Knowledge (XXG)

Solar reforming

Source 📝

1475:
stream, viable pre-treatment methods, target products, nature of the catalysts and their lifetime, fuel/chemical storage requirements, land use versus open water sources, capital and operational costs, production and solar-to-value creation rates, and governmental policies and incentives, among others. Solar reforming may not be only limited to the conventional chemical pathways discussed, and may also include other relevant industrial processes such as light-driven organic transformations, flow photochemistry, integration with industrial electrolysis, among others. The products from conventional solar reforming such as
481:(IR) region for waste upcycling to generate products of high economic value. An important aspect of solar reforming is value creation, which means that the overall value creation from product formation must be greater than substrate value destruction. In terms of deployment architectures, solar catalytic reforming can be further categorized into: photocatalytic reforming (PC reforming), photoelectrochemical reforming (PEC reforming) and photovoltaic-electrochemical reforming (PV-EC reforming). 863: 1387:
driven by sunlight). PEC reforming can already produce clean fuels and valuable chemicals with high selectivity and achieve production rates which are 2-4 orders of magnitude higher than conventional PC processes. The spatial separation between the redox processes offered by PEC systems allows flexibility in the screening and integration of light-absorbers and catalysts, and also better product separation. They can also benefit from better spectral utilization such as using
631: 1406:) reactions for waste reforming. The concept of PV-EC reforming can be further extended to 'electroreforming' where renewable electricity from sources other than the sun (for example, wind, hydro, nuclear, among others) is used to power the electrochemical reactions achieving valuable fuel and chemical production from waste feedstocks. While traditionally most electrolysers, including commercial ones focus on 1349: 326:, accounting for more than 80% of the operation costs. This was circumvented with the introduction of a new chemoenzymatic reforming pathway in 2023 by Bhattacharjee, Guo, Reisner and Hollfelder, which employed near-neutral pH, moderate temperatures for pre-treating plastics and nanoplastics. In 2020, Jiao and Xie reported the photocatalytic conversion of addition plastics such as 25: 127: 66: 858:{\displaystyle \eta _{\mathrm {STF} }={\frac {\mathrm {r} _{\mathrm {SR} }\left(\mathrm {mol} \cdot \mathrm {s} ^{-1}\right)\times \Delta \mathrm {G} _{\mathrm {SR} }\left(\mathrm {J} \cdot \mathrm {mol} ^{-1}\right)}{\mathrm {P} _{\text{total }}\left(\mathrm {W} \cdot \mathrm {m} ^{-2}\right)\times \mathrm {A} \left(\mathrm {m} ^{2}\right)}}} 212:, etc.) into sustainable fuels (or energy vectors) and value-added chemicals. It encompasses a set of technologies (and processes) operating under ambient and aqueous conditions, utilizing solar spectrum to generate maximum value. Solar reforming offers an attractive and unifying solution to address the contemporary challenges of 1371:) to catalyze redox reactions (UV or near-UV based photoreforming systems generally also come under PC reforming). Despite the low cost and simplicity of PC reforming, there are major drawbacks of this approach which includes low product formation rates, poor selectivity of oxidation products or overoxidation to release CO 992: 1056: 586:(from traditional water splitting), that otherwise require additional separation costs. The added economic advantage of forming two different valuable products (for example, gaseous reductive fuels and liquid oxidative chemicals) simultaneously makes solar reforming suitable for commercial applications. 1419:
An important concept introduced in the context of solar reforming is the 'photon economy', which, as defined by Bhattacharjee, Linley and Reisner, is the maximum utilization of all incident photons for maximizing product formation and value creation. An ideal solar reforming process is one where the
1386:
layers to facilitate the redox processes. While conventional PEC systems typically require a bias or voltage input in addition to the energy obtained from incident light irradiation, PEC reforming ideally operates with a single light absorber without any external bias or voltage (that is, completely
1474:
Solar reforming is currently in the development phase and the scalable deployment of a particular solar reforming technology (PC, PEC or PV-EC) would depend on a variety of factors. These factors include deployment location and sunlight variability/intermittency, characteristics of the chosen waste
1000:
is a more consistent metric for solar reforming, it neglects some key parameters such as type of waste utilized, pre-treatment costs, product value, scaling, other process and separation costs, deployment variables, etc. Therefore, a more adaptable and robust metric is the solar-to-value creation
1461:
and waste plastics to sustainable products received widespread acclaim and was highlighted in several prominent national and international media outlets. Solar reforming processes primarily developed in Cambridge were also selected as "one of the eleven great ideas from British universities that
1358:
Solar reforming depends on the properties of the light absorber and the catalysts involved, and their selection, screening and integration to generate maximum value. The design and deployment of solar reforming technologies dictates the efficiency, scale and target substrates/products. In this
1456:
on PC reforming of raw lignocellulosic biomass or pre-treated polyester plastics to produce hydrogen and organics attracted attention of several stakeholders. The recent technological breakthrough leading to the development of high-performing solar powered reactors (PEC reforming) for the
530:, ΔG° = 237 kJ mol). It offers a thermodynamic advantage over water splitting by circumventing the energetically and kinetically demanding water oxidation half reaction (E = +1.23 V vs. reversible hydrogen electrode (RHE)) by energetically neutral oxidation of waste-derived organics (C 460:
splitting, respectively. Depending on solar spectrum utilization, solar reforming can be classified into two categories: "solar catalytic reforming" and "solar thermal reforming". Solar catalytic reforming refers to transformation processes primarily driven by
443:
article where they conceptualized and formalized the field by introducing its concepts, classification, configurations and metrics. It generally operates without external heating and pressure, and also introduces a thermodynamic advantage over traditional
1344:{\displaystyle r_{\mathrm {STV} }={\frac {{\textstyle \sum _{i=1}^{M}\displaystyle C_{i}(\$ mol^{-1})\times n_{i}(mol)}-{\textstyle \sum _{k=1}^{N}\displaystyle {\bigl (}C_{k}+C_{p}{\bigr )}(\$ mol^{-1})\times n_{k}(mol)}}{A(m^{2})\times t(h)}}{}} 424:
and biomass-derived sugars. These developments has led solar reforming (and electroreforming, where renewable electricity drives redox processes; see Caterogization and configurations section) to gradually emerge as an active area of exploration.
884: 3660: 438:
Solar reforming is the sunlight-driven transformation of waste substrates to valuable products (such as sustainable fuels and chemicals) as defined by scientists Subhajit Bhattacharjee, Stuart Linley and Erwin Reisner in their 2024
2646:
Choi, Yuri; Mehrotra, Rashmi; Lee, Sang-Hak; Nguyen, Trang Vu Thien; Lee, Inhui; Kim, Jiyeong; Yang, Hwa-Young; Oh, Hyeonmyeong; Kim, Hyunwoo; Lee, Jae-Won; Kim, Yong Hwan; Jang, Sung-Yeon; Jang, Ji-Wook; Ryu, Jungki (2022-10-03).
2390:
Bhattacharjee, Subhajit; Guo, Chengzhi; Lam, Erwin; Holstein, Josephin M.; Rangel Pereira, Mariana; Pichler, Christian M.; Pornrungroj, Chanon; Rahaman, Motiar; Uekert, Taylor; Hollfelder, Florian; Reisner, Erwin (2023-09-20).
1050:
are amounts (in moles) of the product 'i' formed and substrate 'k' consumed during solar reforming, respectively. Note that the metric is adaptable and can be expanded to include other relevant parameters as applicable.
489:
Solar reforming offers several advantages over conventional methods of waste management or fuel/chemical production. It offers a less energy-intensive and low carbon alterative to methods of waste reforming such as
380:, and achieving areal production rates 100-10000 times higher than conventional photocatalytic processes. In 2023, Bhattacharjee, Rahaman and Reisner extended the PEC platform to a solar reactor which could reduce 3886: 2704:
Pan, Yuyang; Zhang, Huiyan; Zhang, Bowen; Gong, Feng; Feng, Jianyong; Huang, Huiting; Vanka, Srinivas; Fan, Ronglei; Cao, Qi; Shen, Mingrong; Li, Zhaosheng; Zou, Zhigang; Xiao, Rui; Chu, Sheng (2023-02-23).
578:; ΔG° ~0 kJ mol). This results in better performance in terms of higher production rates, and also translates to other similar processes which depend on water oxidation as the counter reaction such as CO 321:
were reported during this period. A major limitation of PC reforming is the use of conventional harsh alkaline pre-treatment conditions (pH >13 and high temperatures) for polymeric substrates such as
304:
based systems) for biomass and plastics photoreforming to hydrogen and organics by Kasap, Uekert and Reisner. In addition to variations of carbon nitride, other photocatalyst composite systems based on
1378:
Photoelectrochemical (PEC) reforming - PEC reforming involves the use of PEC systems/assemblies which consist of separated (photo)electrodes generally connected using a wire and submerged in solution (
1395:
to harvest heat, thereby improving reaction kinetics and performance. The versatility and high performance of these new PEC arrangements, therefore has wide scope of further exploitation and research.
