Knowledge

Soliton model in neuroscience

Source 📝

310:
the proposal that nerve impulses are an adiabatic phenomenon much like sound waves. Synaptically evoked action potentials in the electric organ of the electric eel are associated with substantial positive (only) heat production followed by active cooling to ambient temperature. In the garfish olfactory nerve, the action potential is associated with a biphasic temperature change; however, there is a net production of heat. These published results are inconsistent with the Hodgkin-Huxley Model and the authors interpret their work in terms of that model: The initial sodium current releases heat as the membrane capacitance is discharged; heat is absorbed during recharge of the membrane capacitance as potassium ions move with their concentration gradient but against the membrane potential. This mechanism is called the "Condenser Theory". Additional heat may be generated by membrane configuration changes driven by the changes in membrane potential. An increase in entropy during depolarization would release heat; entropy increase during repolarization would absorb heat. However, any such entropic contributions are incompatible with Hodgkin and Huxley model
239: 350:(the temperature below which the consistency changes from fluid to gel-like) only slightly below the organism's body temperature, and this allows for the propagation of solitons. An action potential traveling along a mixed nerve results in a slight increase in temperature followed by a decrease in temperature. Soliton model proponents claim that no net heat is released during the overall pulse and that the observed temperature changes are inconsistent with the Hodgkin-Huxley model. However, this is untrue: the Hodgkin Huxley model predicts a biphasic release and absorption of heat. In addition, the action potential causes a slight local thickening of the membrane and a force acting outwards; this effect is not predicted by the Hodgkin–Huxley model but does not contradict it, either. 763:) to experimentally dissect the action potential in the squid giant axon, uses electronic feedback to measure the current necessary to hold membrane voltage constant at a commanded value. A silver wire, inserted into the interior of the axon, forces a constant membrane voltage along the length of the axon. Under these circumstances, there is no possibility of a traveling 'soliton'. Any thermodynamic changes are very different from those resulting from an action potential. Yet, the measured currents accurately reproduce the action potential. 715: 330:
two dimensional sound waves in the membrane by nonlinear elastic properties near a phase transition. The initial impulse can acquire a stable shape under such circumstances, in general known as a solitary wave. Solitons are the simplest solution of the set of nonlinear wave equations governing such phenomenon and were applied to model nerve impulse in 2005 by Thomas Heimburg and Andrew D. Jackson, both at the
165: 63: 22: 362:. Indeed, such nonlinear sound waves have now been shown to exist at lipid interfaces that show superficial similarity to action potentials (electro-opto-mechanical coupling, velocities, biphasic pulse shape, threshold for excitation etc.). Furthermore, the waves remain localized in the membrane and do not spread out in the surrounding due to an impedance mismatch. 676:
those reported for ion channel proteins. They are thought to be caused by lipid membrane pores spontaneously generated by the thermal fluctuations. Such thermal fluctuations explain the specific ionic selectivity or the specific time-course of the response to voltage changes on the basis of their effect on the macroscopic susceptibilities of the system.
793:(TTX) blocks action potentials at extremely low concentrations. The site of action of TTX on the sodium channel has been identified. Dendrotoxins block the potassium channels. These drugs produce quantitatively predictable changes in the action potential. The 'soliton model' provides no explanation for these pharmacological effects. 2131: 802:
A recent theoretical model, proposed by Ahmed El Hady and Benjamin Machta, proposes that there is a mechanical surface wave which co-propagates with the electrical action potential. These surface waves are called "action waves". In the El Hady–Machta's model, these co-propagating waves are driven by
738:
An important assumption of the soliton model is the presence of a phase transition near the ambient temperature of the axon ("Formalism", above). Then, rapid change of temperature away from the phase transition temperature would necessarily cause large changes in the action potential. Below the phase
705:
or lowering temperature, this difference can be restored back to normal, which should cancel the action of anesthetics: this is indeed observed. The amount of pressure needed to cancel the action of an anesthetic of a given lipid solubility can be computed from the soliton model and agrees reasonably
780:
The current underlying the action potential depolarization is selective for sodium. Repolarization depends on a selective potassium current. These currents have very specific responses to voltage changes which quantitatively explain the action potential. Substitution of non-permeable ions for sodium
581: 745:
Nerve impulses traveling in opposite directions annihilate each other on collision. On the other hand, mechanical waves do not annihilate but pass through each other. Soliton model proponents have attempted to show that action potentials can pass through a collision; however, collision annihilation
729:
An action potential initiated anywhere on an axon will travel in an antidromic (backward) direction to the neuron soma (cell body) without loss of amplitude and produce a full-amplitude action potential in the soma. As the membrane area of the soma is orders of magnitude larger than the area of the
771:
The patch clamp technique isolates a microscopic patch of membrane on the tip of a glass pipette. It is then possible to record currents from single ionic channels. There is no possibility of propagating solitons or thermodynamic changes. Yet, the properties of these channels (temporal response to
750:
action potentials is a routinely observed phenomenon in neuroscience laboratories and are the basis of a standard technique for identification of neurons. Solitons pass each other on collision (Figure--"Collision of Solitons"), solitary waves in general can pass, annihilate or bounce of each other
329:
in nerve fibers and its importance for nerve pulse propagation. Based on Tasaki's work, Konrad Kaufman proposed sound waves as a physical basis for nerve pulse propagation in an unpublished manuscript. The basic idea at the core of the soliton model is the balancing of intrinsic dispersion of the
309:
waves in general) depends on adiabatic propagation in which the energy provided at the source of excitation is carried adiabatically through the medium, i.e. plasma membrane. The measurement of a temperature pulse and the claimed absence of heat release during an action potential were the basis of
700:
such as ion channels but instead by dissolving in and changing the properties of the lipid membrane. Dissolving substances in the membrane lowers the membrane's freezing point, and the resulting larger difference between body temperature and freezing point inhibits the propagation of solitons. By
301:
to enter the cell (inward current). The resulting decrease in membrane potential opens nearby voltage-gated sodium channels, thus propagating the action potential. The transmembrane potential is restored by delayed opening of potassium channels. Soliton hypothesis proponents assert that energy is
675:
proteins on a molecular scale. It is rather assumed that their properties are implicitly contained in the macroscopic thermodynamic properties of the nerve membranes. The soliton model predicts membrane current fluctuations during the action potential. These currents are of similar appearance as
661:
for solitons in water canals. The solutions of the above equation possess a limiting maximum amplitude and a minimum propagation velocity that is similar to the pulse velocity in myelinated nerves. Under restrictive assumptions, there exist periodic solutions that display hyperpolarization and
730:
axon, conservation of energy requires that an adiabatic mechanical wave decrease in amplitude. Since the absence of heat production is one of the claimed justifications of the 'soliton model', this is particularly difficult to explain within that model.
