Knowledge (XXG)

Solid-state electrolyte

Source 📝

656:. Indeed, by introducing a SSE in the battery architecture there's the possibility to use metallic lithium as anode material, with the possibility to achieve a high energy density battery thanks to its high specific capacity of 3860 mAh g. The use of a lithium metal anode(LMA) is prevented in a liquid electrolyte above all because of the dendritic growth of a pure Li electrode that easily cause short circuits after few cycles; other related issues are volume expansions, solid-electrolyte-interface (SEI) reactivity and 'dead' lithium. The usage of a SSE guarantees a homogeneous contact with the metallic lithium electrode and possess the mechanical properties to impede the uncontrolled deposition of Li ions during the charging phase. At the same time, a SSE finds very promising application in 85:, is the first step in the realization of a lighter, thinner and cheaper rechargeable battery. Moreover, this allows the reach of gravimetric and volumetric energy densities, high enough to achieve 500 miles per single charge in an electric vehicle. Despite the promising advantages, there are still many limitations that are hindering the transition of SSEs from academia research to large-scale production, depending mainly on the poor ionic conductivity compared to that of liquid counterparts. However, many car 519: 422:), electrochemical compatibility with most common electrode materials, a low degree of crystallinity, mechanical stability, low temperature sensitivity are all characteristics for the ideal SPE candidate. In general though the ionic conductivity is lower than the ISEs and their rate capability is restricted, limiting fast charging. PEO-based SPE is the first solid-state polymer in which ionic conductivity was demonstrated both through inter and intra molecular through 631:(EC)) to create a gel, whose properties can be modified based on the matrix loading. Matrix content ranging from 10 to 40 wt% can shift the mechanical properties of the electrolyte from a soft paste into a hard gel. However, a tradeoff between mechanical strength and ionic conductivity as one goes up with changing matrix content the other suffers. Despite this, matrix content in these materials can have added benefits including enhanced lithium 20: 644: 265:
polymer electrolyte (CPE). On the other hand, a QSSE, also called gel polymer electrolyte (GPE), is a freestanding membrane that contains a certain amount of liquid component immobilized inside the solid matrix. In general the nomenclatures SPE and GPE are used interchangeably but they have a substantially different
418:, making them greatly compatible with large-scale manufacturing processes. Moreover, they possess higher elasticity and plasticity giving stability at the interface, flexibility and improved resistance to volume changes during operation. A good dissolution of Li salts, low glass transition temperature (T 556:
acts to increase the ionic conductivity of the electrolyte as well as soften the electrolyte for improved interfacial contact. The matrix of GPEs consist of a polymer network swollen in a solvent that contains the active ions (e.g., Li, Na, Mg, etc.). This allows for the composite to contain both the
1396:
Agostini, Marco; Lim, Du Hyun; Sadd, Matthew; Fasciani, Chiara; Navarra, Maria Assunta; Panero, Stefania; Brutti, Sergio; Matic, Aleksandar; Scrosati, Bruno (11 September 2017). "Stabilizing the Performance of High-Capacity Sulfur Composite Electrodes by a New Gel Polymer Electrolyte Configuration".
538:
while the solid matrix adds mechanical stability to the material as a whole. As the name suggests, QSSEs can have a range of mechanical properties from strong solid-like materials to those in a paste form. QSSEs can be subdivided into a number of categories including gel polymer electrolytes (GPEs),
299:(of the order of GPa) and high transfer number compared to other classes of SSEs. They are generally brittle and with this comes a low compatibility and stability towards the electrode, with a rapidly increasing interfacial resistance and a complicated scale-up from academic to industry. They can be 2909:
Bouchet, Renaud; Maria, SĂ©bastien; Meziane, Rachid; Aboulaich, Abdelmaula; Lienafa, Livie; Bonnet, Jean-Pierre; Phan, Trang N. T.; Bertin, Denis; Gigmes, Didier; Devaux, Didier; Denoyel, Renaud; Armand, Michel (31 March 2013). "Single-ion BAB triblock copolymers as highly efficient electrolytes for
543:
electrolytes, and gel electrolytes (also known as "soggy sand" electrolytes). The most common QSSE, GPEs have a substantially different ionic conduction mechanism than SPEs, which conduct ions through the interaction with the substitutional groups of the polymer chains. Meanwhile, GPEs conduct ions
243:
The SE must be compatible with the electrode materials used in batteries as there is already a high chance of increased resistance in SSBs due to limited contact area between electrolyte and electrode materials. It should also be stable in contact with Lithium metal. It should be lighter so that it
470:
are also gaining a lot of interest as standalone SPEs or blended with other polymers, on one side for their environmentally friendliness and on the other for their high complexation capability on the salts. Furthermore, different strategies are considered to increase the ionic conductivity of SPEs
277:
All-solid-state electrolytes are divided into inorganic solid electrolyte (ISE), solid polymer electrolyte (SPE) and composite polymer electrolyte (CPE). They are solid at room temperature and the ionic movement occurs at the solid-state. Their main advantage is the complete removal of any liquid
264:
SSEs have the same role of a traditional liquid electrolyte and they are classified into all-solid-state electrolyte and quasi-solid-state electrolyte (QSSE). All-solid-state electrolytes are furthermore divided into inorganic solid electrolyte (ISE), solid polymer electrolyte (SPE) and composite
2840:
Keller, Marlou; Appetecchi, Giovanni Battista; Kim, Guk-Tae; Sharova, Varvara; Schneider, Meike; Schuhmacher, Jörg; Roters, Andreas; Passerini, Stefano (June 2017). "Electrochemical performance of a solvent-free hybrid ceramic-polymer electrolyte based on Li 7 La 3 Zr 2 O 12 in P(EO) 15 LiTFSI".
622:
up to 1 MPa or higher. Meanwhile, these materials can provide ionic conductivities on the order of 1 mS cm without using flammable solvents. However, gel electrolytes (i.e. "soggy sand" electrolytes) can achieve liquid-like ionic conductivities (~ 10 mS cm) while being in the solid state. Matrix
1015:
Lee, Yong-Gun; Fujiki, Satoshi; Jung, Changhoon; Suzuki, Naoki; Yashiro, Nobuyoshi; Omoda, Ryo; Ko, Dong-Su; Shiratsuchi, Tomoyuki; Sugimoto, Toshinori; Ryu, Saebom; Ku, Jun Hwan; Watanabe, Taku; Park, Youngsin; Aihara, Yuichi; Im, Dongmin; Han, In Taek (9 March 2020). "High-energy long-cycling
216:
During device or car operation the SSBs may undergo large volume variations and face mechanical stress. Also, electrochemical stability at high operating electrode potentials which are of advantage when it comes to high energy density. Hence, it is important that their mechanical, thermal, and
1520:
Bachman, John Christopher; Muy, Sokseiha; Grimaud, Alexis; Chang, Hao-Hsun; Pour, Nir; Lux, Simon F.; Paschos, Odysseas; Maglia, Filippo; Lupart, Saskia; Lamp, Peter; Giordano, Livia; Shao-Horn, Yang (29 December 2015). "Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and
490:, MgO, zeolite, montmorillonite, ...), with the sole purpose of reducing the crystallinity, or active (LLTO, LLZO, LATP...) if ISE's particles are dispersed and depending on the polymer/inorganic ratio the nomenclature ceramic-in-polymer and polymer-in-ceramic is often used. 179:
Along with high ionic conductivity the candidate must have the ability to be stacked within a single package, so it supplies high energy density to the Electric Vehicles. A high volumetric energy density is required so that the driving range of EVs can be increased between
1912:
StrangmĂŒller, Stefan; Eickhoff, Henrik; MĂŒller, David; Klein, Wilhelm; Raudaschl-Sieber, Gabriele; Kirchhain, Holger; Sedlmeier, Christian; Baran, Volodymyr; Senyshyn, Anatoliy; Deringer, Volker L.; van WĂŒllen, Leo; Gasteiger, Hubert A.; FĂ€ssler, Thomas F. (2019-09-11).
617:
as a solvent that has improved safety including non-flammability and stability at high temperatures. Matrix materials in ionogels can vary from polymer materials to inorganic nano-materials. These matrix materials (as with all QSSEs) provide mechanical stability with a
120:
However, unresolved fundamental issues remain in order to fully understand the behavior of all-solid batteries, especially in the area of electrochemical interfaces. In recent years the needs of safety and performance improvements with respect to the state-of-the-art
3003:
Liu, Xiaochen; Ding, Guoliang; Zhou, Xinhong; Li, Shizhen; He, Weisheng; Chai, Jingchao; Pang, Chunguang; Liu, Zhihong; Cui, Guanglei (2017). "An interpenetrating network poly(diethylene glycol carbonate)-based polymer electrolyte for solid state lithium batteries".
605:
are useful ways to polymerize in-situ the GPE directly in contact with the electrodes for a perfectly adherent interface. Values of ionic conductivity on the order of 1 mS cm can be easily achieved with GPEs, as demonstrate the numerous research articles published.
140:
published research on an all-solid-state battery (ASSB) using an argyrodite-based solid-state electrolyte with a demonstrated energy density of 900 Wh L and a stable cyclability of more than 1000 cycles, reaching for the first time a value close to the 1000 Wh L.
250:
If SEs contain expensive materials like Ge it will make the production cost go up significantly. The production of an exemplar SSB will require the convergence of uncomplicated fabrication technologies like particle dispersion, mechanical mixing, film formation
2510:
Rohan, Rupesh; Pareek, Kapil; Chen, Zhongxin; Cai, Weiwei; Zhang, Yunfeng; Xu, Guodong; Gao, Zhiqiang; Cheng, Hansong (2015). "A high performance polysiloxane-based single ion conducting polymeric electrolyte membrane for application in lithium ion batteries".
1993:
Asano, Tetsuya; Sakai, Akihiro; Ouchi, Satoru; Sakaida, Masashi; Miyazaki, Akinobu; Hasegawa, Shinya (November 2018). "Solid Halide Electrolytes with High Lithium-Ion Conductivity for Application in 4 V Class Bulk-Type All-Solid-State Batteries".