420:-medated PEC process to achieve biomass conversion with unassisted hydrogen production in 2022. Similarly, Pan and Chu, in 2023 reported a PEC cell for renewable formate production from sunlight, CO 3706: 3753: 3295:
Pichler, Christian M.; Bhattacharjee, Subhajit; Lam, Erwin; Su, Lin; Collauto, Alberto; Roessler, Maxie M.; Cobb, Samuel J.; Badiani, Vivek M.; Rahaman, Motiar; Reisner, Erwin (2022-11-04).
1479:
or other platform chemicals have a broad value-chain. It is also now understood that sustainable fuel/chemical producing technologies of the future will rely on biomass, plastics and CO
3731: 1440:, etc.). Therefore, proper light and thermal management through various means (such as using solar concentrators, thermoelectric modules, among others) is encouraged to have both an 356:
section below) offers a simple, one-pot and facile deployment scope, but has several major limitations, making it challenging for commercial implementation. In 2021, sunlight-driven
1410:
to produce hydrogen, new electrochemical systems, catalysts and concepts have emerged which have started to look into waste substrates for utilisation as sustainable feedstocks.
987:{\displaystyle \mathrm {r} _{\text{areal}}={\frac {\mathrm {n} _{\text{product}}(\mathrm {mol} )}{\mathrm {A} \left(\mathrm {m} ^{2}\right)\times \mathrm {t} (\mathrm {h} )}}} 610:
can be adopted as a metric for solar reforming but with certain considerations. Since the ΔG values for solar reforming processes are very low (ΔG ~0 kJ mol), this makes the η
3827: 3512: 1970:
Wu, Xinxing; Zhao, Heng; Khan, Mohd Adnan; Maity, Partha; Al-Attas, Tareq; Larter, Stephen; Yong, Qiang; Mohammed, Omar F.; Kibria, Md Golam; Hu, Jinguang (2020-10-19).
594:
Solar reforming encompasses a range of technological processes and configurations and therefore, suitable performance metrics can evaluate the commercial viability. In
2560:
Bhattacharjee, Subhajit; Rahaman, Motiar; Andrei, Virgil; Miller, Melanie; Rodríguez-Jiménez, Santiago; Lam, Erwin; Pornrungroj, Chanon; Reisner, Erwin (2023-01-09).
1008:) which can encompass all these factors and provide a more holistic and practical picture from the economic or commercial point of view. The simplified equation for 3488: 3238:
Zhao, Hu; Lu, Dan; Wang, Jiarui; Tu, Wenguang; Wu, Dan; Koh, See Wee; Gao, Pingqi; Xu, Zhichuan J.; Deng, Sili; Zhou, Yan; You, Bo; Li, Hong (2021-03-31).
2448:
Jiao, Xingchen; Zheng, Kai; Chen, Qingxia; Li, Xiaodong; Li, Yamin; Shao, Weiwei; Xu, Jiaqi; Zhu, Junfa; Pan, Yang; Sun, Yongfu; Xie, Yi (September 2020).
1519: 1367:
suspensions (or immobilized photocatalysts on sheets or floating materials for easy recovery), which, under sunlight irradiation generate charge carriers (
300:
under alkaline conditions. This was followed by the utilization of less-toxic, carbon-based, visible-light absorbing photocatalyst composites (for example
3561: 1432:, generating high charge carrier concentration to drive redox half reactions at maximum rate. On the other hand, the residual, non-absorbed low-energy 3393: 3352:
Pornrungroj, Chanon; Mohamad Annuar, Ariffin Bin; Wang, Qian; Rahaman, Motiar; Bhattacharjee, Subhajit; Andrei, Virgil; Reisner, Erwin (2023-11-13).
3686: 240:
The earliest sunlight-driven reforming (now referred to as photoreforming or PC reforming which forms a small sub-section of solar reforming; see
209: 3802: 2238:"Highly-efficient visible-light-driven photocatalytic H2 evolution integrated with microplastic degradation over MXene/ZnxCd1-xS photocatalyst" 3635: 498:
which require high energy input. Solar reforming also provides several benefits over traditional green hydrogen production methods such as
137: 148: 2285:"Highly Efficient Hydrogen Production in the Photoreforming of Lignocellulosic Biomass Catalyzed by Cu,In-Doped ZnS Derived from ZIF-8" 1727:"Photocatalytic hydrogen production from water by the decomposition of poly-vinylchloride, protein, algae, dead insects, and excrement" 3966: 184: 166: 108: 52: 2512:
Bhattacharjee, Subhajit; Andrei, Virgil; Pornrungroj, Chanon; Rahaman, Motiar; Pichler, Christian M.; Reisner, Erwin (2021-10-27).
2017:
Rao, Cheng; Xie, Maoliang; Liu, Sicong; Chen, Runlin; Su, Hang; Zhou, Lan; Pang, Yuxia; Lou, Hongming; Qiu, Xueqing (2021-09-22).
3941: 2514:"Reforming of Soluble Biomass and Plastic Derived Waste Using a Bias-Free Cu 30 Pd 70 |Perovskite|Pt Photoelectrochemical Device" 90: 38: 360:(PEC) systems/technologies operating with no external bias or voltage input were introduced by Bhattacharjee and Reisner at the 200:
is the sunlight-driven conversion of diverse carbon waste resources (including solid, liquid, and gaseous waste streams such as
3936: 3777: 3191:
Wang, Jianying; Li, Xin; Wang, Maolin; Zhang, Ting; Chai, Xinyu; Lu, Junlin; Wang, Tianfu; Zhao, Yixin; Ma, Ding (2022-06-03).
3134:
Zhou, Hua; Ren, Yue; Li, Zhenhua; Xu, Ming; Wang, Ye; Ge, Ruixiang; Kong, Xianggui; Zheng, Lirong; Duan, Haohong (2021-08-17).
2136:"Covalent triazine frameworks constructed via benzyl halide monomers showing high photocatalytic activity in biomass reforming" 258: 1398:
PV-EC reforming and extension to 'electroreforming' systems - PV-EC reforming refers to the use of electricity generated from
1764:
Wakerley, David W.; Kuehnel, Moritz F.; Orchard, Katherine L.; Ly, Khoa H.; Rosser, Timothy E.; Reisner, Erwin (2017-03-13).
1452:
The technological advancements in solar reforming garnered widespread interest in recent years. The works from scientists at
2079:"Conversion of Polyethylene Waste into Gaseous Hydrocarbons via Integrated Tandem Chemical–Photo/Electrocatalytic Processes" 3193:"Electrocatalytic Valorization of Poly(ethylene terephthalate) Plastic and CO 2 for Simultaneous Production of Formic Acid" 1462:
could change the world" by Sunday Times (April 2020 edition) and featured in the UK Prime Minister's Speech on Net Zero, "
229: 3754:"Two Indian Scientists On The Importance Of Solving The Biggest Environmental Challenges Through Research And Technology" 1487:. Therefore, with sunlight being abundant and the cheapest source of energy, solar reforming is well-positioned to drive 357: 1436:
photons may be used for boosting reaction kinetics, waste pre-treatment or other means of value creation (for example,
81: 3921: 3536: 1359:
context, solar reforming (more specifically, solar catalytic reforming) can be classified into three architectures:
3961: 3956: 373: 3861: 3707:"BREAKTHROUGH! Indian researchers at Cambridge university offer solution to global warming and plastic pollution" 3354:"Hybrid photothermal–photocatalyst sheets for solar-driven overall water splitting coupled to water purification" 1514: 1504: 595: 2607:
Kar, Sayan; Rahaman, Motiar; Andrei, Virgil; Bhattacharjee, Subhajit; Roy, Souvik; Reisner, Erwin (2023-07-19).
618:. However, replacing the ΔG for product formation (during solar reforming) with that of product utilisation (|ΔG 606:
change during the process, 'A' is the sunlight irradiation area and 'P' is the total light intensity flux. The η
3971: 2649:"Bias-free solar hydrogen production at 19.8 mA cm−2 using perovskite photocathode and lignocellulosic biomass" 1392: 1388: 440: 225: 2831: 2077:
Pichler, Christian M.; Bhattacharjee, Subhajit; Rahaman, Motiar; Uekert, Taylor; Reisner, Erwin (2021-08-06).