670:
Advocates of the soliton model claim that it explains several aspects of the action potential, which are not explained by the Hodgkin–Huxley model. Since it is of thermodynamic nature it does not address the properties of single macromolecules like
739:
transition temperature, the soliton wave would not be possible. Yet, action potentials are present at 0 Â°C. The time course is slowed in a manner predicted by the measured opening and closing kinetics of the Hodgkin-Huxley ion channels.
353:
The soliton model attempts to explain the electrical currents associated with the action potential as follows: the traveling soliton locally changes density and thickness of the membrane, and since the membrane contains many charged and
338:. Heimburg heads the institute's Membrane Biophysics Group. The biological physics group of Matthias Schneider has studied propagation of two-dimensional sound waves in lipid interfaces and their possible role in biological signalling 379: 2643:
Gonzalez, Alfredo; Budvytyte, Rima; Mosgaard, Lars D; Nissen, Søren; Heimburg, Thomas (10 Sep 2014). "Penetration of Action Potentials During Collision in the Median and Lateral Giant Axons of Invertebrates".
238: 2342:
Villagran Vargas, E., Ludu, A., Hustert, R., Gumrich, P., Jackson, A.D., Heimburg, T. (2011). "Periodic solutions and refractory periods in the soliton theory for nerves and the locust femoral nerve".
2069:
Griesbauer, J; Bossinger, S; Wixforth, A; Schneider, M (19 Dec 2012). "Simultaneously propagating voltage and pressure pulses in lipid monolayers of pork brain and synthetic lipids".
859: 2760: 866: 1686: 1956:
Griesbauer, J; Bossinger, S; Wixforth, A; Schneider, M (9 May 2012). "Propagation of 2D Pressure Pulses in Lipid Monolayers and Its Possible Implications for Biology".
2956: 2537: 2395: 2271: 2214: 1942: 1885: 1818: 1094: 1702: 80: 35: 576:{\displaystyle {\frac {\partial ^{2}\Delta \rho }{\partial t^{2}}}={\frac {\partial }{\partial x}}\left-h{\frac {\partial ^{4}\Delta \rho }{\partial x^{4}}},} 647:
are dictated by the thermodynamic properties of the nerve membrane and cannot be adjusted freely. They have to be determined experimentally. The parameter
916: 302:
mainly conserved during propagation except dissipation losses; Measured temperature changes are completely inconsistent with the Hodgkin-Huxley model.
321:
pioneered a thermodynamic approach to the phenomenon of nerve pulse propagation which identified several phenomena that were not included in the
658: 2708: 1669: 127: 772:
voltage jumps, ionic selectivity) accurately predict the properties of the macroscopic currents measured under conventional voltage clamp.
99: 2981: 626:
describe the nature of the phase transition and thereby the nonlinearity of the elastic constants of the nerve membrane. The parameters
2163: 41: 106: 2831: 2698: 781:
abolishes the action potential. The 'soliton model' cannot explain either the ionic selectivity or the responses to voltage changes.
225: 207: 146: 49: 2022:"Evidence for two-dimensional solitary sound waves in a lipid controlled interface and its implications for biological signalling" 930: 174: 113: 2976: 689: 84: 2550:
Rall, W and Shepherd, GM (1968) Theoretical reconstructions of dendrodendritic synaptic interactions in the olfactory bulb.
852: 714: 325:. Along with measuring various non-electrical components of a nerve impulse, Tasaki investigated the physical chemistry of 1832:
Heimburg, T., Jackson, A.D. (2007). "On the action potential as a propagating density pulse and the role of anesthetics".
371: 95: 2147: 271: 1899:
Andersen, S.S.L., Jackson, A.D., Heimburg, T. (2009). "Towards a thermodynamic theory of nerve pulse propagation".
2161:
Abbott, B.C., Hill, A.V., Howarth, J.V. (1958). "The positive and negative heat associated with a nerve impulse".
836:
The 60th anniversary of the Hodgkin-Huxley model: a critical assessment from a historical and modeler’s viewpoint
294: 266:
based on a thermodynamic theory of nerve pulse propagation. It proposes that the signals travel along the cell's
817: 722:
The following is a list of some of the disagreements between experimental observations and the "soliton model":
322: 286: 963: 812: 335: 255: 2826:
Hille, Bertil (2001). Ion channels of excitable membranes (3. ed. ed.). Sunderland, Massachusetts: Sinauer.
73: 120: 1424:"Mechanical and Thermal Changes in the Torpedo Electric Organ Associated with Its Postsynaptic Potentials" 1257:"A quantitative description of membrane current and its application to conduction and excitation in nerve" 846: 178: 2950: 2895: 2531: 2389: 2265: 2228:
Iwasa, K., Tasaki I., Gibbons, R. (1980). "Swelling of nerve fibres associated with action potentials".
2208: 1936: 1879: 1812: 1512:"Rapid heat production associated with electrical excitation of the electric organs of the electric eel" 1088: 873: 985: 1551:"Rapid thermal and mechanical changes in garfish olfactory nerve associated with a propagated impulse" 2914: 2782: 2733: 2663: 2493: 2428: 2298: 2237: 2172: 2088: 1975: 1851: 1772: 1725: 1618: 1562: 1376: 1317: 889: 760: 692:
holds that the strength of a wide variety of chemically diverse anesthetics is proportional to their
331: 1463:"The heat production associated with the passage of a single impulse in pike olfactory nerve fibres" 185: 2986: 2893:
El Hady, A., Machta, B. (2015). "Mechanical surface waves accompany action potential propagation".
847:
A comparison of the Hodgkin-Huxley model and the Soliton theory for the Action Potential in Nerves
654: 2133:
NON-LINEAR SOLITARY SOUND WAVES IN LIPID MEMBRANES AND THEIR POSSIBLE ROLE IN BIOLOGICAL SIGNALING
922: 2938: 2904: 2806: 2772: 2679: 2653: 2483: 2452: 2418: 2377: 2351: 2196: 2141: 2112: 2078: 1999: 1965: 1924: 1867: 1841: 1696: 1634: 1248: 1199: 1150: 1101: 1034: 1016: 1110:"Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo" 1047:"Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo" 2930: 2875: 2827: 2798: 2704: 2598: 2519: 2444: 2369: 2324: 2253: 2188: 2104: 2051: 1991: 1916: 1800: 1741: 1688:
Action Potentials and Electrochemical Coupling in the Macroscopic Chiral Phospholipid Membrane
1665: 1642: 1588: 1531: 1492: 1443: 1404: 1345: 1286: 1237: 1188: 1139: 1076: 1008: 905: 867:
Action Potentials and Electrochemical Coupling in the Macroscopic Chiral Phospholipid Membrane
842: 684:
The authors claim that their model explains the previously obscure mode of action of numerous
355: 259: 1716:
Xin-Yi, Wang (1985). "Solitary wave and nonequilibrium phase transition in liquid crystals".
