. 1886:: 1880:1 1859:. 1853:: 1845:: 1806:. 1786:: 1778:: 1772:1 1752:. 1732:: 1726:1 1705:. 1691:: 1121:. 718:e 711:t 704:v 34:. 20:)

Index

Soft condensed matter
Soft Matter (journal)
Condensed matter physics

Phases
Phase transition
QCP
States of matter
Solid
Liquid
Gas
Plasma
Bose–Einstein condensate
Bose gas
Fermionic condensate
Fermi gas
Fermi liquid
Supersolid
Superfluidity
Luttinger liquid
Time crystal
Order parameter
Phase transition
QCP
Electronic band structure
Plasma
Insulator
Mott insulator
Semiconductor
Semimetal

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.