1972:"Sunlight-Driven Biomass Photorefinery for Coproduction of Sustainable Hydrogen and Value-Added Biochemicals" 3916: 1453: 369: 361: 286: 278: 3097:"Sustainable solar hydrogen production: from photoelectrochemical cells to PV-electrolyzers and back again" 2450:"Photocatalytic Conversion of Waste Plastics into C 2 Fuels under Simulated Natural Environment Conditions" 473:
in the UV or near-UV region of the solar spectrum (for example, by semiconductor photocatalysts such as TiO
3297:"Bio-Electrocatalytic Conversion of Food Waste to Ethylene via Succinic Acid as the Central Intermediate" 2393:"Chemoenzymatic Photoreforming: A Sustainable Approach for Solar Fuel Generation from Plastic Feedstocks" 2191:"Photocatalytic Cellulose Reforming for H 2 and Formate Production by Using Graphene Oxide-Dot Catalysts" 1466:" (indicating solar reforming which was a major subset of the broader research activities at Cambridge). 3946: 3733:
Video | The Importance Of Solving The Biggest Environmental Challenges Through Research & Technology
2895:"Floating Carbon Nitride Composites for Practical Solar Reforming of Pre-Treated Wastes to Hydrogen Gas" 1544: 1363:
Photocatalytic (PC) reforming - PC reforming is a one-pot process involving homogeneous or heterogenous
141:
that states a Knowledge (XXG) editor's personal feelings or presents an original argument about a topic.
2830:
Uekert, Taylor; Bajada, Mark A.; Schubert, Teresa; Pichler, Christian M.; Reisner, Erwin (2021-10-05).
1813:"Photoreforming of Lignocellulose into H 2 Using Nanoengineered Carbon Nitride under Benign Conditions" 2237: 3931: 2963: 2843: 2718: 2348: 1683: 582:
splitting. Furthermore, concentrated streams of hydrogen produced from solar reforming is safer than
323: 314: 44: 3096: 76: 1368: 265:
in the 1980s reported that the organics derived from different solid waste matter could be used as
3489:"Scientists have found a way to convert plastics and CO2 into sustainable fuels using solar power" 2773:
Andrei, Virgil; Wang, Qian; Uekert, Taylor; Bhattacharjee, Subhajit; Reisner, Erwin (2022-12-06).
3951: 3586: 3220: 3077: 2999:
Kou, Jiahui; Lu, Chunhua; Wang, Jian; Chen, Yukai; Xu, Zhongzi; Varma, Rajender S. (2017-02-08).
2875: 2589: 2485: 2372: 2312: 2218: 2171: 2054: 2019:"Visible Light-Driven Reforming of Lignocellulose into H 2 by Intrinsic Monolayer Carbon Nitride" 1999: 1952: 1848: 1793: 1707: 1652: 1534: 416:) in a PEC reforming process (with simultaneous plastic conversion). Choi and Ryu demonstrated a 413: 318: 3661:"ابتكار نظام ثنائي يعمل بالطاقة الشمسية يحول البلاستيك وغازات الاحتباس الحراري إلى وقود مستدام" 1868:"Photoreforming of Nonrecyclable Plastic Waste over a Carbon Nitride/Nickel Phosphide Catalyst" 257:(generally loaded with a hydrogen evolution co-catalyst such as Pt). Kawai and Sakata from the 3837: 3828:"Reasons to be cheerful: 11 great ideas from British universities that could change the world" 3375: 3334: 3316: 3277: 3259: 3212: 3173: 3155: 3116: 3069: 3030: 3022: 2981: 2932: 2914: 2867: 2859: 2832:"Scalable Photocatalyst Panels for Photoreforming of Plastic, Biomass and Mixed Waste in Flow" 2812: 2794: 2752: 2734: 2686: 2668: 2628: 2581: 2535: 2477: 2469: 2430: 2412: 2364: 2304: 2265: 2257: 2210: 2189:
Nguyen, Van-Can; Nimbalkar, Dipak B.; Nam, Le D.; Lee, Yuh-Lang; Teng, Hsisheng (2021-05-07).
2163: 2155: 2116: 2098: 2046: 2038: 1991: 1944: 1905: 1887: 1840: 1832: 1785: 1746: 1699: 1644: 1636: 603: 339: 3136:"Electrocatalytic upcycling of polyethylene terephthalate to commodity chemicals and H2 fuel" 2449: 2284: 3365: 3324: 3308: 3267: 3251: 3204: 3163: 3147: 3108: 3061: 3012: 2971: 2922: 2906: 2851: 2802: 2786: 2742: 2726: 2707:"Renewable formate from sunlight, biomass and carbon dioxide in a photoelectrochemical cell" 2676: 2660: 2620: 2573: 2525: 2461: 2420: 2404: 2356: 2296: 2249: 2202: 2147: 2106: 2090: 2030: 1983: 1936: 1895: 1879: 1824: 1777: 1738: 1691: 1628: 1529: 1524: 1509: 1492: 1425: 626:
of the hydrogen fuel generated) can give a better representation of the process efficiency.
466: 290: 270: 245: 221: 3926: 1488: 1407: 499: 469:. It also includes the subset of 'photoreforming' encompassing utilization of high energy 453: 417: 389: 224:
of waste upcycling, clean fuel (and chemical) generation and the consequent mitigation of
2236:
Cao, Bingqian; Wan, Shipeng; Wang, Yanan; Guo, Haiwei; Ou, Man; Zhong, Qin (2022-01-01).
1971: 1925:"Polymeric carbon nitride-based photocatalysts for photoreforming of biomass derivatives" 3095:
Jacobsson, T. Jesper; Fjällström, Viktor; Edoff, Marika; Edvinsson, Tomas (2014-06-19).
2967: 2927: 2894: 2847: 2722: 2425: 2392: 2352: 1687: 1444:
and photon economical approach to extract maximum value from solar reforming processes.
3329: 3296: 3272: 3239: 3168: 3135: 2807: 2774: 2747: 2706: 2681: 2648: 2111: 2078: 1900: 1867: 1539: 1476: 1364: 445: 381: 377: 306: 301: 282: 266: 254: 213: 3610: 2335:
Uekert, Taylor; Pichler, Christian M.; Schubert, Teresa; Reisner, Erwin (2020-11-30).
3910: 3513:"Plastic waste and CO2 converted into hydrogen and feedstock chemical using sunlight" 3224: 3081: 3049: 2879: 2593: 2561: 2489: 2376: 2336: 2316: 2222: 2175: 2058: 2003: 1956: 1797: 1656: 1616: 1429: 1399: 1382:). A photoelectrode consists of a light-absorber and additional charge transport and 615: 401: 331: 251: 3192: 2190: 1852: 3587:"Solar-powered system converts plastic and greenhouse gases into sustainable fuels" 3562:"Solar-powered system converts plastic and greenhouse gases into sustainable fuels" 1711: 1441: 1437: 1403: 495: 327: 3778:"Scientists use 'miracle material' to convert plastic waste into sustainable fuel" 3438: 2018: 1987: 1464:
Or the researchers at Cambridge who pioneered a new way to turn sunlight into fuel
871:
collection, a more technologically relevant metric is the areal production rate (r
2790: 2562:"Photoelectrochemical CO2-to-fuel conversion with simultaneous plastic reforming" 1811:
Kasap, Hatice; Achilleos, Demetra S.; Huang, Ailun; Reisner, Erwin (2018-09-19).
867:
Since solar reforming is highly dependent on the light harvester and its area of
3017: 3000: 2624: 1812: 1765: 1484: 1421: 1379: 876: 583: 462: 400:
depending on the type of catalyst integrated) and convert waste PET plastics to
297: 3636:"Converting plastics and greenhouse gases into sustainable energy | Technology" 3370: 3353: 3255: 3151: 3065: 2730: 2664: 2577: 2360: 2253: 1632: 1375:, challenging catalyst/process optimization and harsh pre-treatment conditions. 404:
at the same time. This further inspired the direct capture and conversion of CO
3048:
Wang, Qian; Pornrungroj, Chanon; Linley, Stuart; Reisner, Erwin (2021-11-19).
2609:"Integrated capture and solar-driven utilization of CO2 from flue gas and air" 2608: 1766:"Solar-driven reforming of lignocellulose to H2 with a CdS/CdOx photocatalyst" 1549: 623: 3841: 3462: 3417: 3379: 3320: 3312: 3263: 3216: 3208: 3159: 3120: 3073: 3026: 2985: 2918: 2863: 2798: 2738: 2672: 2632: 2585: 2539: 2473: 2416: 2368: 2308: 2261: 2214: 2206: 2159: 2102: 2094: 2042: 1995: 1948: 1891: 1836: 1789: 1750: 1703: 1640: 879:
of product formed, 'A' is the sunlight irradiation area and 't' is the time.
3832: 1923:
Wang, Jiu; Kumar, Pawan; Zhao, Heng; Kibria, Md Golam; Hu, Jinguang (2021).