2922: 2865: 2857: 2790: 2741: 2671: 2625: 2588: 2580: 2509: 2501: 2436: 2361: 2314: 2306: 2245: 2180: 2096: 2041: 2033: 1983: 1908: 1859: 1790: 1780: 1733: 1626: 1578: 1570: 1523: 1482: 1474: 1435: 1394: 1384: 1335: 1325: 1276: 1268: 1227: 1219: 1178: 1170: 1129: 1121: 1066: 1058: 1000: 897: 835: 359: 326: 290: 2724:
Eckl, C; Mayer, A P; Kovalev, A S (3 August 1998). "Do Surface Acoustic Solitons Exist?".
1208:"The dual effect of membrane potential on sodium conductance in the giant axon of Loligo" 657:). The above equation does not contain any fit parameters. It is formally related to the 2918: 2786: 2737: 2667: 2555: 2497: 2432: 2302: 2241: 2176: 2092: 1979: 1855: 1776: 1729: 1622: 1566: 1380: 1321: 893: 2870: 2845: 2593: 2568: 2514: 2471: 2319: 2286: 2046: 2021: 1795: 1760: 1583: 1550: 1487: 1462: 1399: 1364: 1281: 1256: 1232: 1207: 1183: 1158: 1134: 1109: 1071: 1046: 822: 1574: 1340: 1305: 945: 2970: 2629: 2569:"The Effect of Temperature on the Electrical Activity of the Giant Axon of the Squid" 1252: 1203: 1154: 1105: 1038: 347: 318: 267: 2942: 2810: 2761:"Solitary shock waves and adiabatic phase transition in lipid interfaces and nerves" 2683: 2381: 2116: 1912: 1004: 2861: 2584: 2200: 2003: 1987: 1928: 1871: 1478: 1272: 1223: 1174: 1125: 1062: 1042: 1020: 790: 251: 189: 2456: 925:, Eurekalert, according to a press release University of Copenhagen, 6 March 2007 2505: 672: 605:
is the change in membrane density under the influence of the action potential,
62: 2794: 2745: 2100: 370:
The soliton representing the action potential of nerves is the solution of the
2846:"Structure and function of voltage-gated sodium channels at atomic resolution" 2675: 2440: 2365: 2310: 1863: 747: 685: 2616:
Tasaki, Ichiji (1949). "Collision of two nerve impulses in the nerve fiber".
1737: 901: 2249: 1785: 1389: 2934: 2879: 2802: 2602: 2523: 2448: 2373: 2328: 2192: 2184: 2108: 2055: 2037: 1995: 1920: 1804: 1630: 1527: 1439: 1408: 1330: 1290: 1241: 1192: 1143: 1080: 1012: 964:
Solitary acoustic waves observed to propagate at a lipid membrane interface
2257: 1745: 1592: 1535: 1496: 1447: 909: 653:
describes the frequency dependence of the sound velocity of the membrane (
2700:
Peripheral Nerve Diseases: Handbook of Clinical Neurophysiology, Volume 7
1646: 880:
Pradip Das; W.H. Schwarz (4 November 1994). "Solitons in cell membrane".
2488: 1846: 1349: 346:
The model starts with the observation that cell membranes always have a
242:
Nonlinear electro-mechanical wave measured in an artificial lipid system
2926: 2759:
Shrivastava, Shamit; Kang, Kevin; Schneider, Matthias F (30 Jan 2015).
1638: 697: 282: 278: 1365:"Metabolic cost as a unifying principle governing neuronal biophysics" 1461:
Howarth, J V; Keynes, R D; Ritchie, J M; Muralt, A von (1 Jul 1975).
1511: 1423: 1159:"The components of membrane conductance in the giant axon of Loligo" 803:
voltage changes across the membrane caused by the action potential.
1609:
Howarth, J. V. (1975). "Heat Production in Non-Myelinated Nerves".
710:
Differences between model predictions and experimental observations
696:
solubility, suggesting that they do not act by binding to specific
2909: 2777: 2658: 2423: 2356: 2083: 1970: 693: 306: 274: 237: 1306:"Molecular events and energy changes during the action potential" 263: 2136:(1st ed.). Boston, MA 02215 US: Thesis, Boston University. 358:
substances, this will result in an electrical effect, akin to
298: 158: 56: 15: 751:
and solitons are only a special case of such solitary waves.
986:"Towards a thermodynamic theory of nerve pulse propagation" 735:
Persistence of action potential over wide temperature range
702: 2285:
Griesbauer, J; Wixforth, A; Schneider, M F (15 Nov 2009).
1369:
Proceedings of the National Academy of Sciences of the USA
1363:
Hasenstaub, A; Callaway, E; Otte, S; Sejnowski, T (2010).
2020:
Shrivastava, Shamit; Schneider, Matthias (18 June 2014).