1609:
Han, Xiaogang; Gong, Yunhui; Fu, Kun (Kelvin); He, Xingfeng; Hitz, Gregory T.; Dai, Jiaqi; Pearse, Alex; Liu, Boyang; Wang, Howard; Rubloff, Gary; Mo, Yifei; Thangadurai, Venkataraman; Wachsman, Eric D.; Hu, Liangbing (19 December 2016).
2565:
Liu, Bo; Huang, Yun; Cao, Haijun; Song, Amin; Lin, Yuanhua; Wang, Mingshan; Li, Xing (28 October 2017). "A high-performance and environment-friendly gel polymer electrolyte for lithium ion battery based on composited lignin membrane".
740:
Chen, Zhen; Kim, Guk-Tae; Wang, Zeli; Bresser, Dominic; Qin, Bingsheng; Geiger, Dorin; Kaiser, Ute; Wang, Xuesen; Shen, Ze Xiang; Passerini, Stefano (October 2019). "4-V flexible all-solid-state lithium polymer batteries".
255:
It is hard for one material to fulfill all the above criteria, hence a number of other approaches can be used for example a hybrid electrolyte system which combines the advantages of inorganic and polymer electrolytes.
651:
The versatility and properties of the solid-state electrolyte widen the possible applications towards high energy density and cheaper battery chemistries that are otherwise prevented by the current state-of-the-art of
1870:
Restle, Tassilo M. F.; StrangmĂŒller, Stefan; Baran, Volodymyr; Senyshyn, Anatoliy; Kirchhain, Holger; Klein, Wilhelm; Merk, Samuel; MĂŒller, David; Kutsch, Tobias; van WĂŒllen, Leo; FĂ€ssler, Thomas F. (November 2022).
3793:
Long, Canghai; Li, Libo; Zhai, Mo; Shan, Yuhang (November 2019). "Facile preparation and electrochemistry performance of quasi solid-state polymer lithium–sulfur battery with high-safety and weak shuttle effect".
2692:; Lee, Hye Ryoung; Hsu, Po-Chun; Liu, Kai; Cui, Yi (December 2015). "High Ionic Conductivity of Composite Solid Polymer Electrolyte via In Situ Synthesis of Monodispersed SiO Nanospheres in Poly(ethylene oxide)". 2438:
Zhang, Lei; Wang, Shi; Li, Jingyu; Liu, Xu; Chen, Pingping; Zhao, Tong; Zhang, Liaoyun (2019). "A nitrogen-containing all-solid-state hyperbranched polymer electrolyte for superior performance lithium batteries".
294:
state, that conducts ions by diffusion through the lattice. The main advantages of this class of solid-state electrolyte are the high ionic conductivity (of the order of a few mS cm at room-temperature), high
3417:
Bi, Haitao; Sui, Gang; Yang, Xiaoping (December 2014). "Studies on polymer nanofibre membranes with optimized core–shell structure as outstanding performance skeleton materials in gel polymer electrolytes".
2474:
Wang, Qinglei; Zhang, Huanrui; Cui, Zili; Zhou, Qian; Shangguan, Xuehui; Tian, Songwei; Zhou, Xinhong; Cui, Guanglei (December 2019). "Siloxane-based polymer electrolytes for solid-state lithium batteries".
1707:
Liu, Qi; Geng, Zhen; Han, Cuiping; Fu, Yongzhu; Li, Song; He, Yan-bing; Kang, Feiyu; Li, Baohua (June 2018). "Challenges and perspectives of garnet solid electrolytes for all solid-state lithium batteries".
498:, interpenetration, and blending may also be used as polymer/polymer coordination to tune the properties of the SPEs and achieve better performances, introducing in the polymeric chains polar groups like 2113:
Senevirathne, Keerthi; Day, Cynthia S.; Gross, Michael D.; Lachgar, Abdessadek; Holzwarth, N.A.W. (February 2013). "A new crystalline LiPON electrolyte: Synthesis, properties, and electronic structure".
164:
Historically, SSBs have suffered from low ionic conductivities due to poor interfacial kinetics and mobility of ions in general. Hence an SE with a high ionic conductivity is of primary importance. High
2661:
Berthier, C.; Gorecki, W.; Minier, M.; Armand, M.B.; Chabagno, J.M.; Rigaud, P. (September 1983). "Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts".
2078:
Akin, Mert; Wang, Yuchen; Qiao, Xiaoyao; Yan, Zhiwei; Zhou, Xiangyang (September 2020). "Effect of relative humidity on the reaction kinetics in rubidium silver iodide based all-solid-state battery".
3211:
Liang, Shishuo; Yan, Wenqi; Wu, Xu; Zhang, Yi; Zhu, Yusong; Wang, Hongwei; Wu, Yuping (May 2018). "Gel polymer electrolytes for lithium ion batteries: Fabrication, characterization and performance".
3390:
Gerbaldi, C.; Nair, J.R.; Meligrana, G.; Bongiovanni, R.; Bodoardo, S.; Penazzi, N. (January 2010). "UV-curable siloxane-acrylate gel-copolymer electrolytes for lithium-based battery applications".
41:
and it is the characteristic component of the solid-state battery. It is useful for applications in electrical energy storage (EES) in substitution of the liquid electrolytes found in particular in
1657:
Kraft, Marvin A.; Ohno, Saneyuki; Zinkevich, Tatiana; Koerver, Raimund; Culver, Sean P.; Fuchs, Till; Senyshyn, Anatoliy; Indris, Sylvio; Morgan, Benjamin J.; Zeier, Wolfgang G. (November 2018).
2754:
Kumar, Binod; Scanlon, Lawrence; Marsh, Richard; Mason, Rachel; Higgins, Robert; Baldwin, Richard (March 2001). "Structural evolution and conductivity of PEO:LiBF4–MgO composite electrolytes".
414:(SPE) are defined as a solvent-free salt solution in a polymer host material that conducts ions through the polymer chains. Compared to ISEs, SPEs are much easier to process, generally by 3840: 885: 117:). The first polymeric material able to conduct ions at the solid-state was PEO, discovered in the 1970s by V. Wright. The importance of the discovery was recognized in the early 1980s. 1237:
Sundaramahalingam, K.; Muthuvinayagam, M.; Nallamuthu, N.; Vanitha, D.; Vahini, M. (1 January 2019). "Investigations on lithium acetate-doped PVA/PVP solid polymer blend electrolytes".
3262:
Watanabe, Masayoshi; Kanba, Motoi; Nagaoka, Katsuro; Shinohara, Isao (November 1982). "Ionic conductivity of hybrid films based on polyacrylonitrile and their battery application".
2403:
Mindemark, Jonas; Sun, Bing; TörmÀ, Erik; Brandell, Daniel (December 2015). "High-performance solid polymer electrolytes for lithium batteries operational at ambient temperature".
2327:
Webb, Michael A.; Jung, Yukyung; Pesko, Danielle M.; Savoie, Brett M.; Yamamoto, Umi; Coates, Geoffrey W.; Balsara, Nitash P.; Wang, Zhen-Gang; Miller, Thomas F. (10 July 2015).
2376:
Hu, Pu; Chai, Jingchao; Duan, Yulong; Liu, Zhihong; Cui, Guanglei; Chen, Liquan (2016). "Progress in nitrile-based polymer electrolytes for high performance lithium batteries".
474:
With the introduction of particles as fillers inside the polymer solution, a composite polymer electrolyte (CPE) is obtained, the particles can be inert to the Li conduction (Al
278:
component aimed to a greatly enhanced safety of the overall device. The main limitation is the ionic conductivity that tends to be much lower compared to a liquid counterpart.
660:
solving the key issue of the polysulfide "shuttle" effect by blocking the dissolution of polysulfide species in the electrolyte that rapidly causes a reduction of capacity.
269:
mechanism: SPEs conducts ions through the interaction with the substitutional groups of the polymer chains, while GPEs conducts ions mainly in the solvent or plasticizer.
1435:
Mindemark, Jonas; Lacey, Matthew J.; Bowden, Tim; Brandell, Daniel (June 2018). "Beyond PEO—Alternative host materials for Li + -conducting solid polymer electrolytes".
430:, but they suffer from the low room-temperature ionic conductivity (10 S cm) due to the high degree of crystallinity. The main alternatives to polyether-based SPEs are 244:
can be used in portable electronic devices. High compatibility with the electrode material can be measured through EIS analysis repeated over more consecutive days.
3453:
Lewandowski, Andrzej; ƚwiderska-Mocek, Agnieszka (December 2009). "Ionic liquids as electrolytes for Li-ion batteries—An overview of electrochemical studies".
1794:
Beister, Heinz JĂŒrgen; Haag, Sabine; Kniep, RĂŒdiger; Strössner, Klaus; Syassen, Karl (August 1988). "Phase Transformations of Lithium Nitride under Pressure".
3031:
Rajendran, S; Sivakumar, M; Subadevi, R (February 2004). "Investigations on the effect of various plasticizers in PVA–PMMA solid polymer blend electrolytes".
850:
Kim, Taehoon; Song, Wentao; Son, Dae-Yong; Ono, Luis K.; Qi, Yabing (2019). "Lithium-ion batteries: outlook on present, future, and hybridized technologies".
89:(Toyota, BMW, Honda, Hyundai) expect to integrate these systems into viable devices and to commercialize solid-state battery-based electric vehicles by 2025. 3642:"Amine‐Functionalized Boron Nitride Nanosheets: A New Functional Additive for Robust, Flexible Ion Gel Electrolyte with High Lithium‐Ion Transference Number" 3289:
Appetecchi, G.B.; Croce, F.; Scrosati, B. (June 1995). "Kinetics and stability of the lithium electrode in poly(methylmethacrylate)-based gel electrolytes".
186:
Sufficient power density (W/L) is needed to make energy available when needed which is also a measure of how quickly charging and discharging can take place.
3357:
Verdier, Nina; Lepage, David; Zidani, Ramzi; Prébé, Arnaud; Aymé-Perrot, David; Pellerin, Christian; Dollé, Mickaël; Rochefort, Dominic (27 December 2019).