1781: 1617:"Solar reforming as an emerging technology for circular chemical industries" 1383: 491: 217: 3803:"In Breakthrough, 2 Indian Scientists Offer Answers To These Global Issues" 3338: 3281: 3177: 3034: 2936: 2910: 2871: 2855: 2816: 2756: 2690: 2530: 2513: 2481: 2465: 2434: 2300: 2269: 2167: 2120: 2050: 2034: 1909: 1844: 1672:"Conversion of carbohydrate into hydrogen fuel by a photocatalytic process" 1671: 1648: 3001:"Selectivity Enhancement in Heterogeneous Photocatalytic Transformations" 2408: 1883: 1828: 1433: 478: 409: 376:) to selective value-added chemicals with the simultaneous generation of 3537:"Solar reactor converts both CO2 and plastic waste into useful products" 1726: 277:
photocatalyst composites. In 2017, Wakerley, Kuehnel and Reisner at the
3439:"Scientists harness solar power to produce clean hydrogen from biomass" 3394:"Scientists harness solar power to produce clean hydrogen from biomass" 3112: 2151: 2135: 1940: 1924: 1742: 602:) as shown below, where 'r' is the product formation rate, 'ΔG' is the 397: 205: 201: 3611:"Solar Powered Machine Turns CO2 and Waste Plastic Into Valuable Fuel" 2976: 2951: 1615:
Bhattacharjee, Subhajit; Linley, Stuart; Reisner, Erwin (2024-01-30).
598:, the most common metric is the solar-to-fuel conversion efficiency (η 1695: 868: 470: 393: 368:
section) systems reformed diverse pre-treated waste streams (such as
310: 1402:
panels (and therefore driven by sunlight) to drive electrochemical (
614:
per definition close to zero, despite the high production rates and
485:
Advantages over conventional waste recycling and upcycling processes
3240:"Raw biomass electroreforming coupled to green hydrogen generation" 2950:
Djurišić, Aleksandra B.; He, Yanling; Ng, Alan M. C. (2020-03-01).
1029:
are the costs of the product 'i' and substrate 'k', respectively.
262: 3050:"Strategies to improve light utilization in solar fuel synthesis" 285:
demonstrated the photocatalytic production of hydrogen using raw
2337:"Solar-driven reforming of solid waste for a sustainable future" 2134:
Guan, Lijiang; Cheng, Guang; Tan, Bien; Jin, Shangbin (2021).
120: 59: 18: 352:
The photocatalytic process (referred to as PC reforming; see
1866:
Uekert, Taylor; Kasap, Hatice; Reisner, Erwin (2019-09-25).
477:). Solar thermal reforming, on the other hand, exploits the 2775:"Solar Panel Technologies for Light-to-Chemical Conversion" 1036:
is the pre-treatment cost for the waste substrate 'k', and
138:
personal reflection, personal essay, or argumentative essay
3687:"Solar powered reactor converts plastic and CO2 into fuel" 244:
section) of waste-derived substrates involved the use of
2952:"Visible-light photocatalysts: Prospects and challenges" 144: 3418:"Covid: PPE 'could be recycled' with help of sunlight" 1181: 1085: 1203: 1107: 1059: 887: 634: 3826:Forster, Rosie Kinchen and Katherine (2024-02-13). 3463:"Could waste plastic become a useful fuel source?" 1343: 986: 857: 1725:Kawai, Tomoji; Sakata, Tadayoshi (January 1981). 1670:Kawai, Tomoji; Sakata, Tadayoshi (1980-07-31). 1491:and facilitate the transition from a linear to 2283:Nagakawa, Haruki; Nagata, Morio (2021-12-02). 2893:Linley, Stuart; Reisner, Erwin (2023-05-12). 1236: 1206: 8: 230:United Nations Sustainable Development Goals 1976:ACS Sustainable Chemistry & Engineering 1520:Electrochemical reduction of carbon dioxide 1457:simultaneous upcycling of greenhouse gas CO 53:Learn how and when to remove these messages 3862:"PM speech on Net Zero: 20 September 2023" 3369: 3328: 3271: 3167: 3016: 2975: 2926: 2806: 2746: 2680: 2529: 2424: 2110: 1899: 1339: 1312: 1276: 1257: 1235: 1234: 1228: 1215: 1205: 1204: 1197: 1186: 1180: 1153: 1134: 1112: 1101: 1090: 1084: 1081: 1065: 1064: 1058: 973: 965: 952: 947: 937: 921: 912: 907: 903: 894: 889: 886: 842: 837: 827: 810: 805: 796: 785: 780: 763: 752: 743: 728: 727: 722: 701: 696: 681: 666: 665: 660: 656: 640: 639: 633: 584:explosive mixtures of oxygen and hydrogen 452:reduction fuel producing methods such as 185:Learn how and when to remove this message 167:Learn how and when to remove this message 109:Learn how and when to remove this message 2397:Journal of the American Chemical Society 2242:Journal of Colloid and Interface Science 1872:Journal of the American Chemical Society 1817:Journal of the American Chemical Society 2454:Angewandte Chemie International Edition 1560: 3758:NDTV-Dettol Banega Swasth Swachh India 2023:ACS Applied Materials & Interfaces 2768: 2766: 2555: 2553: 2551: 2549: 2507: 2505: 2503: 2501: 2499: 2330: 2328: 2326: 2072: 2070: 2068: 1610: 1608: 1606: 1604: 1602: 1600: 1598: 1596: 1594: 1592: 1590: 1588: 1586: 1584: 7: 1582: 1580: 1578: 1576: 1574: 1572: 1570: 1568: 1566: 1564: 1483:as key carbon feedstocks to replace 1420:light absorber can absorb incident 349:catalyst under natural conditions. 3101:Energy & Environmental Science 1244: 1121: 1072: 1069: 1066: 974: 966: 948: 938: 928: 925: 922: 908: 890: 838: 828: 806: 797: 781: 759: 756: 753: 744: 732: 729: 723: 718: 697: 688: 685: 682: 670: 667: 661: 647: 644: 641: 16:Technology for conversion of waste 14: 1354:Categorization and configurations 366:Categorization and configurations 354:Categorization and configurations 34:This article has multiple issues. 1415:Introduction of 'Photon Economy' 125: 64: 23: 259:Institute for Molecular Science 42:or discuss these issues on the 1333: 1327: 1318: 1305: 1294: 1282: 1266: 1241: 1171: 1159: 1143: 1118: 978: 970: 932: 918: 434:Definition and classifications 289:substrates in the presence of 242:Definition and classifications 1: 3752:Bhatia, Anisha (2023-03-17). 3487:Theil, Michele (2023-01-23). 2779:Accounts of Chemical Research 2518:Advanced Functional Materials 2289:Advanced Materials Interfaces 1988:10.1021/acssuschemeng.0c06282 1414: 875:) as shown, where 'n' is the 388:to different energy vectors ( 3685:Patel, Prachi (2023-01-12). 