874:
Towards a thermodynamic theory of nerve pulse propagation
759:
The voltage clamp, used by Hodgkin and Huxley (1952) (
2822: 2820: 2556:
http://jn.physiology.org/content/jn/31/6/884.full.pdf
1604: 1602: 382: 1664:. Bethesda, Maryland: Academic Press Inc. (London). 1761:"On soliton propagation in biomembranes and nerves" 1428:
Biochemical and Biophysical Research Communications
919:, Princeton University Journal watch, 1 April 2015. 87:. Unsourced material may be challenged and removed. 575: 285:. The model is proposed as an alternative to the 917:Revisiting the mechanics of the action potential 1662:Physiology and Electrochemistry of Nerve Fibers 1611:Philosophical Transactions of the Royal Society 860:Physiology and Electrochemistry of Nerve Fibers 2015: 2013: 984:Andersen, S; Jackson, A; Heimburg, T (2009). 614:is the sound velocity of the nerve membrane, 8: 2955:: CS1 maint: multiple names: authors list ( 2536:: CS1 maint: multiple names: authors list ( 2394:: CS1 maint: multiple names: authors list ( 2270:: CS1 maint: multiple names: authors list ( 2213:: CS1 maint: multiple names: authors list ( 1941:: CS1 maint: multiple names: authors list ( 1884:: CS1 maint: multiple names: authors list ( 1817:: CS1 maint: multiple names: authors list ( 1759:Heimburg, T., Jackson, A.D. (12 July 2005). 1093:: CS1 maint: multiple names: authors list ( 931:"Function of Nerves — Action of Anesthetics" 2409:Heimburg, T. (2010). "Lipid Ion Channels". 1304:Margineanu, D.-G; Schoffeniels, E. (1977). 50:Learn how and when to remove these messages 2472:"The thermodynamics of general anesthesia" 1701:: CS1 maint: location missing publisher ( 188:. Please do not remove this message until 2908: 2869: 2776: 2657: 2592: 2513: 2487: 2422: 2355: 2318: 2082: 2045: 1969: 1845: 1794: 1784: 1582: 1486: 1398: 1388: 1339: 1329: 1280: 1231: 1182: 1133: 1070: 561: 540: 533: 499: 488: 457: 452: 423: 411: 390: 383: 381: 226:Learn how and when to remove this message 208:Learn how and when to remove this message 147:Learn how and when to remove this message 1549:Tasaki, K; Kusano, K; Byrne, PM (1989). 713: 184:Relevant discussion may be found on the 976: 2948: 2529: 2387: 2287:"Wave Propagation in Lipid Monolayers" 2263: 2206: 2139: 2026:Journal of the Royal Society Interface 1934: 1877: 1810: 1694: 1086: 598:is the position along the nerve axon. 297:in the membrane open and allow sodium 726:Antidromic invasion of soma from axon 706:well with experimental observations. 7: 2470:Heimburg, T., Jackson, A.D. (2007). 85:adding citations to reliable sources 923:On the (sound) track of anesthetics 2164:Proceedings of the Royal Society B 1422:Tasaki, Ichiji (13 October 1995). 756:Ionic currents under voltage clamp 554: 546: 537: 513: 505: 502: 481: 469: 429: 425: 404: 396: 387: 262:are initiated and conducted along 14: 31:This article has multiple issues. 2130:Shrivastava, Shamit (Jan 2014). 1510:Tasaki, I; Byrne, P. M. (1993). 281:) pulses that can be modeled as 270:in the form of certain kinds of 163: 61: 20: 1913:10.1016/j.pneurobio.2009.03.002 1005:10.1016/j.pneurobio.2009.03.002 872:Andersen, Jackson and Heimburg" 96:"Soliton model in neuroscience" 72:needs additional citations for 39:or discuss these issues on the 2862:10.1113/expphysiol.2013.071969 2585:10.1113/jphysiol.1949.sp004388 1988:10.1103/PhysRevLett.108.198103 1479:10.1113/jphysiol.1975.sp011019 1273:10.1113/jphysiol.1952.sp004764 1224:10.1113/jphysiol.1952.sp004719 1175:10.1113/jphysiol.1952.sp004718 1126:10.1113/jphysiol.1952.sp004717 1063:10.1113/jphysiol.1952.sp004717 701:increasing pressure, lowering 1: 1575:10.1016/s0006-3495(89)82902-9 372:partial differential equation 2703:. Elsevier Health Sciences. 2630:10.1016/0006-3002(49)90121-3 1765:Proc. Natl. Acad. Sci. U.S.A 777:Selective ionic conductivity 2506:10.1529/biophysj.106.099754 960:An elementary introduction. 855:, The Guardian, 1 May 2015. 258:that claims to explain how 190:conditions to do so are met 3003: 2982:Computational neuroscience 2795:10.1103/PhysRevE.91.012715 2746:10.1103/PhysRevLett.81.983 2697:Kimura, Jun (2006-06-08). 2101:10.1103/PhysRevE.86.061909 1516:Biochem Biophys Res Commun 845:, Thomas Heimburg (2012) " 295:voltage-gated ion channels 2676:10.1103/PhysRevX.4.031047 2441:10.1016/j.bpc.2010.02.018 2366:10.1016/j.bpc.2010.11.001 2311:10.1016/j.bpj.2009.07.049 1864:10.1142/S179304800700043X 1685:Kaufmann, Konrad (1989). 