635:
due to functionalized matrix materials. These new classes of QSSEs are an active area of research to develop the optimal combination of matrix and solvent.
2300:
Sun, Bing; Mindemark, Jonas; Edström, Kristina; Brandell, Daniel (September 2014). "Polycarbonate-based solid polymer electrolytes for Li-ion batteries".
1353:
Zheng, Feng; Kotobuki, Masashi; Song, Shufeng; Lai, Man On; Lu, Li (June 2018). "Review on solid electrolytes for all-solid-state lithium-ion batteries".
1310:
Zheng, Feng; Kotobuki, Masashi; Song, Shufeng; Lai, Man On; Lu, Li (June 2018). "Review on solid electrolytes for all-solid-state lithium-ion batteries".
1566:
Zhao, Qing; Stalin, Sanjuna; Zhao, Chen-Zi; Archer, Lynden A. (5 February 2020). "Designing solid-state electrolytes for safe, energy-dense batteries".
704: 1202:
Agrawal, R C; Pandey, G P (21 November 2008). "Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview".
2141:
Mizuno, F.; Hayashi, A.; Tadanaga, K.; Tatsumisago, M. (4 April 2005). "New, Highly Ion-Conductive Crystals Precipitated from Li2S-P2S5 Glasses".
81:, in substitution of the traditional low capacity graphite, which exhibits a theoretical capacity of 372 mAh g in its fully lithiated state of LiC 207: 170: 1275:
Appetecchi, G. B. (1996). "A New Class of Advanced Polymer Electrolytes and Their Relevance in Plastic-like, Rechargeable Lithium Batteries".
157:(SEs) to become a major market challenger it must meet some key performance measurements. The major criteria that an SSB/SE should have are: 3585:
Hyun, Woo Jin; de Moraes, Ana C. M.; Lim, Jin-Myoung; Downing, Julia R.; Park, Kyu-Young; Tan, Mark Tian Zhi; Hersam, Mark C. (2019-08-27).
286:
Inorganic solid electrolyte (ISE) are a particular type of all-solid-state electrolyte that is constituted by an inorganic material in the
722: 557:
mechanical properties of solids and the high transport properties of liquids. A number of polymer hosts have been used in GPEs, including
2178: 1952:
Li, Yutao; Xu, Henghui; Chien, Po-Hsiu; Wu, Nan; Xin, Sen; Xue, Leigang; Park, Kyusung; Hu, Yan-Yan; Goodenough, John B. (9 July 2018).
382:. Some ISEs can be glass ceramics assuming an amorphous state instead of a regular crystalline structure. Popular examples are lithium 2538:
Jacob, M (11 December 1997). "Effect of PEO addition on the electrolytic and thermal properties of PVDF-LiClO4 polymer electrolytes".
2329:"Systematic Computational and Experimental Investigation of Lithium-Ion Transport Mechanisms in Polyester-Based Polymer Electrolytes" 3691:
Yuan, Huadong; Nai, Jianwei; Tian, He; Ju, Zhijin; Zhang, Wenkui; Liu, Yujing; Tao, Xinyong; Lou, Xiong Wen (David) (6 March 2020).
3246: 2953:
Zhang, Yuhang; Lu, Wei; Cong, Lina; Liu, Jia; Sun, Liqun; Mauger, Alain; Julien, Christian M.; Xie, Haiming; Liu, Jun (April 2019).
911: 684: 2273:
Payne, D.R.; Wright, P.V. (May 1982). "Morphology and ionic conductivity of some lithium ion complexes with poly(ethylene oxide)".
3176:
Tripathi, Alok Kumar (2021). "Ionic liquid–based solid electrolytes (ionogels) for application in rechargeable lithium battery".
2601:
Yahya, M.Z.A.; Arof, A.K. (May 2003). "Effect of oleic acid plasticizer on chitosan–lithium acetate solid polymer electrolytes".
535: 35: 3861: 86: 3318:"Effect of PEG as a plasticizer on the electrical and optical properties of polymer blend electrolyte MC-CH-LiBF4 based films" 2783:"Preparation and performance study of a PVDF–LATP ceramic composite polymer electrolyte membrane for solid-state batteries" 2954: 3758:
Li, Linlin; Li, Siyuan; Lu, Yingying (2018). "Suppression of dendritic lithium growth in lithium metal-based batteries".
2878:"PEO/garnet composite electrolytes for solid-state lithium batteries: From "ceramic-in-polymer" to "polymer-in-ceramic"" 2630:"High-strength and flexible cellulose/PEG based gel polymer electrolyte with high performance for lithium ion batteries" 3640:
Kim, Donggun; Liu, Xin; Yu, Baozhi; Mateti, Srikanth; O'Dell, Luke A.; Rong, Qiangzhou; Chen, Ying (Ian) (April 2020).
3587:"High-Modulus Hexagonal Boron Nitride Nanoplatelet Gel Electrolytes for Solid-State Rechargeable Lithium-Ion Batteries" 1873:"Super‐Ionic Conductivity in ω‐ Li 9 Tr P 4 ( Tr = Al, Ga, In) and Lithium Diffusion Pathways in Li 9 AlP 4 Polymorphs" 1751:
DeWees, Rachel; Wang, Hui (24 July 2019). "Synthesis and Properties of NaSICON‐type LATP and LAGP Solid Electrolytes".
954:
GRAY, F; MACCALLUM, J; VINCENT, C (January 1986). "Poly(ethylene oxide) - LiCF3SO3 - polystyrene electrolyte systems".
2246:
Fenton, D.E.; Parker, J.M.; Wright, P.V. (November 1973). "Complexes of alkali metal ions with poly(ethylene oxide)".
1471: 423: 266: 166: 78: 2955:"Cross-linking network based on Poly(ethylene oxide): Solid polymer electrolyte for room temperature lithium battery" 832: 1659:"Inducing High Ionic Conductivity in the Lithium Superionic Argyrodites Li P Ge S I for All-Solid-State Batteries" 2727:
Kumar, B (2 September 1999). "Polymer ceramic composite electrolytes: conductivity and thermal history effects".
2039:"Greatly enhanced energy density of all‐solid‐state rechargeable battery operating in high humidity environments" 566: 426:, thanks to the segmental motion of the polymeric chains because of the great ion complexation capability of the 203: 130: 657: 415: 230: 2628:
Zhao, Lingzhu; Fu, Jingchuan; Du, Zhi; Jia, Xiaobo; Qu, Yanyu; Yu, Feng; Du, Jie; Chen, Yong (January 2020).
570: 65:
suppression in the presence of a solid-state electrolyte membrane. The use of a high capacity anode and low
3316:
Ahmed, Hawzhin T.; Jalal, Viyan J.; Tahir, Dana A.; Mohamad, Azhin H.; Abdullah, Omed Gh. (December 2019).
3866: 679: 372: 226: 1658: 927:
Wright, Peter V. (September 1975). "Electrical conductivity in ionic complexes of poly(ethylene oxide)".
590: 218: 126: 518: 3803: 3704: 3543: 3462: 3427: 3329: 2969: 2919: 2850: 2794: 2412: 2187: 1834: 1717: 1575: 1486: 1362: 1319: 1284: 1168: 1121: 1072: 1025: 989: 632: 530:
compounds consisting of a liquid electrolyte and a solid matrix. This liquid electrolyte serves as a
411: 199: 3531: 2876:
Chen, Long; Li, Yutao; Li, Shuai-Peng; Fan, Li-Zhen; Nan, Ce-Wen; Goodenough, John B. (April 2018).
669: 578: 443: 150: 129:
very appealing and are now considered an encouraging technology to satisfy the need for long range
74: 66: 53:, higher achievable power density and cyclability. This makes possible, for example, the use of a 42: 23: 3359:"Cross-Linked Polyacrylonitrile-Based Elastomer Used as Gel Polymer Electrolyte in Li-Ion Battery" 3856: 3819: 3740: 3622: 3193: 3128: 2985: 2583: 2492: 2456: 2158: 2095: 2060: 2019: 1852: 1776: 1733: 1689: 1591: 1502: 1452: 1378: 1335: 1254: 1219: 1041: 867: 768: 628: 586: 574: 558: 527: 234: 154: 62: 980:
Janek, JĂŒrgen; Zeier, Wolfgang G. (8 September 2016). "A solid future for battery development".
192:
Long cycle and shelf life are needed as conventional Li-ion batteries degrade after a few years.
3146:
Manuel Stephan, A. (January 2006). "Review on gel polymer electrolytes for lithium batteries".
786:
Polymer-Derived SiOC Integrated with a Graphene Aerogel As a Highly Stable Li-Ion Battery Anode
49:, low flammability, non-volatility, mechanical and thermal stability, easy processability, low 3775: 3732: 3673: 3614: 3606: 3567: 3559: 3509: 3242: 3086: 2935: 2822: 2709: 2358: 2011: 1975: 1934: 1894: 1768: 1681: 1639: 1631: 1548: 1414: 1184: 1137: 1090: 907: 594: 582: 562: 110: 1872: 573:, etc. The polymers are synthesized with increased porosity to incorporate solvents such as 3811: 3767: 3722: 3712: 3663: 3653: 3598: 3551: 3501: 3470: 3435: 3399: 3370: 3337: 3298: 3271: 3220: 3185: 3155: 3120: 3076: 3040: 3013: 2977: 2927: 2889: 2858: 2812: 2802: 2763: 2736: 2701: 2670: 2641: 2610: 2575: 2547: 2520: 2484: 2448: 2420: 2385: 2348: 2340: 2309: 2282: 2255: 2226: 2195: 2150: 2123: 2087: 2050: 2003: 1965: 1926: 1884: 1842: 1803: 1760: 1725: 1673: 1623: 1583: 1538: 1530: 1494: 1444: 1406: 1370: 1327: 1292: 1246: 1211: 1176: 1129: 1080: 1033: 997: 959: 936: 859: 811: 758: 750: 653: 491: 619: 364: 98: 2199: 1215: 3807: 3708: 3547: 3466: 3431: 3333: 2973: 2923: 2854: 2798: 2416: 2191: 2037:
Wang, Yuchen; Akin, Mert; Qiao, Xiaoyao; Yan, Zhiwei; Zhou, Xiangyang (September 2021).