2791:10.1021/acs.accounts.2c00477 3018:10.1021/acs.chemrev.6b00396 2625:10.1016/j.joule.2023.05.022 364:. These PEC reforming (see 334:to high energy-density to C 269:to drive the generation of 84:. The specific problem is: 3988: 3371:10.1038/s44221-023-00139-9 3256:10.1038/s41467-021-22250-9 3152:10.1038/s41467-021-25048-x 3066:10.1038/s41560-021-00919-1 2731:10.1038/s41467-023-36726-3 2665:10.1038/s41467-022-33435-1 2578:10.1038/s44160-022-00196-0 2361:10.1038/s41893-020-00650-x 2254:10.1016/j.jcis.2021.07.113 1633:10.1038/s41570-023-00567-x 429:Concept and considerations 220:by creating a sustainable 210:atmospheric carbon dioxide 208:, industrial by-products, 80:to meet Knowledge (XXG)'s 3967:Climate change mitigation 1515:Conference of the parties 1505:Artificial photosynthesis 596:artificial photosynthesis 3313:10.1021/acscatal.2c02689 3209:10.1021/acscatal.2c01128 2207:10.1021/acscatal.1c00217 2095:10.1021/acscatal.1c02133 1621:Nature Reviews Chemistry 1470:Outlook and future scope 441:Nature Reviews Chemistry 3942:University of Cambridge 3893:(in German). 2019-10-09 3566:University of Cambridge 2140:Chemical Communications 1782:10.1038/nenergy.2017.21 1495:in the coming decades. 590:Solar reforming metrics 362:University of Cambridge 287:lignocellulosic biomass 279:University of Cambridge 228:(in alignment with the 218:environmental pollution 3937:Science and technology 2911:10.1002/advs.202207314 2856:10.1002/cssc.202002580 2531:10.1002/adfm.202109313 2466:10.1002/anie.201915766 2301:10.1002/admi.202101581 2035:10.1021/acsami.1c10842 1393:thermoelectric modules 1345: 1202: 1106: 1015:is shown below, where 988: 859: 315:co-ordination polymers 147:by rewriting it in an 3887:"Roadmap Chemie 2050" 3244:Nature Communications 3140:Nature Communications 2711:Nature Communications 2653:Nature Communications 2341:Nature Sustainability 1545:Photoelectrochemistry 1428:photons with maximum 1346: 1182: 1086: 989: 860: 324:condensation plastics 2409:10.1021/jacs.3c05486 1884:10.1021/jacs.9b06872 1829:10.1021/jacs.8b07853 1057: 885: 632: 358:photoelectrochemical 226:greenhouse emissions 91:improve this article 86:inappropriate style. 3659:محمود, عبد الحكيم. 3307:(21): 13360–13371. 2968:2020APLM....8c0903D 2848:2021ChSCh..14.4190U 2723:2023NatCo..14.1013P 2460:(36): 15497–15501. 2403:(37): 20355–20364. 2353:2020NatSu...4..383U 2029:(37): 44243–44253. 1982:(41): 15772–15781. 1878:(38): 15201–15210. 1823:(37): 11604–11607. 1688:1980Natur.286..474K 1448:Reception and media 1389:solar concentrators 1369:electron-hole pairs 319:metal chalcogenides 3922:Sustainable energy 3113:10.1039/C4EE00754A 2152:10.1039/D1CC01102B 1941:10.1039/D1GC02307A 1743:10.1246/cl.1981.81 1535:Net zero emissions 1341: 1298: 1297: 1175: 1174: 984: 855: 414:direct air capture 293:responsive CdS|CdO 149:encyclopedic style 136:is written like a 3962:Chemical industry 3957:Materials science 3617:. 12 January 2023 3203:(11): 6722–6728. 2977:10.1063/1.5140497 2842:(19): 4190–4197. 2785:(23): 3376–3386. 2146:(42): 5147–5150. 2089:(15): 9159–9167. 1935:(19): 7435–7457. 1731:Chemistry Letters 1682:(5772): 474–476. 1337: 982: 915: 897: 853: 788: 604:Gibbs free energy 408:to products from 195: 194: 187: 177: 176: 169: 119: 118: 111: 82:quality standards 73:This article may 57: 3979: 3902: 3901: 3899: 3898: 3883: 3877: 3876: 3874: 3873: 3858: 3852: 3851: 3849: 3848: 3823: 3817: 3816: 3814: 3813: 3799: 3793: 3792: 3790: 3789: 3774: 3768: 3767: 3765: 3764: 3749: 3743: 3742: 3741: 3740: 3728: 3722: 3721: 3719: 3718: 3703: 3697: 3696: 3694: 3693: 3682: 3676: 3675: 3673: 3672: 3656: 3650: 3649: 3647: 3646: 3632: 3626: 3625: 3623: 3622: 3607: 3601: 3600: 3598: 3597: 3583: 3577: 3576: 3574: 3573: 3558: 3552: 3551: 3549: 3548: 3533: 3527: 3526: 3524: 3523: 3509: 3503: 3502: 3500: 3499: 3484: 3478: 3477: 3475: 3474: 3459: 3453: 3452: 3450: 3449: 3435: 3429: 3428: 3426: 3425: 3414: 3408: 3407: 3405: 3404: 3390: 3384: 3383: 3373: 3349: 3343: 3342: 3332: 3292: 3286: 3285: 3275: 3235: 3229: 3228: 3188: 3182: 3181: 3171: 3131: 3125: 3124: 3107:(7): 2056–2070. 3092: 3086: 3085: 3045: 3039: 3038: 3020: 3011:(3): 1445–1514. 3005:Chemical Reviews 2996: 2990: 2989: 2979: 2947: 2941: 2940: 2930: 2905:(21): e2207314. 2899:Advanced Science 2890: 2884: 2883: 2827: 2821: 2820: 2810: 2770: 2761: 2760: 2750: 2701: 2695: 2694: 2684: 2643: 2637: 2636: 2619:(7): 1496–1514. 2604: 2598: 2597: 2566:Nature Synthesis 2557: 2544: 2543: 2533: 2509: 2494: 2493: 2445: 2439: 2438: 2428: 2387: 2381: 2380: 2332: 2321: 2320: 2280: 2274: 2273: 2233: 2227: 2226: 2201:(9): 4955–4967. 2186: 2180: 2179: 2131: 2125: 2124: 2114: 2074: 2063: 2062: 2014: 2008: 2007: 1967: 1961: 1960: 1920: 1914: 1913: 1903: 1863: 1857: 1856: 1808: 1802: 1801: 1761: 1755: 1754: 1722: 1716: 1715: 1696:10.1038/286474a0 1667: 1661: 1660: 1612: 1530:Hydrogen economy 1525:Electrochemistry 1510:Circular economy 1493:circular economy 1350: 1348: 1347: 1342: 1340: 1338: 1336: 1317: 1316: 1300: 1299: 1281: 1280: 1265: 1264: 1240: 1239: 1233: 1232: 1220: 1219: 1210: 1209: 1201: 1196: 1176: 1158: 1157: 1142: 1141: 1117: 1116: 1105: 1100: 1082: 1077: 1076: 1075: 993: 991: 990: 985: 983: 981: 977: 969: 961: 957: 956: 951: 941: 935: 931: 917: 916: 913: 911: 904: 899: 898: 895: 893: 864: 862: 861: 856: 854: 852: 851: 847: 846: 841: 831: 823: 819: 818: 817: 809: 800: 790: 789: 786: 784: 777: 776: 772: 771: 770: 762: 747: 737: 736: 735: 726: 714: 710: 709: 708: 700: 691: 675: 674: 673: 664: 657: 652: 651: 650: 525: 523: 522: 519: 516: 418:polyoxometallate 222:circular network 190: 183: 172: 165: 161: 158: 152: 129: 128: 121: 114: 107: 103: 100: 94: 68: 67: 60: 49: 27: 26: 19: 3987: 3986: 3982: 3981: 3980: 3978: 3977: 3976: 3972:Green chemistry 3907: 3906: 3905: 3896: 3894: 3885: 3884: 3880: 3871: 3869: 3860: 3859: 3855: 3846: 3844: 3825: 3824: 3820: 3811: 3809: 3801: 3800: 3796: 3787: 3785: 3782:The Independent 3776: 3775: 3771: 3762: 3760: 3751: 3750: 3746: 3738: 3736: 3730: 3729: 3725: 3716: 3714: 3705: 3704: 3700: 3691: 3689: 3684: 3683: 3679: 3670: 3668: 3658: 3657: 3653: 3644: 3642: 3634: 3633: 3629: 3620: 3618: 3609: 3608: 3604: 3595: 3593: 3585: 3584: 3580: 3571: 3569: 3560: 3559: 3555: 3546: 3544: 3535: 3534: 3530: 3521: 3519: 3517:Chemistry World 3511: 3510: 3506: 3497: 3495: 3486: 3485: 3481: 3472: 3470: 3461: 3460: 3456: 3447: 3445: 3437: 3436: 3432: 3423: 3421: 3416: 3415: 3411: 3402: 3400: 3392: 3391: 3387: 3364:(11): 952–960. 