Knowledge

Solid acid fuel cell

Source πŸ“

35:, they extract electricity from the electrochemical conversion of hydrogen- and oxygen-containing gases, leaving only water as a byproduct. Current SAFC systems use hydrogen gas obtained from a range of different fuels, such as industrial-grade propane and diesel. They operate at mid-range temperatures, from 200 to 300 Β°C. 264:
on the electrodes to increase cell efficiency. Platinum is the most common choice for SAFCs due to its high reaction activity and stability. Initially, platinum nanoparticles were deposited directly on the electrode surface, but these nanoparticles agglomerated throughout fuel cell operation. Recent
216:
The operation of SAFCs at mid-range temperatures allows them to utilize materials that would otherwise be damaged at high temperatures, such as standard metal components and flexible polymers. These temperatures also make SAFCs tolerant to impurities in their hydrogen source of fuel, such as carbon
575:
Because of their moderate temperature requirements and compatibility with several types of fuel, SAFCs can be utilized in remote locations where other types of fuel cells would be impractical. In particular, SAFC systems for remote oil and gas applications have been deployed to electrify wellheads
818:
Otomo, Junichiro; Tamaki, Takanori; Nishida, Satoru; Wang, Shuqiang; Ogura, Masaru; Kobayashi, Takeshi; Wen, Ching-ju; Nagamoto, Hidetoshi; Takahashi, Hiroshi (2005). "Effect of water vapor on proton conduction of cesium dihydrogen phosphateand application to intermediate temperature fuel cells".
231:
In 2005, SAFCs were fabricated with thin electrolyte membranes of 25 micrometer thickness, resulting in an eightfold increase in peak power densities compared to earlier models. Thin electrolyte membranes are necessary to minimize the voltage lost due to internal resistance within the membrane.
600:
Calum R.I. Chisholm, Dane A. Boysen, Alex B. Papandrew, Strahinja Zecevic, SukYal Cha, Kenji A. Sasaki, Áron Varga, Konstantinos P. Giapis, Sossina M. Haile. "From Laboratory Breakthrough to Technological Realization: The Development Path for Solid Acid Fuel Cells." The Electrochemical Society
108:
could stably undergo the superprotonic phase transition in a humid atmosphere at an "intermediate" temperature of 250 Β°C, making it an ideal solid acid electrolyte to use in a fuel cell. A humid environment in a fuel cell is necessary to prevent certain solid acids (such as
576:
and eliminate the use of pneumatic components, which vent methane and other potent greenhouse gases straight into the atmosphere. A smaller, portable SAFC system is in development for military applications that will run on standard logistic fuels, like marine diesel and JP8.
74:), some solid acids undergo a phase transition to become highly disordered "superprotonic" structures, which increases conductivity by several orders of magnitude. When used in fuel cells, this high conductivity allows for efficiencies of up to 50% on various fuels. 235:
According to Suryaprakash et al. 2014, the ideal solid acid fuel cell anode is a "porous electrolyte nanostructure uniformly covered with a platinum thin film". This group used a method called spray drying to fabricate SAFCs, depositing
997:
Suryaprakash, R. C.; Lohmann, F. P.; Wagner, M.; Abel, B.; Varga, A. (2014-11-10). "Spray drying as a novel and scalable fabrication method for nanostructured CsH2PO4, Pt-thin-film composite electrodes for solid acid fuel cells".