1467:The Journal of Physiology 853:Action Waves in the Brain 690:Meyer–Overton observation 680:Application to anesthesia 2146:: CS1 maint: location ( 1738:10.1103/PhysRevA.32.3126 993:Progress in Neurobiology 966:, Phys.org June 20, 2014 902:10.1103/PhysRevE.51.3588 834:Federico Faraci (2013) " 813:Biological neuron models 659:Boussinesq approximation 336:University of Copenhagen 2850:Experimental Physiology 2726:Physical Review Letters 2250:10.1126/science.7423196 1958:Physical Review Letters 1786:10.1073/pnas.0503823102 1660:Tasaki, Ichiji (1982). 1390:10.1073/pnas.0914886107 929:Kaare GrĂŚsbøll (2006). 865:Konrad Kaufman (1989) " 768:Single channel currents 305:The soliton model (and 2844:Catterall, WA (2014). 2567:Hodgkin; Katz (1949). 2185:10.1098/rspb.1958.0012 2038:10.1098/rsif.2014.0098 1631:10.1098/rstb.1975.0020 1528:10.1006/bbrc.1993.2565 1440:10.1006/bbrc.1995.2514 1331:10.1073/pnas.74.9.3810 858:Ichiji Tasaki (1982) " 719: 577: 243: 2977:Cellular neuroscience 2896:Nature Communications 2344:Biophysical Chemistry 1114:Journal of Physiology 1051:Journal of Physiology 718:Collision of solitons 717: 578: 241: 2618:Biochim Biophys Acta 818:Hodgkin–Huxley model 761:Hodgkin-Huxley Model 666:Role of ion channels 662:refractory periods. 380: 332:Niels Bohr Institute 323:Hodgkin–Huxley model 287:Hodgkin–Huxley model 81:improve this article 2919:2015NatCo...6.6697E 2787:2015PhRvE..91a2715S 2738:1998PhRvL..81..983E 2668:2014PhRvX...4c1047G 2498:2007BpJ....92.3159H 2433:2010arXiv1001.2524H 2303:2009BpJ....97.2710G 2291:Biophysical Journal 2242:1980Sci...210..338I 2177:1958RSPSB.148..149A 2093:2012PhRvE..86f1909G 1980:2012PhRvL.108s8103G 1856:2006physics..10117H 1777:2005PNAS..102.9790H 1730:1985PhRvA..32.3126X 1623:1975RSPTB.270..425H 1567:1989BpJ....55.1033T 1381:2010PNAS..10712329H 1375:(27): 12329–12334. 1322:1977PNAS...74.3810M 894:1995PhRvE..51.3588D 746:of orthodromic and 655:dispersion relation 462: 177:of this article is 2927:10.1038/ncomms7697 1834:Biophys. Rev. Lett 1691:. Caruaru, Brazil. 720: 573: 448: 248:soliton hypothesis 244: 2771:(12715): 012715. 2765:Physical Review E 2710:978-0-444-51358-8 2646:Physical Review X 2297:(10): 2710–2716. 2071:Physical Review E 1718:Physical Review A 1671:978-0-12-683780-3 882:Physical Review E 843:Ursula van Rienen 568: 520: 436: 418: 327:phase transitions 291:action potentials 260:action potentials 236: 235: 228: 218: 217: 210: 157: 156: 149: 131: 54: 2994: 2961: 2960: 2954: 2946: 2912: 2890: 2884: 2883: 2873: 2841: 2835: 2824: 2815: 2814: 2780: 2756: 2750: 2749: 2721: 2715: 2714: 2694: 2688: 2687: 2661: 2640: 2634: 2633: 2613: 2607: 2606: 2596: 2579:(1–2): 240–249. 2564: 2558: 2548: 2542: 2541: 2535: 2527: 2517: 2491: 2467: 2461: 2460: 2426: 2406: 2400: 2399: 2393: 2385: 2359: 2350:(2–3): 159–167. 2339: 2333: 2332: 2322: 2282: 2276: 2275: 2269: 2261: 2225: 2219: 2218: 2212: 2204: 2171:(931): 149–187. 2158: 2152: 2151: 2145: 2137: 2127: 2121: 2120: 2086: 2066: 2060: 2059: 2049: 2032:(97): 20140098. 2017: 2008: 2007: 1973: 1953: 1947: 1946: 1940: 1932: 1896: 1890: 1889: 1883: 1875: 1849: 1829: 1823: 1822: 1816: 1808: 1798: 1788: 1771:(2): 9790–9795. 1756: 1750: 1749: 1724:(5): 3126–3129. 1713: 1707: 1706: 1700: 1692: 1682: 1676: 1675: 1657: 1651: 1650: 1617:(908): 425–432. 1606: 1597: 1596: 1586: 1561:(6): 1033–1040. 1546: 1540: 1539: 1507: 1501: 1500: 1490: 1458: 1452: 1451: 1419: 1413: 1412: 1402: 1392: 1360: 1354: 1353: 1343: 1333: 1316:(9): 3810–3813. 1301: 1295: 1294: 1284: 1245: 1235: 1196: 1186: 1147: 1137: 1098: 1092: 1084: 1074: 1031: 1025: 1024: 990: 981: 959: 957: 956: 950: 944:. Archived from 935: 913: 888:(4): 3588–3612. 841:Revathi Appali, 652: 646: 640: 634: 625: 619: 613: 604: 597: 591: 582: 580: 579: 574: 569: 567: 566: 565: 552: 545: 544: 534: 526: 522: 521: 519: 511: 500: 498: 494: 493: 492: 461: 456: 437: 435: 424: 419: 417: 416: 415: 402: 395: 394: 384: 360:piezoelectricity 231: 224: 213: 206: 202: 199: 193: 167: 166: 159: 152: 145: 141: 138: 132: 130: 89: 65: 57: 46: 24: 23: 16: 3002: 3001: 2997: 2996: 2995: 2993: 2992: 2991: 2967: 2966: 2965: 2964: 2947: 2892: 2891: 2887: 2843: 2842: 2838: 2825: 2818: 2758: 2757: 2753: 2723: 2722: 2718: 2711: 2696: 2695: 2691: 2642: 2641: 2637: 2615: 2614: 2610: 2566: 2565: 2561: 2549: 2545: 2528: 2489:physics/0610147 2469: 2468: 2464: 2408: 2407: 2403: 2386: 2341: 2340: 2336: 2284: 2283: 2279: 2262: 2236:(4467): 338–9. 