1838: 1721: 1579: 1490: 1366: 1323: 1288: 1172: 1125: 1076: 1029: 993: 19: 3727: 3692: 2817: 2782: 2353: 2328: 1448: 785: 674: 503: 431: 122: 102: 50: 46: 3044: 2767: 2740: 2614: 2551: 3850: 3823: 3744: 3668: 3626: 3302: 3197: 3132: 2989: 2674: 2587: 2496: 2460: 2286: 2259: 2099: 2064: 2023: 1821:
de Jongh, P. E.; Blanchard, D.; Matsuo, M.; Udovic, T. J.; Orimo, S. (3 March 2016).
1780: 1737: 1693: 1595: 1456: 1382: 1339: 1258: 1045: 963: 871: 772: 455: 387: 296: 3403: 3159: 2162: 2091: 1856: 1823:"Complex hydrides as room-temperature solid electrolytes for rechargeable batteries" 1506: 1223: 1016:
all-solid-state lithium metal batteries enabled by silver–carbon composite anodes".
3586: 3474: 3439: 2981: 2862: 2424: 1729: 1498: 1472:"Challenges and issues facing lithium metal for solid-state rechargeable batteries" 1374: 1331: 614: 451: 222: 3488:
Osada, Irene; de Vries, Henrik; Scrosati, Bruno; Passerini, Stefano (2016-01-11).
2231: 2214: 3693:"An ultrastable lithium metal anode enabled by designed metal fluoride spansules" 3189: 2894: 2877: 2705: 2646: 2629: 1109: 816: 799: 754: 705:"Japanese Government Partners With Manufacturers On Solid State Battery Research" 57:
metal anode in a practical device, without the intrinsic limitations of a liquid
1954:"A Perovskite Electrolyte That Is Stable in Moist Air for Lithium-Ion Batteries" 1915:"Fast Ionic Conductivity in the Most Lithium-Rich Phosphidosilicate Li 14 SiP 6" 1914: 1534: 1156: 643: 598: 549: 531: 58: 38: 3815: 3342: 3317: 3275: 2488: 2344: 1612:"Negating interfacial impedance in garnet-based solid-state Li metal batteries" 1250: 593:
or other ethers or aprotic organic solvents with high dielectric constant like
3489: 3224: 3108: 2689: 2579: 2313: 2127: 1847: 1822: 1587: 1037: 602: 495: 447: 435: 383: 360: 316: 45:. The main advantages are the absolute safety, no issues of leakages of toxic 3677: 3610: 3563: 3090: 2176:
Hallinan, Daniel T.; Balsara, Nitash P. (July 2013). "Polymer Electrolytes".
1938: 1898: 1188: 1141: 1133: 1094: 1001: 3602: 1180: 467: 308: 3779: 3736: 3717: 3658: 3641: 3618: 3571: 3513: 3505: 3375: 3358: 3124: 3107:
Chen, Nan; Zhang, Haiqin; Li, Li; Chen, Renjie; Guo, Shaojun (April 2018).
3081: 3065:"Nanocomposite Ionogel Electrolytes for Solid-State Rechargeable Batteries" 3064: 2939: 2826: 2713: 2362: 2154: 2015: 2007: 1979: 1970: 1953: 1889: 1807: 1772: 1764: 1685: 1643: 1552: 1418: 1410: 940: 833:"Samsung Reveals Breakthrough: Solid-State EV Battery with 500-Mile Range" 1930: 1677: 1543: 1085: 1060: 463: 2781:
Liang, Xinghua; Han, Di; Wang, Yunting; Lan, Lingxiao; Mao, Jie (2018).
798:
Wang, Renheng; Cui, Weisheng; Chu, Fulu; Wu, Feixiang (September 2020).
763: 3771: 3555: 3109:"Ionogel Electrolytes for High-Performance Lithium Batteries: A Review" 3017: 2807: 2524: 2452: 2389: 863: 610: 553: 545: 540: 507: 439: 352: 344: 336: 312: 304: 287: 137: 70: 54: 3239:
Lithium batteries : new materials, developments, and perspectives
1635: 1611: 1430: 1428: 1296: 627:
nanoparticles are typically paired with low viscosity solvents (e.g.,
2931: 1627: 499: 459: 368: 328: 202:(the closest possible to 1) can be measured through a combination of 2055: 2038: 723:"German Federal Government Invests In Solid State Battery Research" 522:
Comparison of different polymer based quasi-solid-state electrolyes
3530:
Pfaffenhuber, C.; Göbel, M.; Popovic, J.; Maier, J. (2013-10-09).
3490:"Ionic-Liquid-Based Polymer Electrolytes for Battery Applications" 642: 517: 427: 300: 291: 18: 2215:"Review on composite polymer electrolytes for lithium batteries" 609:
Emerging subclasses of QSSEs use matrix materials and solvents.
340: 332: 97:
The first inorganic solid-state electrolytes were discovered by
1470:
Mauger, A.; Armand, M.; Julien, C.M.; Zaghib, K. (June 2017).
221:(at least tens of MPa) can be measured through a traditional 526:
Quasi solid-state electrolytes (QSSEs) are a wide class of
510:
drastically improve the dissolution of the lithium salts.
315:(lithium superionic conductor) (e.g. LGPS, LiSiPS, LiPS), 3063:
Hyun, Woo Jin; Thomas, Cory M.; Hersam, Mark C. (2020).
3171: 3169: 359:), lithium phosphidotrielates and phoshidotetrelates, 169:(at least higher than 10 S cm) can be measured through 1059:
Robinson, Arthur L.; Janek, JĂŒrgen (December 2014).
3532:"Soggy-sand electrolytes: status and perspectives" 1796:Angewandte Chemie International Edition in English 214:Thermal, mechanical and electrochemical Stability: 1108:Janek, JĂŒrgen; Zeier, Wolfgang G. (2016-09-08). 217:electrochemical stability are considered. High 647:The uncontrolled formation of lithium dendrites 339:(sodium superionic conductor) (e.g. LTP, LATP, 138:Samsung Advanced Institute of Technology (SAIT) 311:-based and the crystalline structures include 73:with a specific capacity of 3860 mAh g and a 8: 2213:Manuel Stephan, A.; Nahm, K.S. (July 2006). 171:electrochemical impedance spectroscopy (EIS) 3796:Journal of Physics and Chemistry of Solids 800:"Lithium metal anodes: Present and future" 3726: 3716: 3667: 3657: 3374: 3341: 3080: 2893: 2816: 2806: 2645: 2352: 2230: 2054: 1969: 1888: 1846: 1542: 1084: 815: 762: 458:(e.g. PVDF, PVDF-HFP). Bio-polymers like 229:(at least 4-5 V) can be measured through 16:Type of solid ionic conductor electrolyte 2043:International Journal of Energy Research 1919:Journal of the American Chemical Society 1666:Journal of the American Chemical Society 1110:"A solid future for battery development" 471:and the amorphous-to-crystalline ratio. 3494:Angewandte Chemie International Edition 2568:Journal of Solid State Electrochemistry 1958:Angewandte Chemie International Edition 696: 227:electrochemical stability windows (ESW) 101:in the nineteenth century, these being 36:ionic conductor and electron-insulating 1521:Properties Governing Ion Conduction". 1277:Journal of the Electrochemical Society 3525: 3523: 3102: 3100: 3058: 3056: 3054: 1270: 1268: 1204:Journal of Physics D: Applied Physics 1061:"Solid-state batteries enter EV fray" 975: 973: 788:Applied Materials and Interfaces 2020 7: 2200:10.1146/annurev-matsci-071312-121705 3536:Physical Chemistry Chemical Physics 2179:Annual Review of Materials Research 363:(e.g. lithium lanthanum titanate, " 3264:Journal of Applied Polymer Science 1449:10.1016/j.progpolymsci.2017.12.004 831:Baldwin, Roberto (12 March 2020). 597:can also be mixed the SPE matrix. 248:Economic fabrication technologies: 61:thanks to the property of lithium 14: 685:Research in lithium-ion batteries 282:Inorganic solid electrolyte (ISE) 26:with the solid-state electrolyte. 