296:
at operating temperatures. However, one recent study has proposed local hotspots around the current collector fibers can cause catalyst poisoning. According to Wagner et al. 2021, local hotspots can form a liquid phase of
469: 139:, while electrons travel to the cathode through an external circuit, generating electricity. At the cathode, protons and electrons recombine along with oxygen to produce water that is then removed from the system. 1436:
Sossina M. Haile, Calum R. I. Chisholm, Kenji Sasaki, Dane A. Boysen, Tetsuya Uda. "Solid acid proton conductors: from laboratory curiosities to fuel cell electrolytes." Faraday Discuss., 2007, 134, 17-39. DOI:
693:
Sossina M. Haile, Calum R. I. Chisholm, Kenji Sasaki, Dane A. Boysen, Tetsuya Uda. "Solid acid proton conductors: from laboratory curiosities to fuel cell electrolytes." Faraday Discuss., 2007, 134, 17-39. DOI:
790:
Baranov, A. I.; Merinov, B. V.; Tregubchenko, A. V.; Khiznichenko, V. P.; Shuvalov, L. A.; Schagina, N. M. (1989-11-01). "Fast proton transport in crystals with a dynamically disordered hydrogen bond network".
679:
Ryan B. Merle, Calum R. I. Chisholm, Dane A. Boysen, Sossina M. Haile. "Instability of Sulfate and Selenate Solid Acids in Fuel Cell Environments." Energy Fuels, 2003, 17 (1), pp 210–215. DOI: 10.1021/ef0201174
558:
composite versus an epoxy composite demonstrated that while the strengths themselves are similar, the flexibility of the epoxy composite is superior, a property which is essential in preventing electrolyte
348:
However, solid acid fuel cell electrolyte materials are still susceptible to mechanical degradation under normal operating conditions above their superprotonic phase transition temperatures due to the
305:
that introduces phosphate groups to the platinum catalyst, degrading fuel cell operation. The introduction of a microporous current collector was found to improve the morphological stability of CsH
81:). However, fuel cells using acid sulfates as an electrolyte result in byproducts that severely degrade the fuel cell anode, which leads to diminished power output after only modest usage. 704:
Baranov, A. I.; Khiznichenko, V. P.; Sandler, V. A.; Shuvalov, L. A. (1988-05-01). "Frequency dielectric dispersion in the ferroelectric and superionic phases of CsH2PO4".
397: 1080:
Papandrew, Alexander B.; John, Samuel St.; Elgammal, Ramez A.; Wilson, David L.; Atkinson, Robert W.; Lawton, Jamie S.; Arruda, Thomas M.; Zawodzinski, Thomas A. (2016).
655:
Sossina M. Haile, Dane A. Boysen, Calum R. I. Chisholm, Ryan B. Merle. "Solid acids as fuel cell electrolytes." Nature 410, 910-913 (19 April 2001). doi:10.1038/35073536.
403:
is likely to degrade the cells by creating a short circuiting path. The same study showed that the strain rate, as modeled using the standard steady-state creep equation
399:
for an applied compressive stress in the range of several MPa. Since fuel cells often require pressures in this range to properly seal the device and prevent leaks,
495: 747:
Baranov, A. I.; Khiznichenko, V. P.; Shuvalov, L. A. (1989-12-01). "High temperature phase transitions and proton conductivity in some kdp-family crystals".
70:
At low temperatures, solid acids have an ordered molecular structure like most salts. At warmer temperatures (between 140 and 150 degrees Celsius for CsHSO
341:
present within the material have sufficient energy to move and disrupt the original structure. Lower temperature operation also allows for the use of non-
244:
solid acid electrolyte nanoparticles and creating porous, 3-dimensional interconnected nanostructures of the solid acid fuel cell electrolyte material CsH
1139:"Elucidating the degradation mechanism of the cathode catalyst of PEFCs by a combination of electrochemical methods and X-ray fluorescence spectroscopy" 337:
mechanisms are less likely to cause permanent damage to the cell materials. Permanent deformation occurs more readily at elevated temperatures because
406: 1575:
Solar/Fuel Cell-Powered Caltech-Designed Enviro-Toilet to Debut in India. Pasadena, California. The Hydrogen and Fuel Cell Letter. February 2014.
278: 217:
monoxide or sulfur components. For example, SAFCs can utilize hydrogen gas extracted from propane, natural gas, diesel, and other hydrocarbons.
579:
In 2014, a toilet that chemically transforms waste into water and fertilizer was developed using a combination of solar power and SAFCs.