2227: 2226: 2222: 2205: 2160: 2159: 2155: 2138: 2129: 2128: 2124: 2068: 2067: 2063: 2019: 2018: 2011: 1955: 1954: 1950: 1933: 1901:Prog. Neurobiol 1898: 1897: 1893: 1876: 1847:physics/0610117 1831: 1830: 1826: 1809: 1758: 1757: 1753: 1715: 1714: 1710: 1693: 1684: 1683: 1679: 1672: 1659: 1658: 1654: 1608: 1607: 1600: 1548: 1547: 1543: 1509: 1508: 1504: 1460: 1459: 1455: 1421: 1420: 1416: 1362: 1361: 1357: 1303: 1302: 1298: 1247: 1246: 1198: 1197: 1149: 1148: 1100: 1099: 1085: 1033: 1032: 1028: 988: 983: 982: 978: 973: 954: 952: 948: 933: 928: 879: 831: 809: 800: 712: 682: 668: 648: 642: 636: 633: 627: 621: 615: 612: 606: 599: 593: 587: 557: 553: 536: 535: 512: 501: 484: 447: 443: 442: 438: 428: 407: 403: 386: 385: 378: 377: 368: 344: 316: 232: 221: 220: 219: 214: 203: 197: 194: 183: 168: 164: 153: 142: 136: 133: 90: 88: 78: 66: 25: 21: 12: 11: 5: 3000: 2998: 2990: 2989: 2984: 2979: 2969: 2968: 2963: 2962: 2885: 2836: 2816: 2751: 2732:(5): 983–986. 2716: 2709: 2689: 2635: 2608: 2559: 2552:J Neurophysiol 2543: 2482:(9): 3159–65. 2462: 2401: 2334: 2277: 2220: 2153: 2122: 2061: 2009: 1964:(19): 198103. 1948: 1907:(2): 104–113. 1891: 1824: 1751: 1708: 1677: 1670: 1652: 1598: 1541: 1522:(2): 910–915. 1502: 1473:(2): 349–368. 1453: 1434:(2): 654–658. 1414: 1355: 1296: 1267:(4): 500–544. 1218:(4): 497–506. 1169:(4): 473–496. 1120:(4): 449–472. 1057:(4): 424–448. 1026: 999:(2): 104–113. 975: 974: 972: 969: 968: 967: 961: 926: 920: 914: 877: 870: 863: 856: 850: 839: 830: 827: 826: 825: 823:Vector soliton 820: 815: 808: 805: 799: 796: 795: 794: 787: 783: 782: 778: 774: 773: 769: 765: 764: 757: 753: 752: 743: 740: 736: 732: 731: 727: 711: 708: 681: 678: 667: 664: 631: 610: 584: 583: 572: 564: 560: 556: 551: 548: 543: 539: 532: 529: 525: 518: 515: 510: 507: 504: 497: 491: 487: 483: 480: 477: 474: 471: 468: 465: 460: 455: 451: 446: 441: 434: 431: 427: 422: 414: 410: 406: 401: 398: 393: 389: 367: 364: 348:freezing point 343: 340: 315: 312: 234: 233: 216: 215: 171: 169: 162: 155: 154: 69: 67: 60: 55: 29: 28: 26: 19: 13: 10: 9: 6: 4: 3: 2: 2999: 2988: 2985: 2983: 2980: 2978: 2975: 2974: 2972: 2958: 2952: 2944: 2940: 2936: 2932: 2928: 2924: 2920: 2916: 2911: 2906: 2902: 2898: 2897: 2889: 2886: 2881: 2877: 2872: 2867: 2863: 2859: 2855: 2851: 2847: 2840: 2837: 2833: 2832:9780878933211 2829: 2823: 2821: 2817: 2812: 2808: 2804: 2800: 2796: 2792: 2788: 2784: 2779: 2774: 2770: 2766: 2762: 2755: 2752: 2747: 2743: 2739: 2735: 2731: 2727: 2720: 2717: 2712: 2706: 2702: 2701: 2693: 2690: 2685: 2681: 2677: 2673: 2669: 2665: 2660: 2655: 2652:(3): 031047. 2651: 2647: 2639: 2636: 2631: 2627: 2623: 2619: 2612: 2609: 2604: 2600: 2595: 2590: 2586: 2582: 2578: 2574: 2570: 2563: 2560: 2557: 2553: 2547: 2544: 2539: 2533: 2525: 2521: 2516: 2511: 2507: 2503: 2499: 2495: 2490: 2485: 2481: 2477: 2473: 2466: 2463: 2458: 2454: 2450: 2446: 2442: 2438: 2434: 2430: 2425: 2420: 2417:(1–3): 2–22. 2416: 2412: 2411:Biophys. Chem 2405: 2402: 2397: 2391: 2383: 2379: 2375: 2371: 2367: 2363: 2358: 2353: 2349: 2345: 2338: 2335: 2330: 2326: 2321: 2316: 2312: 2308: 2304: 2300: 2296: 2292: 2288: 2281: 2278: 2273: 2267: 2259: 2255: 2251: 2247: 2243: 2239: 2235: 2231: 2224: 2221: 2216: 2210: 2202: 2198: 2194: 2190: 2186: 2182: 2178: 2174: 2170: 2166: 2165: 2157: 2154: 2149: 2143: 2135: 2134: 2126: 2123: 2118: 2114: 2110: 2106: 2102: 2098: 2094: 2090: 2085: 2080: 2077:(6): 061909. 2076: 2072: 2065: 2062: 2057: 2053: 2048: 2043: 2039: 2035: 2031: 2027: 2023: 2016: 2014: 2010: 2005: 2001: 1997: 1993: 1989: 1985: 1981: 1977: 1972: 1967: 1963: 1959: 1952: 1949: 1944: 1938: 1930: 1926: 1922: 1918: 1914: 1910: 1906: 1902: 1895: 1892: 1887: 1881: 1873: 1869: 1865: 1861: 1857: 1853: 1848: 1843: 1839: 1835: 1828: 1825: 1820: 1814: 1806: 1802: 1797: 1792: 1787: 1782: 1778: 1774: 1770: 1766: 1762: 1755: 1752: 1747: 1743: 1739: 1735: 1731: 1727: 1723: 1719: 1712: 1709: 1704: 1698: 1690: 1689: 1681: 1678: 1673: 1667: 1663: 1656: 1653: 1648: 1644: 1640: 1636: 1632: 1628: 1624: 1620: 1616: 1612: 1605: 1603: 1599: 1594: 1590: 1585: 1580: 1576: 1572: 1568: 1564: 1560: 1556: 1552: 1545: 1542: 1537: 1533: 1529: 1525: 1521: 1517: 1513: 1506: 1503: 1498: 1494: 1489: 1484: 1480: 1476: 1472: 1468: 1464: 1457: 1454: 1449: 1445: 1441: 1437: 1433: 1429: 1425: 1418: 1415: 1410: 1406: 1401: 1396: 1391: 1386: 1382: 1378: 1374: 1370: 1366: 1359: 1356: 1351: 1347: 1342: 1337: 1332: 1327: 1323: 1319: 1315: 1311: 1307: 1300: 1297: 1292: 1288: 1283: 1278: 1274: 1270: 1266: 1262: 1258: 1254: 1250: 1243: 1239: 1234: 1229: 1225: 1221: 1217: 1213: 1209: 1205: 1201: 1194: 1190: 1185: 1180: 1176: 1172: 1168: 1164: 1160: 1156: 1152: 1145: 1141: 1136: 1131: 1127: 1123: 1119: 1115: 1111: 1107: 1103: 1096: 1090: 1082: 1078: 1073: 1068: 1064: 1060: 1056: 1052: 1048: 1044: 1040: 1036: 1030: 1027: 1022: 1018: 1014: 1010: 1006: 1002: 998: 994: 987: 980: 977: 970: 965: 962: 951:on 2016-03-03 947: 943: 939: 932: 927: 924: 921: 918: 915: 911: 907: 903: 899: 895: 891: 