3006:Journal of Materials Chemistry A 2513:Journal of Materials Chemistry A 2441:Journal of Materials Chemistry A 2378:Journal of Materials Chemistry A 852:Journal of Materials Chemistry A 3404:10.1016/j.electacta.2009.05.055 3160:10.1016/j.eurpolymj.2005.09.017 2092:10.1016/j.electacta.2020.136779 406:Solid polymer electrolyte (SPE) 3475:10.1016/j.jpowsour.2009.06.089 3440:10.1016/j.jpowsour.2014.05.030 2982:10.1016/j.jpowsour.2019.02.090 2863:10.1016/j.jpowsour.2017.04.014 2425:10.1016/j.jpowsour.2015.08.035 1730:10.1016/j.jpowsour.2018.04.019 1499:10.1016/j.jpowsour.2017.04.018 1375:10.1016/j.jpowsour.2018.04.022 1332:10.1016/j.jpowsour.2018.04.022 1216:10.1088/0022-3727/41/22/223001 906:. Cambridge University Press. 231:linear sweep voltammetry (LSV) 1: 3646:Advanced Functional Materials 3045:10.1016/S0167-577X(03)00585-8 2768:10.1016/S0013-4686(00)00747-7 2741:10.1016/S0167-2738(99)00148-4 2615:10.1016/S0014-3057(02)00355-5 2552:10.1016/S0167-2738(97)00422-0 2232:10.1016/j.polymer.2006.05.069 1877:Advanced Functional Materials 1155:Hu, Yong-Sheng (2016-04-07). 514:Quasi-solid-state electrolyte 3363:ACS Applied Energy Materials 3303:10.1016/0013-4686(94)00345-2 3190:10.1016/j.mtener.2021.100643 2895:10.1016/j.nanoen.2017.12.037 2706:10.1021/acs.nanolett.5b04117 2675:10.1016/0167-2738(83)90068-1 2647:10.1016/j.memsci.2019.117428 2287:10.1016/0032-3861(82)90052-0 2260:10.1016/0032-3861(73)90146-8 964:10.1016/0167-2738(86)90127-X 904:Solid State Electrochemistry 817:10.1016/j.jechem.2019.12.024 755:10.1016/j.nanoen.2019.103986 589:(DMC). Low molecular weight 2634:Journal of Membrane Science 1535:10.1021/acs.chemrev.5b00563 1437:Progress in Polymer Science 804:Journal of Energy Chemistry 591:poly(ethylene glycol) (PEG) 273:All-solid-state electrolyte 3883: 3816:10.1016/j.jpcs.2019.06.017 3343:10.1016/j.rinp.2019.102735 3276:10.1002/app.1982.070271110 2910:lithium-metal batteries". 2688:Lin, Dingchang; Liu, Wei; 2489:10.1016/j.ensm.2019.04.016 2345:10.1021/acscentsci.5b00195 1251:10.1007/s00289-018-02670-2 1157:"Batteries: Getting solid" 196:Ionic transference number: 177:Volumetric Energy Density: 3225:10.1016/j.ssi.2017.12.023 3113:Advanced Energy Materials 3069:Advanced Energy Materials 2580:10.1007/s10008-017-3814-x 2314:10.1016/j.ssi.2013.08.014 2128:10.1016/j.ssi.2012.12.013 1848:10.1007/s00339-016-9807-2 1588:10.1038/s41578-019-0165-5 1038:10.1038/s41560-020-0575-z 200:ionic transference number 131:battery electric vehicles 3455:Journal of Power Sources 3420:Journal of Power Sources 3148:European Polymer Journal 2962:Journal of Power Sources 2843:Journal of Power Sources 2603:European Polymer Journal 2477:Energy Storage Materials 2405:Journal of Power Sources 1710:Journal of Power Sources 1568:Nature Reviews Materials 1479:Journal of Power Sources 1355:Journal of Power Sources 1312:Journal of Power Sources 1134:10.1038/nenergy.2016.141 1002:10.1038/nenergy.2016.141 658:lithium-sulfur batteries 595:dimethylsulfoxide (DMSO) 386:(LIPON) and the lithium 3843:. Retrieved 2020-06-26. 3760:Chemical Communications 3603:10.1021/acsnano.9b04989 1181:10.1038/nenergy.2016.42 929:British Polymer Journal 886:"Solid-State Batteries" 235:cyclic voltammetry (CV) 32:solid-state electrolyte 24:All Solid-State Battery 3862:Rechargeable batteries 3718:10.1126/sciadv.aaz3112 3659:10.1002/adfm.201910813 3506:10.1002/anie.201504971 3376:10.1021/acsaem.9b02129 3178:Materials Today Energy 3125:10.1002/aenm.201702675 3082:10.1002/aenm.202002135 2155:10.1002/adma.200401286 2008:10.1002/adma.201803075 1971:10.1002/anie.201804114 1890:10.1002/adfm.202112377 1808:10.1002/anie.198811011 1765:10.1002/cssc.201900725 1411:10.1002/cssc.201700977 680:Lithium-sulfur battery 648: 523: 204:chronoamperometry (CA) 27: 3669:10536/DRO/DU:30135199 941:10.1002/pi.4980070505 646: 623:materials such as SiO 521: 384:phosphorus oxynitride 151:Solid State Batteries 127:solid-state batteries 22: 2762:(10–11): 1515–1521. 1931:10.1021/jacs.9b05301 1678:10.1021/jacs.8b10282 1086:10.1557/mrs.2014.285 133:of the near future. 3841:Solid-state battery 3808:2019JPCS..134..255L 3709:2020SciA....6.3112Y 3548:2013PCCP...1518318P 3542:(42): 18318–18335. 3467:2009JPS...194..601L 3432:2014JPS...267..309B 3392:Electrochimica Acta 3334:2019ResPh..1502735A 3291:Electrochimica Acta 3012:(22): 11124–11130. 2974:2019JPS...420...63Z 2924:2013NatMa..12..452B 2855:2017JPS...353..287K 2799:2018RSCAd...840498L 2793:(71): 40498–40504. 2756:Electrochimica Acta 2519:(40): 20267–20276. 2417:2015JPS...298..166M 2384:(26): 10070–10083. 2333:ACS Central Science 2192:2013AnRMS..43..503H 2080:Electrochimica Acta 2049:(11): 16794–16805. 1925:(36): 14200–14209. 1839:2016ApPhA.122..251D 1722:2018JPS...389..120L 1672:(47): 16330–16339. 1580:2020NatRM...5..229Z 1491:2017JPS...353..333M 1367:2018JPS...389..198Z 1324:2018JPS...389..198Z 1289:1996JElS..143....6A 1173:2016NatEn...116042H 1126:2016NatEn...116141J 1077:2014MRSBu..39.1046R 1030:2020NatEn...5..299L 994:2016NatEn...116141J 670:Solid-state battery 633:transference number 579:propylene carbonate 412:polymer electrolyte 327:X, X = Cl, Br, I), 219:mechanical strength 162:Ionic conductivity: 136:In March 2020, the 75:reduction potential 67:reduction potential 43:lithium-ion battery 3772:10.1039/C8CC02280A 3556:10.1039/C3CP53124D 3322:Results in Physics 3241:. Elsevier. 1994. 3213:Solid State Ionics 3018:10.1039/C7TA02423A 2808:10.1039/C8RA08436J 2729:Solid State Ionics 2663:Solid State Ionics 2540:Solid State Ionics 2525:10.1039/c5ta02628h 2453:10.1039/C9TA00180H 2390:10.1039/C6TA02907H 2302:Solid State Ionics 2143:Advanced Materials 2116:Solid State Ionics 1996:Advanced Materials 958:. 18–19: 282–286. 956:Solid State Ionics 864:10.1039/c8ta10513h 729:. 29 October 2018. 649: 629:ethylene carbonate 613:, for example use 587:dimethyl carbonate 575:ethylene carbonate 524: 167:ionic conductivity 155:Solid Electrolytes 28: 3766:(50): 6648–6661. 3270:(11): 4191–4198. 3033:Materials Letters 2447:(12): 6801–6808. 2225:(16): 5952–5964. 1964:(28): 8587–8591. 1827:Applied Physics A 1759:(16): 3713–3725. 1405:(17): 3490–3496. 1297:10.1149/1.1836379 1245:(11): 5577–5602. 1071:(12): 1046–1047. 583:diethyl carbonate 111:lead(II) fluoride 34:(SSE) is a solid 3874: 3828: 3827: 3790: 3784: 3783: 3755: 3749: 3748: 3730: 3720: 3703:(10): eaaz3112. 3697:Science Advances 3688: 3682: 3681: 3671: 3661: 3637: 3631: 3630: 3597:(8): 9664–9672. 3582: 3576: 3575: 3527: 3518: 3517: 3485: 3479: 3478: 3450: 3444: 3443: 3414: 3408: 3407: 3398:(4): 1460–1467. 3387: 3381: 3380: 3378: 3369:(1): 1099–1110. 3354: 3348: 3347: 3345: 3313: 3307: 3306: 3286: 3280: 3279: 3259: 3253: 3252: 3235: 3229: 3228: 3208: 3202: 3201: 3173: 3164: 3163: 3143: 3137: 3136: 3104: 3095: 3094: 3084: 3060: 3049: 3048: 3028: 3022: 3021: 3000: 2994: 2993: 2959: 2950: 2944: 2943: 2932:10.1038/nmat3602 2912:Nature Materials 2906: 2900: 2899: 2897: 2873: 2867: 2866: 2837: 2831: 2830: 2820: 2810: 2778: 2772: 2771: 2751: 2745: 2744: 2735:(3–4): 239–254. 2724: 2718: 2717: 2685: 2679: 2678: 2658: 2652: 2651: 2649: 2625: 2619: 2618: 2598: 2592: 2591: 2562: 2556: 2555: 2546:(3–4): 267–276. 