512:
using a composite electrolyte whereby ceramic particles are introduced to prevent dislocation motion. For example, the strain rate of CsH
273:, etc.) to reduced agglomeration. Here platinum nanoparticles are deposited directly onto the carbon-based support via processes like 28: 505:
of 1.02 eV. n is the stress exponent, Q is the creep activation energy, and A is a constant that depends on the creep mechanism.
1200:
Zhang, Shengsheng; Yuan, Xiao-Zi; Hin, Jason Ng Cheng; Wang, Haijiang; Friedrich, K. Andreas; Schulze, Mathias (December 2009).
1337:"Atomic Layer Deposition of Platinum Nanoparticles on Carbon Nanotubes for Application in Proton-Exchange Membrane Fuel Cells" 611:
Papandrew, Alexander B.; Chisholm, Calum R.I.; Elgammal, Ramez A.; Γ–zer, Mustafa M.; Zecevic, Strahinja K. (2011-04-12).
1564: 1082:"Vapor-Deposited Pt and Pd-Pt Catalysts for Solid Acid Fuel Cells: Short Range Structure and Interactions with the CsH 1241:"Platinum-decorated carbon nanotubes for hydrogen oxidation and proton reduction in solid acid electrochemical cells" 322: 92:) and have demonstrated lifetimes in the thousands of hours. When undergoing a superprotonic phase transition, CsH 1043:"The next generation solid acid fuel cell electrodes: stable, high performance with minimized catalyst loading" 135:, where it is split into protons and electrons. Protons travel through the solid acid electrolyte to reach the 47:. Solid acids of interest for fuel cell applications are those whose chemistry is based on oxyanion groups (SO 945:
Running fuel cells on biodiesel. Claude R. Olsen, Else Lie. October 8, 2010. The Research Council of Norway.
509: 338: 274: 563:
during operation. The epoxy composite also shows comparable but slightly lower conductivities than the SiO
1384:"Chemical Vapor Deposition of Nanocarbon-Supported Platinum and Palladium Catalysts for Oxygen Reduction" 326: 32: 1563:
SAFCell Inc. awarded Enhancement grant from US Army. Pasadena, California. SAFCell, Inc. May 16, 2016.
1395: 1213: 1150: 1007: 878: 756: 713: 330: 1138: 1594: 1533:
Qing, Geletu; Kikuchi, Ryuji; Takagaki, Atsushi; Sugawara, Takashi; Oyama, Shigeo Ted (July 2015).
1041:
Lohmann, F. P.; Schulze, P. S. C.; Wagner, M.; Naumov, O.; Lotnyk, A.; Abel, B.; Varga, Á. (2017).
612: 527:
particles with a size of 2 microns, however resulting in a 20% decrease in protonic conductivity.
400: 359: 334: 100:
experiences an increase in conductivity by four orders of magnitude. In 2005, it was shown that CsH
1534: 1476: 1447:
Wagner, Maximilian; Lorenz, Oliver; Lohmann-Richters, Felix P.; Varga, Áron; Abel, Bernd (2021).
1419: 1201: 1182: 1119: 910: 844: 285: 1335:
Liu, Chueh; Wang, Chih-Chieh; Kei, Chi-Chung; Hsueh, Yang-Chih; Perng, Tsong-Pyng (2009-06-30).
1468: 1411: 1364: 1356: 1317: 1278: 1260: 1202:"A review of platinum-based catalyst layer degradation in proton exchange membrane fuel cells" 1174: 1166: 1111: 1062: 1023: 979: 902: 894: 836: 772: 729: 635: 551: 502: 498: 863: 1546: 1510: 1460: 1403: 1348: 1309: 1268: 1252: 1221: 1158: 1101: 1054: 1015: 971: 886: 828: 800: 764: 721: 627: 225: 77:
The first proof-of-concept SAFCs were developed in 2000 using cesium hydrogen sulfate (CsHSO
1296:
Wang, Cheng; Waje, Mahesh; Wang, Xin; Tang, Jason M.; Haddon, Robert C.; Yan (2003-12-30).