887: 883: 878: 875: 871: 868: 864: 861: 857: 854: 851: 848: 844: 840: 837: 833: 832: 828: 824: 821: 819: 816: 814: 811: 810: 806: 804: 797: 792: 788: 785: 784: 779: 776: 775: 770: 767: 766: 762: 758: 755: 754: 749: 744: 741: 737: 734: 733: 728: 725: 724: 723: 716: 709: 707: 704: 699: 695: 691: 687: 679: 677: 674: 665: 663: 660: 656: 651: 645: 639: 630: 624: 618: 609: 603: 596: 590: 570: 562: 558: 549: 541: 530: 527: 523: 516: 508: 495: 489: 485: 478: 475: 472: 466: 463: 458: 453: 449: 444: 439: 432: 420: 412: 408: 399: 391: 376: 375: 374: 373: 365: 363: 361: 357: 351: 349: 342:Justification 341: 339: 337: 333: 328: 324: 320: 319:Ichiji Tasaki 313: 311: 308: 303: 300: 296: 292: 288: 284: 280: 276: 273: 269: 265: 261: 257: 253: 249: 240: 230: 227: 212: 209: 201: 191: 187: 181: 180: 176: 170: 161: 160: 151: 148: 140: 129: 126: 122: 119: 115: 112: 108: 105: 101: 98: â€“  97: 93: 92:Find sources: 86: 82: 76: 75: 70:This article 68: 64: 59: 58: 53: 51: 44: 43: 38: 37: 32: 27: 18: 17: 2951:cite journal 2900: 2894: 2888: 2856:(1): 35–51. 2853: 2849: 2839: 2768: 2764: 2754: 2729: 2725: 2719: 2699: 2692: 2649: 2645: 2638: 2621: 2617: 2611: 2576: 2572: 2562: 2554:31, 884-915. 2551: 2546: 2532:cite journal 2479: 2475: 2465: 2414: 2410: 2404: 2390:cite journal 2347: 2343: 2337: 2294: 2290: 2280: 2266:cite journal 2233: 2229: 2223: 2209:cite journal 2168: 2162: 2156: 2132: 2125: 2074: 2070: 2064: 2029: 2025: 1961: 1957: 1951: 1937:cite journal 1904: 1900: 1894: 1880:cite journal 1837: 1833: 1827: 1813:cite journal 1768: 1764: 1754: 1721: 1717: 1711: 1687: 1680: 1661: 1655: 1614: 1610: 1558: 1554: 1544: 1519: 1515: 1505: 1470: 1466: 1456: 1431: 1427: 1417: 1372: 1368: 1358: 1313: 1309: 1299: 1264: 1260: 1215: 1211: 1166: 1162: 1117: 1113: 1089:cite journal 1054: 1050: 1029: 996: 992: 979: 953:. Retrieved 946:the original 941: 937: 885: 881: 801: 798:Action waves 791:tetrodotoxin 786:Pharmacology 721: 683: 669: 649: 643: 637: 628: 622: 616: 607: 601: 594: 592:is time and 588: 585: 369: 352: 345: 317: 304: 252:neuroscience 247: 245: 222: 204: 195: 173: 143: 134: 124: 117: 110: 103: 91: 79:Please help 74:verification 71: 47: 40: 34: 33:Please help 30: 2624:: 494–497. 686:anesthetics 673:ion channel 2987:Biophysics 2971:Categories 2573:J. Physiol 2476:Biophys. J 1249:Hodgkin AL 1200:Hodgkin AL 1151:Hodgkin AL 1102:Hodgkin AL 1035:Hodgkin AL 971:References 955:2007-03-11 748:antidromic 742:Collisions 175:neutrality 107:newspapers 36:improve it 2910:1407.7600 2778:1411.2454 2659:1404.3643 2424:1001.2524 2357:1006.3281 2142:cite book 2084:1211.4105 1971:1211.4104 1840:: 57–78. 1697:cite book 1555:Biophys J 1261:J Physiol 1253:Huxley AF 1212:J Physiol 1204:Huxley AF 1163:J Physiol 1155:Huxley AF 1106:Huxley AF 1039:Huxley AF 789:The drug 555:∂ 550:ρ 547:Δ 538:∂ 528:− 514:∂ 509:ρ 506:Δ 503:∂ 486:ρ 482:Δ 473:ρ 470:Δ 430:∂ 426:∂ 405:∂ 400:ρ 397:Δ 388:∂ 366:Formalism 289:in which 186:talk page 42:talk page 2943:17462621 2935:25819404 2903:: 6697. 2880:24097157 2811:12034915 2803:25679650 2684:17503341 2603:15394322 2524:17293400 2449:20385440 2382:15106768 2374:21177017 2329:19917224 2193:13518134 2117:25259498 2109:23367978 2056:24942845 1996:23003093 1921:19482227 1805:15994235 1409:20616090 1291:12991237 1255:(1952). 1242:14946715 1206:(1952). 1193:14946714 1157:(1952). 1144:14946713 1108:(1952). 1081:14946713 1045:(1952). 1013:19482227 807:See also 698:proteins 283:solitons 272:solitary 268:membrane 198:May 2015 179:disputed 137:May 2015 2915:Bibcode 2871:3885250 2783:Bibcode 2734:Bibcode 2664:Bibcode 2594:1392577 2515:1852341 2494:Bibcode 2429:Bibcode 2320:2776282 2299:Bibcode 2258:7423196 2238:Bibcode 2230:Science 2201:2252017 2173:Bibcode 2089:Bibcode 2047:4078894 2004:5829896 1976:Bibcode 1929:2218193 1872:1295386 1852:Bibcode 1796:1175000 1773:Bibcode 1746:9896466 1726:Bibcode 1639:2417341 1619:Bibcode 1593:2765644 1584:1330571 1563:Bibcode 1536:8267630 1497:1236946 1488:1309578 1448:7488005 1400:2901447 1377:Bibcode 1318:Bibcode 1282:1392413 1233:1392212 1184:1392209 1135:1392213 1072:1392213 1021:2218193 910:9963042 890:Bibcode 829:Sources 334:of the 314:History 279:density 121:scholar 2941:  2933:  2878:  2868:  2830:  2809:  2801:  2707:  2682:  2601:  2591:  2522:  2512:  2457:926828 2455:  2447:  2380:  2372:  2327:  2317:  2256:  2199:  2191:  2115:  2107:  2054:  2044:  2002:  1994:  1927:  1919:  1870:  1803:  1793:  1744:  1668:  1647:238239 1645:  1637:  1591:  1581:  1534:  1495:  1485:  1446:  1407:  1397:  1348:  1341:431740 1338:  1289:  1279:  1240:  1230:  1191:  1181:  1142:  1132:  1079:  1069:  