2535: 2529: 2528: 2507: 2501: 2500: 2471: 2465: 2464: 2435: 2429: 2428: 2400: 2394: 2393: 2373: 2367: 2366: 2356: 2324: 2318: 2317: 2297: 2291: 2290: 2270: 2264: 2263: 2243: 2237: 2236: 2234: 2210: 2204: 2203: 2173: 2167: 2166: 2138: 2132: 2131: 2110: 2104: 2103: 2075: 2069: 2068: 2058: 2034: 2028: 2027: 1990: 1984: 1983: 1973: 1949: 1943: 1942: 1909: 1903: 1902: 1892: 1867: 1861: 1860: 1850: 1818: 1812: 1811: 1802:(8): 1101–1103. 1791: 1785: 1784: 1748: 1742: 1741: 1704: 1698: 1697: 1663: 1654: 1648: 1647: 1628:10.1038/nmat4821 1616:Nature Materials 1606: 1600: 1599: 1563: 1557: 1556: 1546: 1523:Chemical Reviews 1517: 1511: 1510: 1476: 1467: 1461: 1460: 1432: 1423: 1422: 1393: 1387: 1386: 1350: 1344: 1343: 1307: 1301: 1300: 1272: 1263: 1262: 1239:Polymer Bulletin 1234: 1228: 1227: 1199: 1193: 1192: 1152: 1146: 1145: 1105: 1099: 1098: 1088: 1056: 1050: 1049: 1012: 1006: 1005: 977: 968: 967: 951: 945: 944: 924: 918: 917: 900: 894: 893: 882: 876: 875: 858:(7): 2942–2964. 847: 841: 840: 828: 822: 821: 819: 795: 789: 783: 777: 776: 766: 737: 731: 730: 719: 713: 712: 701: 654:Li-ion batteries 548:, which acts as 492:Copolymerization 454:(e.g. PDMS) and 416:solution casting 267:ionic conduction 123:Li-ion chemistry 47:organic solvents 3882: 3881: 3877: 3876: 3875: 3873: 3872: 3871: 3847: 3846: 3837: 3832: 3831: 3792: 3791: 3787: 3757: 3756: 3752: 3690: 3689: 3685: 3652:(15): 1910813. 3639: 3638: 3634: 3584: 3583: 3579: 3529: 3528: 3521: 3487: 3486: 3482: 3452: 3451: 3447: 3416: 3415: 3411: 3389: 3388: 3384: 3356: 3355: 3351: 3315: 3314: 3310: 3288: 3287: 3283: 3261: 3260: 3256: 3249: 3237: 3236: 3232: 3210: 3209: 3205: 3175: 3174: 3167: 3145: 3144: 3140: 3119:(12): 1702675. 3106: 3105: 3098: 3075:(36): 2002135. 3062: 3061: 3052: 3030: 3029: 3025: 3002: 3001: 2997: 2957: 2952: 2951: 2947: 2908: 2907: 2903: 2875: 2874: 2870: 2839: 2838: 2834: 2780: 2779: 2775: 2753: 2752: 2748: 2726: 2725: 2721: 2687: 2686: 2682: 2660: 2659: 2655: 2627: 2626: 2622: 2600: 2599: 2595: 2564: 2563: 2559: 2537: 2536: 2532: 2509: 2508: 2504: 2473: 2472: 2468: 2437: 2436: 2432: 2402: 2401: 2397: 2375: 2374: 2370: 2326: 2325: 2321: 2299: 2298: 2294: 2272: 2271: 2267: 2245: 2244: 2240: 2212: 2211: 2207: 2175: 2174: 2170: 2140: 2139: 2135: 2112: 2111: 2107: 2077: 2076: 2072: 2056:10.1002/er.6928 2036: 2035: 2031: 2002:(44): 1803075. 1992: 1991: 1987: 1951: 1950: 1946: 1911: 1910: 1906: 1883:(46): 2112377. 1869: 1868: 1864: 1820: 1819: 1815: 1793: 1792: 1788: 1750: 1749: 1745: 1706: 1705: 1701: 1661: 1656: 1655: 1651: 1608: 1607: 1603: 1565: 1564: 1560: 1519: 1518: 1514: 1474: 1469: 1468: 1464: 1434: 1433: 1426: 1395: 1394: 1390: 1352: 1351: 1347: 1309: 1308: 1304: 1274: 1273: 1266: 1236: 1235: 1231: 1201: 1200: 1196: 1154: 1153: 1149: 1107: 1106: 1102: 1058: 1057: 1053: 1014: 1013: 1009: 979: 978: 971: 953: 952: 948: 926: 925: 921: 914: 902: 901: 897: 884: 883: 879: 849: 848: 844: 830: 829: 825: 797: 796: 792: 784: 780: 739: 738: 734: 721: 720: 716: 703: 702: 698: 693: 666: 641: 626: 516: 489: 485: 481: 477: 421: 408: 401: 397: 393: 380: 376: 358: 350: 326: 322: 317:argyrodite-like 284: 275: 262: 147: 116: 108: 99:Michael Faraday 95: 84: 17: 12: 11: 5: 3880: 3878: 3870: 3869: 3864: 3859: 3849: 3848: 3845: 3844: 3836: 3835:External links 3833: 3830: 3829: 3785: 3750: 3683: 3632: 3577: 3519: 3500:(2): 500–513. 3480: 3461:(2): 601–609. 3445: 3409: 3382: 3349: 3308: 3297:(8): 991–997. 3281: 3254: 3247: 3230: 3203: 3165: 3138: 3096: 3050: 3039:(5): 641–649. 3023: 2995: 2945: 2918:(5): 452–457. 2901: 2868: 2832: 2773: 2746: 2719: 2700:(1): 459–465. 2680: 2653: 2620: 2609:(5): 897–902. 2593: 2574:(3): 807–816. 2557: 2530: 2502: 2466: 2430: 2395: 2368: 2339:(4): 198–205. 2319: 2292: 2281:(5): 690–693. 2265: 2238: 2205: 2186:(1): 503–525. 2168: 2149:(7): 918–921. 2133: 2105: 2070: 2029: 1985: 1944: 1904: 1862: 1813: 1786: 1743: 1699: 1649: 1622:(5): 572–579. 1601: 1574:(3): 229–252. 1558: 1529:(1): 140–162. 1512: 1462: 1424: 1388: 1345: 1302: 1264: 1229: 1210:(22): 223001. 1194: 1147: 1100: 1051: 1024:(4): 299–308. 1007: 969: 946: 935:(5): 319–327. 919: 912: 895: 892:. 6 July 2019. 877: 842: 837:Car and Driver 823: 790: 778: 732: 714: 695: 694: 692: 689: 688: 687: 682: 677: 675:Li-ion battery 672: 665: 662: 640: 637: 624: 620:storage moduli 544:mainly in the 536:ion conduction 515: 512: 487: 483: 479: 475: 456:fluoropolymers 432:polycarbonates 419: 407: 404: 399: 395: 391: 388:thiophosphates 378: 374: 356: 348: 324: 320: 283: 280: 274: 271: 261: 258: 253: 252: 245: 241:Compatibility: 238: 211: 193: 187: 184:Power density: 181: 174: 146: 143: 114: 106: 103:silver sulfide 94: 91: 82: 77:of -3.04 V vs 51:self-discharge 15: 13: 10: 9: 6: 4: 3: 2: 3879: 3868: 3867:Battery types 3865: 3863: 3860: 3858: 3855: 3854: 3852: 3842: 3839: 3838: 3834: 3825: 3821: 3817: 3813: 3809: 3805: 3801: 3797: 3789: 3786: 3781: 3777: 3773: 3769: 3765: 3761: 3754: 3751: 3746: 3742: 3738: 3734: 3729: 3724: 3719: 3714: 3710: 3706: 3702: 3698: 3694: 3687: 3684: 3679: 3675: 3670: 3665: 3660: 3655: 3651: 3647: 3643: 3636: 3633: 3628: 3624: 3620: 3616: 3612: 3608: 3604: 3600: 3596: 3592: 3588: 3581: 3578: 3573: 3569: 3565: 3561: 3557: 3553: 3549: 3545: 3541: 3537: 3533: 3526: 3524: 3520: 3515: 3511: 3507: 3503: 3499: 3495: 3491: 3484: 3481: 3476: 3472: 3468: 3464: 3460: 3456: 3449: 3446: 3441: 3437: 3433: 3429: 3425: 3421: 3413: 3410: 3405: 3401: 3397: 3393: 3386: 3383: 3377: 3372: 3368: 3364: 3360: 3353: 3350: 3344: 3339: 3335: 3331: 3327: 3323: 3319: 3312: 3309: 3304: 3300: 3296: 3292: 3285: 3282: 3277: 3273: 3269: 3265: 3258: 3255: 3250: 3248:9780444899576 3244: 3240: 3234: 3231: 3226: 3222: 3218: 3214: 3207: 3204: 3199: 3195: 3191: 3187: 3183: 3179: 3172: 3170: 3166: 3161: 3157: 3153: 3149: 3142: 3139: 3134: 3130: 3126: 3122: 3118: 3114: 3110: 3103: 3101: 3097: 3092: 3088: 3083: 3078: 3074: 3070: 3066: 3059: 3057: 3055: 3051: 3046: 3042: 3038: 3034: 3027: 3024: 3019: 3015: 3011: 3007: 2999: 2996: 2991: 2987: 2983: 2979: 2975: 2971: 2967: 2963: 2956: 2949: 2946: 2941: 2937: 2933: 2929: 2925: 2921: 2917: 2913: 2905: 2902: 2896: 2891: 2887: 2883: 2879: 2872: 2869: 2864: 2860: 2856: 2852: 2848: 2844: 2836: 2833: 2828: 2824: 2819: 2814: 2809: 2804: 2800: 2796: 2792: 2788: 2784: 2777: 2774: 2769: 2765: 2761: 2757: 2750: 2747: 2742: 2738: 2734: 2730: 2723: 2720: 2715: 2711: 2707: 2703: 2699: 2695: 2691: 2684: 2681: 2676: 2672: 2668: 2664: 2657: 2654: 2648: 2643: 2639: 2635: 2631: 2624: 2621: 2616: 2612: 2608: 2604: 2597: 2594: 2589: 2585: 2581: 2577: 2573: 2569: 2561: 2558: 2553: 2549: 2545: 2541: 2534: 2531: 2526: 2522: 2518: 2514: 2506: 2503: 2498: 2494: 2490: 2486: 2482: 2478: 2470: 2467: 2462: 2458: 2454: 2450: 2446: 2442: 2434: 2431: 2426: 2422: 2418: 2414: 2410: 2406: 2399: 2396: 2391: 2387: 2383: 2379: 2372: 2369: 