956: 474: 63:) linked together by hydrogen bonds and charge-balanced by large cation species (Cs, Rb, NH 521: 349: 266: 1399: 1217: 1154: 1011: 927:
Cheap Diesel-Powered Fuel Cells. Bullis, Kevin. October 21, 2010. MIT Technology Review.
882: 760: 717: 1383: 1273: 862:
Boysen, Dane A.; Uda, Tetsuya; Chisholm, Calum R. I.; Haile, Sossina M. (2004-01-02).
1588: 1576: 1515: 1498: 1480: 1423: 1123: 804: 1565:
http://www.ultracell-llc.com/assets/UltraCell_BT-press-release-17-May-2016-FINAL.pdf
1550: 1186: 914: 848: 1225: 321:
Compared to their high operating temperature counterparts such as high temperature
613:"Advanced Electrodes for Solid Acid Fuel Cells by Platinum Deposition on CsH2PO4" 539: 1535:"CsH2PO4/Epoxy Composite Electrolytes for Intermediate Temperature Fuel Cells" 832: 768: 725: 342: 24: 1472: 1415: 1360: 1321: 1264: 1170: 1115: 1066: 1027: 983: 898: 840: 776: 733: 639: 464:{\displaystyle {\overset {\cdot }{\epsilon }}=A\sigma ^{n}e^{\frac {-Q}{kT}}} 43:
Solid acids are chemical intermediates between salts and acids, such as CsHSO
1336: 890: 261: 126: 20: 1368: 1352: 1298:"Proton Exchange Membrane Fuel Cells with Carbon Nanotube Based Electrodes" 1282: 1178: 906: 356:, a study has shown that the material can undergo strain rates as high as 1137:
MonzΓ³, J.; Vliet, D. F. van der; Yanson, A.; Rodriguez, P. (2016-08-10).
1106: 1081: 560: 329:, solid acid fuel cells benefit from operating at low temperatures where 270: 1449:"Study on solid electrolyte catalyst poisoning in solid acid fuel cells" 1240: 1042: 550:
are embedded in a cross-linked polymer matrix. A comparison between the
1464: 1448: 1297: 1256: 1162: 1058: 1019: 864:"High-Performance Solid Acid Fuel Cells Through Humidity Stabilization" 136: 1407: 1313: 975: 631: 260:
SAFCs, like many other types of fuel cells, utilize electrochemical
936:
Diesel: The Fuel of the Future? February 11, 2013. Discovery News.
668: 132: 117:) from dehydration and dissociation into a salt and water vapor. 1239:
Thoi, V. Sara; Usiskin, Robert E.; Haile, Sossina M. (2015).
352:
enabled by this transition. For instance in the case of CsHSO
1499:"Creep behavior of the solid acid fuel cell material CsHSO4" 1382:
Vijayaraghavan, Ganesh; Stevenson, Keith J. (2008-05-27).
345:
materials which tends to decrease the cost of the SAFC.
84:
Current SAFC systems use cesium dihydrogen phosphate (CsH
228:
developed the first solid acid fuel cells in the 1990s.
567:
composite when operating at temperatures below 200 Β°C.