1043:Katz B 1019:  1011:  908:  688:. The 586:where 123:  116:  109:  102:  94:  2939:S2CID 2905:arXiv 2807:S2CID 2773:arXiv 2680:S2CID 2654:arXiv 2484:arXiv 2453:S2CID 2419:arXiv 2378:S2CID 2352:arXiv 2197:S2CID 2113:S2CID 2079:arXiv 2000:S2CID 1966:arXiv 1925:S2CID 1868:S2CID 1842:arXiv 1635:JSTOR 1350:71734 1017:S2CID 989:(PDF) 949:(PDF) 938:Gamma 934:(PDF) 694:lipid 356:polar 307:sound 275:sound 264:axons 256:model 254:is a 128:JSTOR 114:books 2957:link 2931:PMID 2876:PMID 2828:ISBN 2799:PMID 2705:ISBN 2599:PMID 2538:link 2520:PMID 2445:PMID 2396:link 2370:PMID 2325:PMID 2272:link 2254:PMID 2215:link 2189:PMID 2148:link 2105:PMID 2052:PMID 1992:PMID 1943:link 1917:PMID 1886:link 1819:link 1801:PMID 1742:PMID 1703:link 1666:ISBN 1643:PMID 1589:PMID 1532:PMID 1493:PMID 1444:PMID 1405:PMID 1346:PMID 1310:PNAS 1287:PMID 1238:PMID 1189:PMID 1140:PMID 1095:link 1077:PMID 1009:PMID 906:PMID 641:and 620:and 299:ions 277:(or 246:The 172:The 100:news 2923:doi 2866:PMC 2858:doi 2791:doi 2742:doi 2672:doi 2626:doi 2589:PMC 2581:doi 2577:109 2510:PMC 2502:doi 2437:doi 2415:150 2362:doi 2348:153 2315:PMC 2307:doi 2246:doi 2234:210 2181:doi 2169:148 2097:doi 2042:PMC 2034:doi 1984:doi 1962:108 1909:doi 1860:doi 1791:PMC 1781:doi 1769:102 1734:doi 1627:doi 1615:270 1579:PMC 1571:doi 1524:doi 1520:197 1483:PMC 1475:doi 1471:249 1436:doi 1432:215 1395:PMC 1385:doi 1373:107 1336:PMC 1326:doi 1277:PMC 1269:doi 1265:117 1228:PMC 1220:doi 1216:116 1179:PMC 1171:doi 1167:116 1130:PMC 1122:doi 1118:116 1067:PMC 1059:doi 1055:116 1001:doi 942:143 898:doi 250:in 83:by 2973:: 2953:}} 2949:{{ 2937:. 2929:. 2921:. 2913:. 2899:. 2874:. 2864:. 2854:99 2852:. 2848:. 2819:^ 2805:. 2797:. 2789:. 2781:. 2769:91 2767:. 2763:. 2740:. 2730:81 2728:. 2678:. 2670:. 2662:. 2648:. 2620:. 2597:. 2587:. 2575:. 2571:. 2534:}} 2530:{{ 2518:. 2508:. 2500:. 2492:. 2480:92 2478:. 2474:. 2451:. 2443:. 2435:. 2427:. 2413:. 2392:}} 2388:{{ 2376:. 2368:. 2360:. 2346:. 2323:. 2313:. 2305:. 2295:97 2293:. 2289:. 2268:}} 2264:{{ 2252:. 2244:. 2232:. 2211:}} 2207:{{ 2195:. 2187:. 2179:. 2167:. 2144:}} 2140:{{ 2111:. 2103:. 2095:. 2087:. 2075:86 2073:. 2050:. 2040:. 2030:11 2028:. 2024:. 2012:^ 1998:. 1990:. 1982:. 1974:. 1960:. 1939:}} 1935:{{ 1923:. 1915:. 1905:88 1903:. 1882:}} 1878:{{ 1866:. 1858:. 1850:. 1836:. 1815:}} 1811:{{ 1799:. 1789:. 1779:. 1767:. 1763:. 1740:. 1732:. 1722:32 1720:. 1699:}} 1695:{{ 1641:. 1633:. 1625:. 1613:. 1601:^ 1587:. 1577:. 1569:. 1559:55 1557:. 1553:. 1530:. 1518:. 1514:. 1491:. 1481:. 1469:. 1465:. 1442:. 1430:. 1426:. 1403:. 1393:. 1383:. 1371:. 1367:. 1344:. 1334:. 1324:. 1314:74 1312:. 1308:. 1285:. 1275:. 1263:. 1259:. 1251:, 1236:. 1226:. 1214:. 1210:. 1202:, 1187:. 1177:. 1165:. 1161:. 1153:, 1138:. 1128:. 1116:. 1112:. 1104:, 1091:}} 1087:{{ 1075:. 1065:. 1053:. 1049:. 1041:, 1037:, 1015:. 1007:. 997:88 995:. 991:. 940:. 936:. 904:. 896:. 886:51 884:. 869:". 703:pH 635:, 293:: 45:. 2959:) 2945:. 2925:: 2917:: 2907:: 2901:6 2882:. 2860:: 2834:. 2813:. 2793:: 2785:: 2775:: 2748:. 2744:: 2736:: 2713:. 2686:. 2674:: 2666:: 2656:: 2650:4 2632:. 2628:: 2622:3 2605:. 2583:: 2540:) 2526:. 2504:: 2496:: 2486:: 2459:. 2439:: 2431:: 2421:: 2398:) 2384:. 2364:: 2354:: 2331:. 2309:: 2301:: 2274:) 2260:. 2248:: 2240:: 2217:) 2203:. 2183:: 2175:: 2150:) 2119:. 2099:: 2091:: 2081:: 2058:. 2036:: 2006:. 1986:: 1978:: 1968:: 1945:) 1931:. 1911:: 1888:) 1874:. 1862:: 1854:: 1844:: 1838:2 1821:) 1807:. 1783:: 1775:: 1748:. 1736:: 1728:: 1705:) 1674:. 1649:. 1629:: 1621:: 1595:. 1573:: 1565:: 1538:. 1526:: 1499:. 1477:: 1450:. 1438:: 1411:. 1387:: 1379:: 1352:. 1328:: 1320:: 1293:. 1271:: 1244:. 1222:: 1195:. 1173:: 1146:. 1124:: 1097:) 1083:. 1061:: 1023:. 1003:: 958:. 912:. 900:: 892:: 876:" 862:" 849:" 838:" 650:h 644:q 638:p 632:0 629:c 623:q 617:p 611:0 608:c 602:ρ 600:Δ 595:x 589:t 571:, 563:4 559:x 542:4 531:h 524:] 517:x 496:) 490:2 479:q 476:+ 467:p 464:+ 459:2 454:0 450:c 445:( 440:[ 433:x 421:= 413:2 409:t 392:2 229:) 223:( 211:) 205:( 200:) 196:( 192:. 182:. 150:) 144:( 139:) 135:( 125:¡ 118:¡ 111:¡ 104:¡ 77:. 52:) 48:(

Index

improve it
talk page
Learn how and when to remove these messages

verification
improve this article
adding citations to reliable sources
"Soliton model in neuroscience"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
neutrality
disputed
talk page
conditions to do so are met
Learn how and when to remove this message
Learn how and when to remove this message

neuroscience
model
action potentials
axons
membrane
solitary
sound
density
solitons

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