3351: 3350: 3346: 3294: 3293: 3289: 3237: 3236: 3232: 3190: 3189: 3185: 3133: 3132: 3128: 3094: 3093: 3089: 3047: 3046: 3042: 2998: 2997: 2993: 2949: 2948: 2944: 2892: 2891: 2887: 2829: 2828: 2824: 2772: 2771: 2764: 2703: 2702: 2698: 2645: 2644: 2640: 2606: 2605: 2601: 2559: 2558: 2547: 2511: 2510: 2497: 2447: 2446: 2442: 2389: 2388: 2384: 2334: 2333: 2324: 2282: 2281: 2277: 2235: 2234: 2230: 2188: 2187: 2183: 2133: 2132: 2128: 2076: 2075: 2066: 2016: 2015: 2011: 1969: 1968: 1964: 1929:Green Chemistry 1922: 1921: 1917: 1865: 1864: 1860: 1810: 1809: 1805: 1763: 1762: 1758: 1724: 1723: 1719: 1669: 1668: 1664: 1614: 1613: 1562: 1558: 1501: 1489:decarbonization 1482: 1472: 1460: 1450: 1442:atom economical 1417: 1408:water splitting 1374: 1356: 1308: 1301: 1272: 1253: 1224: 1211: 1149: 1130: 1108: 1083: 1060: 1055: 1054: 1048: 1041: 1034: 1027: 1020: 1014: 1007: 999: 946: 942: 936: 906: 905: 888: 883: 882: 874: 836: 832: 804: 795: 791: 779: 778: 751: 742: 738: 721: 695: 680: 676: 659: 658: 635: 630: 629: 621: 613: 609: 601: 592: 581: 577: 569: 553: 541: 537: 533: 529: 520: 517: 514: 513: 511: 509: 505: 500:water splitting 487: 476: 459: 454:water splitting 451: 436: 431: 423: 407: 387: 347: 343: 337: 307:graphene oxides 296: 276: 267:electron donors 249: 238: 198:Solar reforming 191: 180: 179: 178: 173: 162: 156: 153: 145:help improve it 142: 130: 126: 115: 104: 98: 95: 88: 69: 65: 28: 24: 17: 12: 11: 5: 3985: 3983: 3975: 3974: 3969: 3964: 3959: 3954: 3949: 3944: 3939: 3934: 3929: 3924: 3919: 3917:Sustainability 3909: 3908: 3904: 3903: 3878: 3853: 3818: 3794: 3769: 3744: 3723: 3698: 3677: 3651: 3627: 3602: 3578: 3553: 3528: 3504: 3479: 3454: 3430: 3409: 3398:Bio Fuel Daily 3385: 3344: 3287: 3230: 3183: 3126: 3087: 3040: 2991: 2942: 2885: 2822: 2762: 2696: 2638: 2599: 2572:(2): 182–192. 2545: 2495: 2440: 2382: 2347:(5): 383–391. 2322: 2275: 2228: 2181: 2126: 2064: 2009: 1962: 1915: 1858: 1803: 1756: 1717: 1662: 1559: 1557: 1554: 1553: 1552: 1547: 1542: 1540:Photocatalysis 1537: 1532: 1527: 1522: 1517: 1512: 1507: 1500: 1497: 1480: 1477:green hydrogen 1471: 1468: 1458: 1449: 1446: 1416: 1413: 1412: 1411: 1396: 1376: 1372: 1355: 1352: 1335: 1332: 1329: 1326: 1323: 1320: 1315: 1311: 1307: 1304: 1296: 1293: 1290: 1287: 1284: 1279: 1275: 1271: 1268: 1263: 1260: 1256: 1252: 1249: 1246: 1243: 1238: 1231: 1227: 1223: 1218: 1214: 1208: 1200: 1195: 1192: 1189: 1185: 1179: 1173: 1170: 1167: 1164: 1161: 1156: 1152: 1148: 1145: 1140: 1137: 1133: 1129: 1126: 1123: 1120: 1115: 1111: 1104: 1099: 1096: 1093: 1089: 1080: 1074: 1071: 1068: 1063: 1046: 1039: 1032: 1025: 1018: 1012: 1005: 997: 980: 976: 972: 968: 964: 960: 955: 950: 945: 940: 934: 930: 927: 924: 920: 910: 902: 892: 872: 850: 845: 840: 835: 830: 826: 822: 816: 813: 808: 803: 799: 794: 783: 775: 769: 766: 761: 758: 755: 750: 746: 741: 734: 731: 725: 720: 717: 713: 707: 704: 699: 694: 690: 687: 684: 679: 672: 669: 663: 655: 649: 646: 643: 638: 619: 616:quantum yields 611: 607: 599: 591: 588: 579: 575: 567: 551: 539: 535: 531: 527: 507: 503: 486: 483: 474: 457: 449: 446:green hydrogen 435: 432: 430: 427: 421: 405: 385: 382:greenhouse gas 378:green hydrogen 370:lignocellulose 345: 341: 335: 302:carbon-nitride 294: 274: 247: 237: 234: 214:climate change 193: 192: 175: 174: 133: 131: 124: 117: 116: 72: 70: 63: 58: 32: 31: 29: 22: 15: 13: 10: 9: 6: 4: 3: 2: 3984: 3973: 3970: 3968: 3965: 3963: 3960: 3958: 3955: 3953: 3950: 3948: 3945: 3943: 3940: 3938: 3935: 3933: 3930: 3928: 3925: 3923: 3920: 3918: 3915: 3914: 3912: 3892: 3888: 3882: 3879: 3867: 3863: 3857: 3854: 3843: 3839: 3835: 3834: 3829: 3822: 3819: 3808: 3804: 3798: 3795: 3783: 3779: 3773: 3770: 3759: 3755: 3748: 3745: 3735: 3734: 3727: 3724: 3712: 3708: 3702: 3699: 3688: 3681: 3678: 3666: 3662: 3655: 3652: 3641: 3637: 3631: 3628: 3616: 3612: 3606: 3603: 3592: 3588: 3582: 3579: 3567: 3563: 3557: 3554: 3542: 3538: 3532: 3529: 3518: 3514: 3508: 3505: 3494: 3493:The Big Issue 3490: 3483: 3480: 3468: 3464: 3458: 3455: 3444: 3440: 3434: 3431: 3419: 3413: 3410: 3399: 3395: 3389: 3386: 3381: 3377: 3372: 3367: 3363: 3359: 3355: 3348: 3345: 3340: 3336: 3331: 3326: 3322: 3318: 3314: 3310: 3306: 3302: 3301:ACS Catalysis 3298: 3291: 3288: 3283: 3279: 3274: 3269: 3265: 3261: 3257: 3253: 3249: 3245: 3241: 3234: 3231: 3226: 3222: 3218: 3214: 3210: 3206: 3202: 3198: 3197:ACS Catalysis 3194: 3187: 3184: 3179: 3175: 3170: 3165: 3161: 3157: 3153: 3149: 3145: 3141: 3137: 3130: 3127: 3122: 3118: 3114: 3110: 3106: 3102: 3098: 3091: 3088: 3083: 3079: 3075: 3071: 3067: 3063: 3059: 3055: 3054:Nature Energy 3051: 3044: 3041: 3036: 3032: 3028: 3024: 3019: 3014: 3010: 3006: 3002: 2995: 2992: 2987: 2983: 2978: 2973: 2969: 2965: 2962:(3): 030903. 2961: 2957: 2956:APL Materials 2953: 2946: 2943: 2938: 2934: 2929: 2924: 2920: 2916: 2912: 2908: 2904: 2900: 2896: 2889: 2886: 2881: 2877: 2873: 2869: 2865: 2861: 2857: 2853: 2849: 2845: 2841: 2837: 2833: 2826: 2823: 2818: 2814: 2809: 2804: 2800: 2796: 2792: 2788: 2784: 2780: 2776: 2769: 2767: 2763: 2758: 2754: 2749: 2744: 2740: 2736: 2732: 2728: 2724: 2720: 2716: 2712: 2708: 2700: 2697: 2692: 2688: 2683: 2678: 2674: 2670: 2666: 2662: 2658: 2654: 2650: 2642: 2639: 2634: 2630: 2626: 2622: 2618: 2614: 2610: 2603: 2600: 2595: 2591: 2587: 2583: 2579: 2575: 2571: 2567: 2563: 2556: 2554: 2552: 2550: 2546: 2541: 2537: 2532: 2527: 2523: 2519: 2515: 2508: 2506: 2504: 2502: 2500: 2496: 2491: 2487: 2483: 2479: 2475: 2471: 2467: 2463: 2459: 2455: 2451: 2444: 2441: 2436: 2432: 2427: 2422: 2418: 2414: 2410: 2406: 2402: 2398: 2394: 2386: 2383: 2378: 2374: 2370: 2366: 2362: 2358: 2354: 2350: 2346: 2342: 2338: 2331: 2329: 2327: 2323: 2318: 2314: 2310: 2306: 2302: 2298: 2294: 2290: 2286: 2279: 2276: 2271: 2267: 2263: 2259: 2255: 2251: 2247: 2243: 2239: 2232: 2229: 2224: 2220: 2216: 2212: 2208: 2204: 2200: 2196: 2195:ACS Catalysis 2192: 2185: 2182: 2177: 2173: 2169: 2165: 2161: 2157: 2153: 2149: 2145: 2141: 2137: 2130: 2127: 2122: 2118: 2113: 2108: 2104: 2100: 2096: 2092: 2088: 2084: 2083:ACS Catalysis 2080: 2073: 2071: 2069: 2065: 2060: 2056: 2052: 2048: 2044: 2040: 2036: 2032: 2028: 2024: 2020: 2013: 2010: 2005: 2001: 1997: 1993: 1989: 1985: 1981: 1977: 1973: 1966: 1963: 1958: 1954: 1950: 1946: 1942: 1938: 1934: 1930: 1926: 1919: 1916: 1911: 1907: 1902: 1897: 1893: 1889: 1885: 1881: 1877: 1873: 1869: 1862: 1859: 1854: 1850: 1846: 1842: 1838: 1834: 1830: 1826: 1822: 1818: 1814: 1807: 1804: 1799: 1795: 1791: 1787: 1783: 1779: 1775: 1771: 1770:Nature Energy 1767: 1760: 1757: 1752: 1748: 1744: 1740: 1736: 1732: 1728: 1721: 1718: 1713: 1709: 1705: 1701: 1697: 1693: 1689: 1685: 1681: 1677: 1673: 1666: 1663: 1658: 1654: 1650: 1646: 1642: 1638: 1634: 1630: 1627:(2): 87–105. 