2364: 2360: 2355: 2350: 2346: 2342: 2338: 2334: 2330: 2323: 2320: 2315: 2311: 2307: 2303: 2296: 2293: 2288: 2284: 2280: 2276: 2269: 2266: 2261: 2257: 2253: 2249: 2242: 2239: 2233: 2228: 2224: 2220: 2216: 2209: 2206: 2201: 2197: 2193: 2189: 2185: 2181: 2180: 2172: 2169: 2164: 2160: 2156: 2152: 2148: 2144: 2137: 2134: 2129: 2125: 2121: 2117: 2109: 2106: 2101: 2097: 2093: 2089: 2085: 2081: 2074: 2071: 2066: 2062: 2057: 2052: 2048: 2044: 2040: 2033: 2030: 2025: 2021: 2017: 2013: 2009: 2005: 2001: 1997: 1989: 1986: 1981: 1977: 1972: 1967: 1963: 1959: 1955: 1948: 1945: 1940: 1936: 1932: 1928: 1924: 1920: 1916: 1908: 1905: 1900: 1896: 1891: 1886: 1882: 1878: 1874: 1866: 1863: 1858: 1854: 1849: 1844: 1840: 1836: 1832: 1828: 1824: 1817: 1814: 1809: 1805: 1801: 1797: 1790: 1787: 1782: 1778: 1774: 1770: 1766: 1762: 1758: 1754: 1747: 1744: 1739: 1735: 1731: 1727: 1723: 1719: 1715: 1711: 1703: 1700: 1695: 1691: 1687: 1683: 1679: 1675: 1671: 1667: 1660: 1653: 1650: 1645: 1641: 1637: 1633: 1629: 1625: 1621: 1617: 1613: 1605: 1602: 1597: 1593: 1589: 1585: 1581: 1577: 1573: 1569: 1562: 1559: 1554: 1550: 1545: 1544:1721.1/109539 1540: 1536: 1532: 1528: 1524: 1516: 1513: 1508: 1504: 1500: 1496: 1492: 1488: 1484: 1480: 1473: 1466: 1463: 1458: 1454: 1450: 1446: 1442: 1438: 1431: 1429: 1425: 1420: 1416: 1412: 1408: 1404: 1400: 1392: 1389: 1384: 1380: 1376: 1372: 1368: 1364: 1360: 1356: 1349: 1346: 1341: 1337: 1333: 1329: 1325: 1321: 1317: 1313: 1306: 1303: 1298: 1294: 1290: 1286: 1282: 1278: 1271: 1269: 1265: 1260: 1256: 1252: 1248: 1244: 1240: 1233: 1230: 1225: 1221: 1217: 1213: 1209: 1205: 1198: 1195: 1190: 1186: 1182: 1178: 1174: 1170: 1166: 1162: 1161:Nature Energy 1158: 1151: 1148: 1143: 1139: 1135: 1131: 1127: 1123: 1119: 1115: 1114:Nature Energy 1111: 1104: 1101: 1096: 1092: 1087: 1082: 1078: 1074: 1070: 1066: 1062: 1055: 1052: 1047: 1043: 1039: 1035: 1031: 1027: 1023: 1019: 1018:Nature Energy 1011: 1008: 1003: 999: 995: 991: 987: 983: 982:Nature Energy 976: 974: 970: 965: 961: 957: 950: 947: 942: 938: 934: 930: 923: 920: 915: 913:9780511524790 909: 905: 899: 896: 891: 887: 881: 878: 873: 869: 865: 861: 857: 853: 846: 843: 838: 834: 827: 824: 818: 813: 809: 805: 801: 794: 791: 787: 782: 779: 774: 770: 765: 760: 756: 752: 748: 744: 736: 733: 728: 727:CleanTechnica 724: 718: 715: 711:. 7 May 2018. 710: 709:CleanTechnica 706: 700: 697: 690: 686: 683: 681: 678: 676: 673: 671: 668: 667: 663: 661: 659: 655: 645: 639:Opportunities 638: 636: 634: 630: 621: 616: 615:ionic liquids 612: 607: 604: 603:cross-linking 600: 596: 592: 588: 584: 580: 576: 572: 568: 564: 560: 555: 551: 547: 542: 537: 533: 529: 520: 513: 511: 509: 505: 501: 497: 493: 472: 469: 465: 461: 457: 453: 449: 445: 441: 437: 433: 429: 425: 417: 413: 405: 403: 389: 385: 381: 370: 366: 362: 354: 346: 342: 338: 334: 330: 318: 314: 310: 306: 302: 298: 293: 289: 281: 279: 272: 270: 268: 259: 257: 249: 246: 242: 239: 236: 232: 228: 224: 220: 215: 212: 209: 205: 201: 197: 194: 191: 188: 185: 182: 178: 175: 172: 168: 163: 160: 159: 158: 156: 152: 144: 142: 139: 134: 132: 128: 124: 118: 112: 104: 100: 92: 90: 88: 80: 76: 72: 68: 64: 60: 56: 52: 48: 44: 40: 37: 33: 25: 21: 3799: 3795: 3788: 3763: 3759: 3753: 3700: 3696: 3686: 3649: 3645: 3635: 3594: 3590: 3580: 3539: 3535: 3497: 3493: 3483: 3458: 3454: 3448: 3423: 3419: 3412: 3395: 3391: 3385: 3366: 3362: 3352: 3325: 3321: 3311: 3294: 3290: 3284: 3267: 3263: 3257: 3238: 3233: 3216: 3212: 3206: 3181: 3177: 3154:(1): 21–42. 3151: 3147: 3141: 3116: 3112: 3072: 3068: 3036: 3032: 3026: 3009: 3005: 2998: 2965: 2961: 2948: 2915: 2911: 2904: 2885: 2881: 2871: 2846: 2842: 2835: 2790: 2787:RSC Advances 2786: 2776: 2759: 2755: 2749: 2732: 2728: 2722: 2697: 2694:Nano Letters 2693: 2683: 2669:(1): 91–95. 2666: 2662: 2656: 2637: 2633: 2623: 2606: 2602: 2596: 2571: 2567: 2560: 2543: 2539: 2533: 2516: 2512: 2505: 2480: 2476: 2469: 2444: 2440: 2433: 2408: 2404: 2398: 2381: 2377: 2371: 2336: 2332: 2322: 2305: 2301: 2295: 2278: 2274: 2268: 2251: 2247: 2241: 2222: 2218: 2208: 2183: 2177: 2171: 2146: 2142: 2136: 2119: 2115: 2108: 2083: 2079: 2073: 2046: 2042: 2032: 1999: 1995: 1988: 1961: 1957: 1947: 1922: 1918: 1907: 1880: 1876: 1865: 1830: 1826: 1816: 1799: 1795: 1789: 1756: 1752: 1746: 1713: 1709: 1702: 1669: 1665: 1652: 1619: 1615: 1604: 1571: 1567: 1561: 1526: 1522: 1515: 1482: 1478: 1465: 1440: 1436: 1402: 1398: 1391: 1358: 1354: 1348: 1315: 1311: 1305: 1280: 1276: 1242: 1238: 1232: 1207: 1203: 1197: 1167:(4): 16042. 1164: 1160: 1150: 1120:(9): 16141. 1117: 1113: 1103: 1068: 1065:MRS Bulletin 1064: 1054: 1021: 1017: 1010: 988:(9): 16141. 985: 981: 955: 949: 932: 928: 922: 903: 898: 890:FutureBridge 889: 880: 855: 851: 845: 836: 826: 807: 803: 793: 781: 764:10356/149966 746: 742: 735: 726: 717: 708: 699: 650: 608: 601:and thermal 525: 496:crosslinking 473: 452:polysiloxane 450:(e.g. PEI), 446:(e.g. PVA), 444:polyalcohols 442:(e.g. PAN), 440:polynitriles 428:ether groups 409: 371:(LYC, LYB)., 367:"), lithium 351:N), lithium 285: 276: 263: 254: 247: 240: 223:tensile test 213: 195: 189: 183: 176: 161: 148: 135: 119: 96: 31: 29: 3802:: 255–261. 3426:: 309–315. 2888:: 176–184. 2882:Nano Energy 2849:: 287–297. 2690:Liu, Yayuan 2483:: 466–490. 2411:: 166–170. 2308:: 738–742. 2254:(11): 589. 1753:ChemSusChem 1716:: 120–134. 1485:: 333–342. 1443:: 114–143. 1399:ChemSusChem 1361:: 198–213. 1318:: 198–213. 1283:(1): 6–12. 810:: 145–159. 743:Nano Energy 585:(DEC), and 550:plasticizer 534:pathway of 532:percolating 424:ion hopping 361:perovskites 343:), lithium 288:crystalline 190:Cycle life: 125:are making 59:electrolyte 3851:Categories 3328:: 102735. 3184:: 100643. 2640:: 117428. 2122:: 95–101. 2086:: 136779. 1833:(3): 251. 749:: 103986. 691:References 448:polyamines 436:polyesters 309:phosphates 260:Categories 145:Properties 3857:Chemistry 3824:197395956 3745:212739571 3678:1616-301X 3627:197665200 3611:1936-0851 3564:1463-9084 3198:233581904 3133:102749351 3091:1614-6840 2990:107653475 2968:: 63–72. 2588:103666062 2497:149575379 2461:104471195 2100:225553692 2065:236256757 2024:205288274 1939:0002-7863 1899:1616-301X 1781:167209150 1738:104174556 1694:207195755 1596:211028485 1457:102876830 1383:104174202 1340:104174202 1259:104442538 1189:2058-7546 1142:2058-7546 1095:0883-7694 1046:216386265 872:104366580 773:201287650 528:composite 504:carbonyls 468:cellulose 210:analysis. 173:analysis. 153:(SSBs) / 3780:29796542 3737:32181364 3619:31318524 3591:ACS Nano 3572:24080900 3514:26783056 3219:: 2–18. 2940:23542871 2827:35557886 2714:26595277 2363:27162971 2163:95505293 2016:30216562 1980:29734500 1857:53402745 1773:31132230 1686:30380843 1644:27992420 1553:26713396 1507:99108693 1419:28731629 1224:94704160 664:See also 611:Ionogels 571:PVDF-HFP 508:nitriles 464:chitosan 353:hydrides 347:(e.g. Li 345:nitrides 319:(e.g. Li 305:sulfides 180:charges. 