477: 409: 362: 1577:http://www.hfcletter.com/Content/EnviroToilet.aspx 1497:Ginder, Ryan S.; Pharr, George M. (October 2017). 489: 463: 391: 265:studies have incorporated carbon-based supports ( 313:and, consequently, mitigate catalyst poisoning. 955:Uda, Tetsuya; Haile, Sossina M. (2005-05-01). 127:Fuel_cell Β§ Types_of_fuel_cells.3B_design 542:composites where micron size particles of CsH 8: 520:was reduced by a factor of 5 by mixing in 1514: 1272: 1105: 476: 440: 430: 410: 408: 380: 367: 361: 27:material as the electrolyte. Similar to 964:Electrochemical and Solid-State Letters 689: 687: 685: 663: 661: 588: 279:metal-organic chemical vapor deposition 1094:Journal of the Electrochemical Society 1528: 1526: 1492: 1490: 651: 649: 596: 594: 592: 7: 957:"Thin-Membrane Solid-Acid Fuel Cell" 508:Creep resistance can be obtained by 1143:Physical Chemistry Chemical Physics 821:Journal of Applied Electrochemistry 29:proton exchange membrane fuel cells 14: 131:Hydrogen gas is channeled to the 1516:10.1016/j.scriptamat.2017.06.019 1453:Journal of Materials Chemistry A 1047:Journal of Materials Chemistry A 530:Other studies have looked at CsH 1551:10.1016/j.electacta.2015.04.089 669:http://www.safcell.com/oil-gas/ 601:Interface Vol 18. No 3. (2009). 284:SAFCs have a high tolerance to 1226:10.1016/j.jpowsour.2009.06.073 23:characterized by the use of a 1: 392:{\displaystyle 10^{-2}s^{-1}} 805:10.1016/0167-2738(89)90191-4 497:typically associated with a 499:dislocation glide mechanism 471:, has a stress exponent of 323:protonic ceramic fuel cells 288:due to the stability of CsH 1611: 221:Fabrication and Production 124: 833:10.1007/s10800-005-4727-4 769:10.1080/00150198908007907 726:10.1080/00150198808008840 667:"SAFCell – Oil and Gas." 510:precipitate strengthening 1206:Journal of Power Sources 891:10.1126/science.1090920 275:atomic layer deposition 19:(SAFCs) are a class of 1353:10.1002/smll.200900278 620:Chemistry of Materials 491: 465: 393: 327:solid oxide fuel cells 33:solid oxide fuel cells 492: 490:{\displaystyle n=3.6} 466: 394: 17:Solid acid fuel cells 1107:10.1149/2.0371606jes 1006:(104): 60429–60436. 475: 407: 360: 317:Mechanical Stability 1539:Electrochimica Acta 1459:(18): 11347–11358. 1400:2008ECSTr...6y..43V 1218:2009JPS...194..588Z 1155:2016PCCP...1822407M 1149:(32): 22407–22415. 1053:(29): 15021–15025. 1012:2014RSCAd...460429S 883:2004Sci...303...68B 761:1989Fer...100..135B 718:1988Fer....81..183B 331:plastic deformation 256:Electrode Catalysts 121:Electrode Reactions 1503:Scripta Materialia 1465:10.1039/D1TA01002F 1257:10.1039/c4sc03003f 1163:10.1039/C6CP03795J 1059:10.1039/c7ta03690f 1020:10.1039/C4RA10259B 793:Solid State Ionics 487: 461: 389: 286:catalyst poisoning 1408:10.1149/1.2943223 1347:(13): 1535–1538. 1314:10.1021/nl034952p 976:10.1149/1.1883874 632:10.1021/cm101147y 552:flexural strength 503:activation energy 458: 418: 1602: 1579: 1573: 1567: 1561: 1555: 1554: 1530: 1521: 1520: 1518: 1494: 1485: 1484: 1444: 1438: 1437:10.1039/B604311A 1434: 1428: 1427: 1388:ECS Transactions 1379: 1373: 1372: 1332: 1326: 1325: 1293: 1287: 1286: 1276: 1251:(2): 1570–1577. 