1626: 1622: 1618: 1611: 1609: 1607: 1605: 1603: 1601: 1599: 1597: 1595: 1593: 1591: 1589: 1587: 1585: 1583: 1581: 1579: 1577: 1575: 1573: 1571: 1569: 1567: 1565: 1561: 1555: 1551: 1548: 1546: 1543: 1541: 1538: 1536: 1533: 1531: 1528: 1526: 1523: 1521: 1518: 1516: 1513: 1511: 1508: 1506: 1503: 1502: 1498: 1496: 1494: 1490: 1486: 1478: 1469: 1467: 1465: 1455: 1447: 1445: 1443: 1439: 1435: 1431: 1430:quantum yield 1427: 1426:visible light 1423: 1409: 1405: 1401: 1397: 1394: 1390: 1385: 1381: 1377: 1370: 1366: 1365:photocatalyst 1362: 1361: 1360: 1353: 1351: 1330: 1324: 1321: 1313: 1309: 1302: 1291: 1288: 1285: 1277: 1273: 1269: 1261: 1258: 1254: 1250: 1247: 1229: 1225: 1221: 1216: 1212: 1198: 1193: 1190: 1187: 1183: 1177: 1168: 1165: 1162: 1154: 1150: 1146: 1138: 1135: 1131: 1127: 1124: 1113: 1109: 1102: 1097: 1094: 1091: 1087: 1078: 1061: 1052: 1049: 1042: 1035: 1028: 1021: 1011: 1004: 994: 962: 958: 953: 943: 900: 880: 878: 870: 865: 848: 843: 833: 824: 820: 814: 811: 801: 792: 773: 767: 764: 748: 739: 715: 711: 705: 702: 692: 677: 653: 636: 627: 625: 617: 605: 597: 589: 587: 585: 573: 565: 561: 557: 549: 545: 501: 497: 493: 484: 482: 480: 472: 468: 467:visible light 464: 455: 447: 442: 433: 428: 426: 419: 415: 411: 403: 402:glycolic acid 399: 395: 391: 383: 379: 375: 371: 367: 363: 359: 355: 350: 348: 338:fuels over a 333: 332:polypropylene 329: 325: 320: 316: 312: 308: 303: 299: 292: 291:visible-light 288: 284: 280: 272: 268: 264: 260: 256: 255:photocatalyst 253: 252:semiconductor 250: 243: 235: 233: 231: 227: 223: 219: 215: 211: 207: 203: 199: 189: 186: 171: 168: 160: 157:February 2024 150: 146: 140: 139: 134:This article 132: 123: 122: 113: 110: 102: 99:February 2024 92: 87: 83: 79: 78: 71: 62: 61: 56: 54: 47: 46: 41: 40: 35: 30: 21: 20: 3947:Solar energy 3895:. Retrieved 3890: 3881: 3870:. Retrieved 3868:. 2023-09-20 3865: 3856: 3845:. Retrieved 3831: 3821: 3810:. Retrieved 3806: 3797: 3786:. Retrieved 3784:. 2023-01-09 3781: 3772: 3761:. Retrieved 3757: 3747: 3737:, retrieved 3732: 3726: 3715:. Retrieved 3713:. 2023-01-24 3710: 3701: 3690:. Retrieved 3680: 3669:. Retrieved 3664: 3654: 3643:. Retrieved 3639: 3630: 3619:. Retrieved 3614: 3605: 3594:. Retrieved 3591:ScienceDaily 3590: 3581: 3570:. Retrieved 3568:. 2023-01-09 3565: 3556: 3545:. Retrieved 3543:. 2023-01-10 3540: 3531: 3520:. Retrieved 3516: 3507: 3496:. Retrieved 3492: 3482: 3471:. Retrieved 3469:. 2023-03-14 3466: 3457: 3446:. Retrieved 3442: 3433: 3422:. Retrieved 3420:. 2020-12-22 3412: 3401:. Retrieved 3397: 3388: 3361: 3358:Nature Water 3357: 3347: 3304: 3300: 3290: 3247: 3243: 3233: 3200: 3196: 3186: 3143: 3139: 3129: 3104: 3100: 3090: 3060:(1): 13–24. 3057: 3053: 3043: 3008: 3004: 2994: 2959: 2955: 2945: 2902: 2898: 2888: 2839: 2835: 2825: 2782: 2778: 2714: 2710: 2699: 2656: 2652: 2641: 2616: 2612: 2602: 2569: 2565: 2521: 2517: 2457: 2453: 2443: 2400: 2396: 2385: 2344: 2340: 2292: 2288: 2278: 2245: 2241: 2231: 2198: 2194: 2184: 2143: 2139: 2129: 2086: 2082: 2026: 2022: 2012: 1979: 1975: 1965: 1932: 1928: 1918: 1875: 1871: 1861: 1820: 1816: 1806: 1773: 1769: 1759: 1737:(1): 81–84. 1734: 1730: 1720: 1679: 1675: 1665: 1624: 1620: 1485:fossil fuels 1473: 1463: 1451: 1438:desalination 1418: 1404:electrolysis 1400:photovoltaic 1357: 1053: 1044: 1037: 1030: 1023: 1016: 1009: 1002: 995: 881: 866: 628: 593: 571: 563: 559: 555: 547: 543: 496:gasification 488: 437: 374:PET plastics 365: 353: 351: 328:polyethylene 298:quantum dots 271:hydrogen gas 241: 239: 197: 196: 181: 163: 154: 135: 105: 96: 89:Please help 85: 74: 50: 43: 37: 36:Please help 33: 3932:Engineering 3667:(in Arabic) 3443:EurekAlert! 3250:(1): 2008. 3146:(1): 4679. 2836:ChemSusChem 2717:(1): 1013. 2659:(1): 5709. 2248:: 311–319. 1380:electrolyte 787:total  622:|; such as 463:ultraviolet 261:, Okazaki, 93:if you can. 3911:Categories 3897:2024-02-13 3891:VCI Online 3872:2024-02-13 3847:2024-02-13 3812:2024-02-13 3788:2024-02-13 3763:2024-02-13 3739:2024-02-13 3717:2024-02-13 3692:2024-02-13 3671:2024-02-13 3665:الجزيرة نت 3645:2024-02-13 3621:2024-02-13 3596:2024-02-13 3572:2024-02-13 3547:2024-02-13 3522:2024-02-13 3498:2024-02-13 3473:2024-02-13 3448:2024-02-13 3424:2024-02-13 3403:2024-02-13 1776:(4): 1–9. 1556:References 1550:Solar fuel 996:Although r 624:combustion 236:Background 39:improve it 3952:Chemistry 3842:0140-0460 3833:The Times 3541:New Atlas 3380:2731-6084 3321:2155-5435 3264:2041-1723 3225:249026599 3217:2155-5435 3160:2041-1723 3121:1754-5706 3082:256726357 3074:2058-7546 3027:0009-2665 2986:2166-532X 2919:2198-3844 2880:226271147 2864:1864-5631 2799:0001-4842 2739:2041-1723 2673:2041-1723 2633:2542-4351 2594:255686581 2586:2731-0582 2540:1616-301X 2490:210983540 2474:1433-7851 2417:0002-7863 2377:227236618 2369:2398-9629 2317:244880250 2309:2196-7350 2262:0021-9797 2223:233564941 2215:2155-5435 2176:233400735 2160:1359-7345 2103:2155-5435 2059:237472526 2043:1944-8244 2004:225149072 1996:2168-0485 1957:238644248 1949:1463-9262 1892:0002-7863 1837:0002-7863 1798:100128646 1790:2058-7546 1751:0366-7022 1704:1476-4687 1657:267332161 1641:2397-3358 1454:Cambridge 1322:× 1270:× 1259:− 1245:$ 1184:∑ 1178:− 1147:× 1136:− 1122:$ 1088:∑ 963:× 825:× 812:− 802:⋅ 765:− 749:⋅ 719:Δ 716:× 703:− 693:⋅ 637:η 492:pyrolysis 412:and air ( 45:talk page 3807:NDTV.com 3711:TimesNow 3640:Labroots 3615:Futurism 3339:36366764 3282:33790295 3178:34404779 3035:28093903 2937:37171802 2928:10375181 2872:33156562 2817:36395337 2757:36823177 2691:36192405 2482:32003512 2435:37671930 2426:10515630 2270:34332406 2168:33899846 2121:34386271 2051:34499461 1910:31462034 1853:52111870 1845:30153420 1649:38291132 1499:See also 1384:catalyst 479:infrared 465:(UV) or 410:flue gas 273:over TiO 206:plastics 75:require 3330:9638992 3273:8012647 3169:8371182 2964:Bibcode 2844:Bibcode 2808:9730848 2748:9950059 2719:Bibcode 2682:9529942 2349:Bibcode 2112:8353629 1901:7007225 1712:4356641 1684:Bibcode 914:product 524:⁠ 512:⁠ 471:photons 398:formate 202:biomass 143:Please 77:cleanup 3927:Energy 3866:GOV.UK 3840:  3378:  3337:  3327:  3319:  3280:  3270:  3262:  3223:  3215:  3176:  3166:  3158:  3119:  3080:  3072:  3033:  3025:  2984:  2935:  2925:  2917:  2878:  2870:  2862:  2815:  2805:  2797:  2755:  2745:  2737:  2689:  2679:  2671:  2631:  2592:  2584:  2538:  2488:  2480:  2472:  2433:  2423:  2415:  2375:  2367:  2315:  2307:  2268:  2260:  2221:  2213:  2174:  2166:  2158:  2119:  2109:  2101:  2057:  2049:  2041:  2002:  1994:  1955:  1947:  1908:  1898:  1890:  1851:  1843:  1835:  1796:  1788:  1749:  1710:  1702:  1676:Nature 1655:  1647:  1639:  1001:rate ( 869:photon 554:O → (2 394:syngas 311:MXenes 3221:S2CID 3078:S2CID 2876:S2CID 2613:Joule 2590:S2CID 2524:(7). 