63:dendrite 39:material 3804:Bibcode 3728:7060059 3705:Bibcode 3544:Bibcode 3463:Bibcode 3428:Bibcode 3330:Bibcode 2970:Bibcode 2920:Bibcode 2851:Bibcode 2818:9091465 2795:Bibcode 2413:Bibcode 2354:4827473 2275:Polymer 2248:Polymer 2219:Polymer 2188:Bibcode 1835:Bibcode 1718:Bibcode 1636:1433807 1576:Bibcode 1487:Bibcode 1363:Bibcode 1320:Bibcode 1285:Bibcode 1169:Bibcode 1122:Bibcode 1073:Bibcode 1026:Bibcode 990:Bibcode 554:solvent 546:solvent 541:Ionogel 369:halides 337:NASICON 329:garnets 313:LISICON 297:modulus 225:. Wide 109:S) and 93:History 71:lithium 69:, like 55:lithium 3822:  3778:  3743:  3735:  3725:  3676:  3625:  3617:  3609:  3570:  3562:  3512:  3245:  3196:  3131:  3089:  2988:  2938:  2825:  2815:  2712:  2586:  2495:  2459:  2361:  2351:  2161:  2098:  2063:  2022:  2014:  1978:  1937:  1897:  1855:  1779:  1771:  1736:  1692:  1684:  1642:  1634:  1594:  1551:  1505:  1455:  1417:  1381:  1338:  1257:  1222:  1187:  1140:  1093:  1044:  910:  870:  771:  581:(PC), 577:(EC), 552:. The 500:ethers 460:lignin 410:Solid 301:oxides 292:glassy 3820:S2CID 3741:S2CID 3623:S2CID 3194:S2CID 3129:S2CID 2986:S2CID 2958:(PDF) 2584:S2CID 2493:S2CID 2457:S2CID 2159:S2CID 2096:S2CID 2061:S2CID 2020:S2CID 1853:S2CID 1777:S2CID 1734:S2CID 1690:S2CID 1662:(PDF) 1592:S2CID 1503:S2CID 1475:(PDF) 1453:S2CID 1379:S2CID 1336:S2CID 1255:S2CID 1220:S2CID 1042:S2CID 868:S2CID 769:S2CID 486:, SiO 482:, TiO 355:(LiBH 198:High 3776:PMID 3733:PMID 3674:ISSN 3615:PMID 3607:ISSN 3568:PMID 3560:ISSN 3510:PMID 3243:ISBN 3087:ISSN 2936:PMID 2823:PMID 2710:PMID 2359:PMID 2012:PMID 1976:PMID 1935:ISSN 1895:ISSN 1769:PMID 1682:PMID 1640:PMID 1632:OSTI 1549:PMID 1415:PMID 1185:ISSN 1138:ISSN 1091:ISSN 908:ISBN 567:PMMA 466:and 373:RbAg 365:LLTO 341:LAGP 333:LLZO 251:etc. 206:and 149:For 113:(PbF 87:OEMs 3812:doi 3800:134 3768:doi 3723:PMC 3713:doi 3664:hdl 3654:doi 3599:doi 3552:doi 3502:doi 3471:doi 3459:194 3436:doi 3424:267 3400:doi 3371:doi 3338:doi 3299:doi 3272:doi 3221:doi 3217:318 3186:doi 3156:doi 3121:doi 3077:doi 3041:doi 3014:doi 2978:doi 2966:420 2928:doi 2890:doi 2859:doi 2847:353 2813:PMC 2803:doi 2764:doi 2737:doi 2733:124 2702:doi 2671:doi 2642:doi 2638:593 2611:doi 2576:doi 2548:doi 2544:104 2521:doi 2485:doi 2449:doi 2421:doi 2409:298 2386:doi 2349:PMC 2341:doi 2310:doi 2306:262 2283:doi 2256:doi 2227:doi 2196:doi 2151:doi 2124:doi 2120:233 2088:doi 2084:355 2051:doi 2004:doi 1966:doi 1927:doi 1923:141 1885:doi 1843:doi 1831:122 1804:doi 1761:doi 1726:doi 1714:389 1674:doi 1670:140 1624:doi 1584:doi 1539:hdl 1531:doi 1527:116 1495:doi 1483:353 1445:doi 1407:doi 1371:doi 1359:389 1328:doi 1316:389 1293:doi 1281:143 1247:doi 1212:doi 1177:doi 1130:doi 1081:doi 1034:doi 998:doi 960:doi 937:doi 860:doi 812:doi 759:hdl 751:doi 563:PAN 559:PEO 506:or 402:). 394:S–P 390:(Li 335:), 307:or 290:or 233:or 208:EIS 105:(Ag 79:SHE 3853:: 3818:. 3810:. 3798:. 3774:. 3764:54 3762:. 3739:. 3731:. 3721:. 3711:. 3699:. 3695:. 3672:. 3662:. 3650:30 3648:. 3644:. 3621:. 3613:. 3605:. 3595:13 3593:. 3589:. 3566:. 3558:. 3550:. 3540:15 3538:. 3534:. 3522:^ 3508:. 3498:55 3496:. 3492:. 3469:. 3457:. 3434:. 3422:. 3396:55 3394:. 3365:. 3361:. 3336:. 3326:15 3324:. 3320:. 3295:40 3293:. 3268:27 3266:. 3215:. 3192:. 3182:20 3180:. 3168:^ 3152:42 3150:. 3127:. 3115:. 3111:. 3099:^ 3085:. 3073:10 3071:. 3067:. 3053:^ 3037:58 3035:. 3008:. 2984:. 2976:. 2964:. 2960:. 2934:. 2926:. 2916:12 2914:. 2886:46 2884:. 2880:. 2857:. 2845:. 2821:. 2811:. 2801:. 2789:. 2785:. 2760:46 2758:. 2731:. 2708:. 2698:16 2696:. 2667:11 2665:. 2636:. 2632:. 2607:39 2605:. 2582:. 2572:22 2570:. 2542:. 2515:. 2491:. 2481:23 2479:. 2455:. 2443:. 2419:. 2407:. 2380:. 2357:. 2347:. 2335:. 2331:. 2304:. 2279:23 2277:. 2252:14 2250:. 2223:47 2221:. 2217:. 2194:. 2184:43 2182:. 2157:. 2147:17 2145:. 2118:. 2094:. 2082:. 2059:. 2047:45 2045:. 2041:. 2018:. 2010:. 2000:30 1998:. 1974:. 1962:57 1960:. 1956:. 1933:. 1921:. 1917:. 1893:. 1881:32 1879:. 1875:. 1851:. 1841:. 1829:. 1825:. 1800:27 1798:. 1775:. 1767:. 1757:12 1755:. 1732:. 1724:. 1712:. 1688:. 1680:. 1668:. 1664:. 1638:. 1630:. 1620:16 1618:. 1614:. 1590:. 1582:. 1570:. 1547:. 1537:. 1525:. 1501:. 1493:. 1481:. 1477:. 1451:. 1441:81 1439:. 1427:^ 1413:. 1403:10 1401:. 1377:. 1369:. 1357:. 1334:. 1326:. 1314:. 1291:. 1279:. 1267:^ 1253:. 1243:76 1241:. 1218:. 1208:41 1206:. 1183:. 1175:. 1163:. 1159:. 1136:. 1128:. 1116:. 1112:. 1089:. 1079:. 1069:39 1067:. 1063:. 1040:. 1032:. 1020:. 996:. 984:. 972:^ 931:. 888:. 866:. 854:. 835:. 808:48 806:. 802:. 767:. 757:. 747:64 745:. 725:. 707:. 599:UV 569:, 565:, 561:, 502:, 494:, 462:, 438:, 434:, 323:PS 303:, 30:A 3826:. 3814:: 3806:: 3782:. 3770:: 3747:. 3715:: 3707:: 3701:6 3680:. 3666:: 3656:: 3629:. 3601:: 3574:. 3554:: 3546:: 3516:. 3504:: 3477:. 3473:: 3465:: 3442:. 3438:: 3430:: 3406:. 3402:: 3379:. 3373:: 3367:3 3346:. 3340:: 3332:: 3305:. 3301:: 3278:. 3274:: 3251:. 3227:. 3223:: 3200:. 3188:: 3162:. 3158:: 3135:. 3123:: 3117:8 3093:. 3079:: 3047:. 3043:: 3020:. 3016:: 3010:5 2992:. 2980:: 2972:: 2942:. 2930:: 2922:: 2898:. 2892:: 2865:. 2861:: 2853:: 2829:. 2805:: 2797:: 2791:8 2770:. 2766:: 2743:. 2739:: 2716:. 2704:: 2677:. 2673:: 2650:. 2644:: 2617:. 2613:: 2590:. 2578:: 2554:. 2550:: 2527:. 2523:: 2517:3 2499:. 2487:: 2463:. 2451:: 2445:7 2427:. 2423:: 2415:: 2392:. 2388:: 2382:4 2365:. 2343:: 2337:1 2316:. 2312:: 2289:. 2285:: 2262:. 2258:: 2235:. 2229:: 2202:. 2198:: 2190:: 2165:. 2153:: 2130:. 2126:: 2102:. 2090:: 2067:. 2053:: 2026:. 2006:: 1982:. 1968:: 1941:. 1929:: 1901:. 1887:: 1859:. 1845:: 1837:: 1810:. 1806:: 1783:. 1763:: 1740:. 1728:: 1720:: 1696:. 1676:: 1646:. 1626:: 1598:. 1586:: 1578:: 1572:5 1555:. 1541:: 1533:: 1509:. 1497:: 1489:: 1459:. 1447:: 1421:. 1409:: 1385:. 1373:: 1365:: 1342:. 1330:: 1322:: 1299:. 1295:: 1287:: 1261:. 1249:: 1226:. 1214:: 1191:. 1179:: 1171:: 1165:1 1144:. 1132:: 1124:: 1118:1 1097:. 1083:: 1075:: 1048:. 1036:: 1028:: 1022:5 1004:. 1000:: 992:: 986:1 966:. 962:: 943:. 939:: 933:7 916:. 874:. 862:: 856:7 839:. 820:. 814:: 775:. 761:: 753:: 625:2 488:2 484:2 480:3 478:O 476:2 420:g 400:5 398:S 396:2 392:2 379:5 377:I 375:4 357:4 349:3 331:( 325:5 321:6 237:. 115:2 107:2 83:6

Index


All Solid-State Battery
ionic conductor and electron-insulating
material
lithium-ion battery
organic solvents
self-discharge
lithium
electrolyte
dendrite
reduction potential
lithium
reduction potential
SHE
OEMs
Michael Faraday
silver sulfide
lead(II) fluoride
Li-ion chemistry
solid-state batteries
battery electric vehicles
Samsung Advanced Institute of Technology (SAIT)
Solid State Batteries
Solid Electrolytes
ionic conductivity
electrochemical impedance spectroscopy (EIS)
ionic transference number
chronoamperometry (CA)
EIS
mechanical strength

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