2486:S2CID 2373:S2CID 2313:S2CID 2295:(2). 2219:S2CID 2172:S2CID 2055:S2CID 2000:S2CID 1953:S2CID 1849:S2CID 1794:S2CID 1708:S2CID 1653:S2CID 998:areal 896:areal 877:moles 873:areal 506:O → H 456:or CO 448:or CO 263:Japan 3838:ISSN 3376:ISSN 3335:PMID 3317:ISSN 3278:PMID 3260:ISSN 3213:ISSN 3174:PMID 3156:ISSN 3117:ISSN 3070:ISSN 3031:PMID 3023:ISSN 2982:ISSN 2933:PMID 2915:ISSN 2868:PMID 2860:ISSN 2813:PMID 2795:ISSN 2753:PMID 2735:ISSN 2687:PMID 2669:ISSN 2629:ISSN 2582:ISSN 2536:ISSN 2478:PMID 2470:ISSN 2431:PMID 2413:ISSN 2365:ISSN 2305:ISSN 2266:PMID 2258:ISSN 2211:ISSN 2164:PMID 2156:ISSN 2117:PMID 2099:ISSN 2047:PMID 2039:ISSN 1992:ISSN 1945:ISSN 1906:PMID 1888:ISSN 1841:PMID 1833:ISSN 1786:ISSN 1747:ISSN 1700:ISSN 1645:PMID 1637:ISSN 1424:and 1043:and 1022:and 566:/2)H 542:+ (2 494:and 372:and 330:and 317:and 216:and 3467:BBC 3366:doi 3325:PMC 3309:doi 3268:PMC 3252:doi 3205:doi 3164:PMC 3148:doi 3109:doi 3062:doi 3013:doi 3009:117 2972:doi 2923:PMC 2907:doi 2852:doi 2803:PMC 2787:doi 2743:PMC 2727:doi 2677:PMC 2661:doi 2621:doi 2574:doi 2526:doi 2462:doi 2421:PMC 2405:doi 2401:145 2357:doi 2297:doi 2250:doi 2246:605 2203:doi 2148:doi 2107:PMC 2091:doi 2031:doi 1984:doi 1937:doi 1896:PMC 1880:doi 1876:141 1825:doi 1821:140 1778:doi 1739:doi 1692:doi 1680:286 1629:doi 1391:or 1013:STV 1006:STV 620:use 612:STF 608:STF 600:STF 246:TiO 232:). 3913:: 3889:. 3864:. 3836:. 3830:. 3805:. 3780:. 3756:. 3709:. 3663:. 3638:. 3613:. 3589:. 3564:. 3539:. 3515:. 3491:. 3465:. 3441:. 3396:. 3374:. 3360:. 3356:. 3333:. 3323:. 3315:. 3305:12 3303:. 3299:. 3276:. 3266:. 3258:. 3248:12 3246:. 3242:. 3219:. 3211:. 3201:12 3199:. 3195:. 3172:. 3162:. 3154:. 3144:12 3142:. 3138:. 3115:. 3103:. 3099:. 3076:. 3068:. 3056:. 3052:. 3029:. 3021:. 3007:. 3003:. 2980:. 2970:. 2958:. 2954:. 2931:. 2921:. 2913:. 2903:10 2901:. 2897:. 2874:. 2866:. 2858:. 2850:. 2840:14 2838:. 2834:. 2811:. 2801:. 2793:. 2783:55 2781:. 2777:. 2765:^ 2751:. 2741:. 2733:. 2725:. 2715:14 2713:. 2709:. 2685:. 2675:. 2667:. 2657:13 2655:. 2651:. 2627:. 2615:. 2611:. 2588:. 2580:. 2568:. 2564:. 2548:^ 2534:. 2522:32 2520:. 2516:. 2498:^ 2484:. 2476:. 2468:. 2458:59 2456:. 2452:. 2429:. 2419:. 2411:. 2399:. 2395:. 2371:. 2363:. 2355:. 2343:. 2339:. 2325:^ 2311:. 2303:. 2291:. 2287:. 2264:. 2256:. 2244:. 2240:. 2217:. 2209:. 2199:11 2197:. 2193:. 2170:. 2162:. 2154:. 2144:57 2142:. 2138:. 2115:. 2105:. 2097:. 2087:11 2085:. 2081:. 2067:^ 2053:. 2045:. 2037:. 2027:13 2025:. 2021:. 1998:. 1990:. 1978:. 1974:. 1951:. 1943:. 1933:23 1931:. 1927:. 1904:. 1894:. 1886:. 1874:. 1870:. 1847:. 1839:. 1831:. 1819:. 1815:. 1792:. 1784:. 1772:. 1768:. 1745:. 1735:10 1733:. 1729:. 1706:. 1698:. 1690:. 1678:. 1674:. 1651:. 1643:. 1635:. 1623:. 1619:. 1563:^ 1434:IR 1422:UV 574:CO 570:+ 550:)H 510:+ 502:(H 396:, 392:, 390:CO 384:CO 340:Nb 313:, 309:, 283:UK 281:, 204:, 48:. 3900:. 3875:. 3850:. 3815:. 3791:. 3766:. 3720:. 3695:. 3674:. 3648:. 3624:. 3599:. 3575:. 3550:. 3525:. 3501:. 3476:. 3451:. 3427:. 3406:. 3382:. 3368:: 3362:1 3341:. 3311:: 3284:. 3254:: 3227:. 3207:: 3180:. 3150:: 3123:. 3111:: 3105:7 3084:. 3064:: 3058:7 3037:. 3015:: 2988:. 2974:: 2966:: 2960:8 2939:. 2909:: 2882:. 2854:: 2846:: 2819:. 2789:: 2759:. 2729:: 2721:: 2693:. 2663:: 2635:. 2623:: 2617:7 2596:. 2576:: 2570:2 2542:. 2528:: 2492:. 2464:: 2437:. 2407:: 2379:. 2359:: 2351:: 2345:4 2319:. 2299:: 2293:9 2272:. 2252:: 2225:. 2205:: 2178:. 2150:: 2123:. 2093:: 2061:. 2033:: 2006:. 1986:: 1980:8 1959:. 1939:: 1912:. 1882:: 1855:. 1827:: 1800:. 1780:: 1774:2 1753:. 1741:: 1714:. 1694:: 1686:: 1659:. 1631:: 1625:8 1481:2 1459:2 1373:2 1334:) 1331:h 1328:( 1325:t 1319:) 1314:2 1310:m 1306:( 1303:A 1295:) 1292:l 1289:o 1286:m 1283:( 1278:k 1274:n 1267:) 1262:1 1255:l 1251:o 1248:m 1242:( 1237:) 1230:p 1226:C 1222:+ 1217:k 1213:C 1207:( 1199:N 1194:1 1191:= 1188:k 1172:) 1169:l 1166:o 1163:m 1160:( 1155:i 1151:n 1144:) 1139:1 1132:l 1128:o 1125:m 1119:( 1114:i 1110:C 1103:M 1098:1 1095:= 1092:i 1079:= 1073:V 1070:T 1067:S 1062:r 1047:k 1045:n 1040:i 1038:n 1033:p 1031:C 1026:k 1024:C 1019:i 1017:C 1010:r 1003:r 979:) 975:h 971:( 967:t 959:) 954:2 949:m 944:( 939:A 933:) 929:l 926:o 923:m 919:( 909:n 901:= 891:r 849:) 844:2 839:m 834:( 829:A 821:) 815:2 807:m 798:W 793:( 782:P 774:) 768:1 760:l 757:o 754:m 745:J 740:( 733:R 730:S 724:G 712:) 706:1 698:s 689:l 686:o 683:m 678:( 671:R 668:S 662:r 654:= 648:F 645:T 642:S 580:2 576:2 572:x 568:2 564:y 562:+ 560:z 558:− 556:x 552:2 548:z 546:− 544:x 540:z 538:O 536:y 534:H 532:x 528:2 526:O 521:2 518:/ 515:1 508:2 504:2 475:2 458:2 450:2 422:2 406:2 386:2 346:5 344:O 342:2 336:2 295:x 275:2 248:2 188:) 182:( 170:) 164:( 159:) 155:( 151:. 112:) 106:( 101:) 97:( 55:) 51:(

Index

improve it
talk page
Learn how and when to remove these messages
cleanup
quality standards
improve this article
Learn how and when to remove this message
personal reflection, personal essay, or argumentative essay
help improve it
encyclopedic style
Learn how and when to remove this message
Learn how and when to remove this message
biomass
plastics
atmospheric carbon dioxide
climate change
environmental pollution
circular network
greenhouse emissions
United Nations Sustainable Development Goals
TiO2
semiconductor
photocatalyst
Institute for Molecular Science
Japan
electron donors
hydrogen gas
University of Cambridge
UK
lignocellulosic biomass

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.