1245:Chemical Science 1236: 1230: 1229: 1197: 1191: 1190: 1134: 1128: 1127: 1109: 1100:(6): F464–F469. 1077: 1071: 1070: 1038: 1032: 1031: 994: 988: 987: 970:(5): A245–A246. 961: 952: 946: 943: 937: 934: 928: 925: 919: 918: 868: 859: 853: 852: 815: 809: 808: 787: 781: 780: 744: 738: 737: 701: 695: 694:10.1039/B604311A 691: 680: 677: 671: 665: 656: 653: 644: 643: 626:(7): 1659–1667. 617: 608: 602: 598: 496: 494: 493: 488: 470: 468: 467: 462: 460: 459: 457: 449: 441: 435: 434: 419: 411: 398: 396: 395: 390: 388: 387: 375: 374: 267:carbon nanotubes 204: 202: 201: 198: 195: 170: 168: 167: 164: 161: 1610: 1609: 1605: 1604: 1603: 1601: 1600: 1599: 1585: 1584: 1583: 1582: 1574: 1570: 1562: 1558: 1532: 1531: 1524: 1496: 1495: 1488: 1446: 1445: 1441: 1435: 1431: 1381: 1380: 1376: 1334: 1333: 1329: 1295: 1294: 1290: 1238: 1237: 1233: 1199: 1198: 1194: 1136: 1135: 1131: 1089: 1085: 1079: 1078: 1074: 1040: 1039: 1035: 996: 995: 991: 959: 954: 953: 949: 944: 940: 935: 931: 926: 922: 877:(5654): 68–70. 866: 861: 860: 856: 817: 816: 812: 789: 788: 784: 746: 745: 741: 703: 702: 698: 692: 683: 678: 674: 666: 659: 654: 647: 615: 610: 609: 605: 599: 590: 585: 573: 566: 557: 549: 545: 537: 533: 525: 519: 515: 473: 472: 450: 442: 436: 426: 405: 404: 376: 363: 358: 357: 355: 350:superplasticity 319: 312: 308: 304: 300: 295: 291: 258: 251: 247: 243: 239: 223: 212: 208: 199: 196: 193: 192: 190: 188: 178: 174: 165: 162: 159: 158: 156: 148: 129: 123: 116: 112: 107: 103: 99: 95: 91: 87: 80: 73: 66: 62: 58: 54: 50: 46: 41: 12: 11: 5: 1608: 1606: 1598: 1597: 1587: 1586: 1581: 1580: 1568: 1556: 1522: 1486: 1439: 1429: 1374: 1327: 1308:(2): 345–348. 1288: 1231: 1212:(2): 588–600. 1192: 1129: 1087: 1083: 1072: 1033: 989: 947: 938: 929: 920: 854: 827:(9): 865–870. 810: 799:(3): 279–282. 782: 755:(1): 135–141. 749:Ferroelectrics 739: 712:(1): 183–186. 706:Ferroelectrics 696: 681: 672: 657: 645: 603: 587: 586: 584: 581: 572: 569: 564: 555: 547: 543: 535: 531: 523: 517: 513: 486: 483: 480: 456: 453: 448: 445: 439: 433: 429: 425: 422: 417: 414: 386: 383: 379: 373: 370: 366: 353: 318: 315: 310: 306: 302: 298: 293: 289: 257: 254: 249: 245: 241: 237: 222: 219: 210: 206: 186: 176: 172: 146: 125:Main article: 122: 119: 114: 110: 105: 101: 97: 93: 89: 85: 78: 71: 64: 60: 56: 52: 48: 44: 40: 37: 13: 10: 9: 6: 4: 3: 2: 1607: 1596: 1593: 1592: 1590: 1578: 1572: 1569: 1566: 1560: 1557: 1552: 1548: 1544: 1540: 1536: 1529: 1527: 1523: 1517: 1512: 1508: 1504: 1500: 1493: 1491: 1487: 1482: 1478: 1474: 1470: 1466: 1462: 1458: 1454: 1450: 1443: 1440: 1433: 1430: 1425: 1421: 1417: 1413: 1409: 1405: 1401: 1397: 1394:(25): 43–50. 1393: 1389: 1385: 1378: 1375: 1370: 1366: 1362: 1358: 1354: 1350: 1346: 1342: 1338: 1331: 1328: 1323: 1319: 1315: 1311: 1307: 1303: 1299: 1292: 1289: 1284: 1280: 1275: 1270: 1266: 1262: 1258: 1254: 1250: 1246: 1242: 1235: 1232: 1227: 1223: 1219: 1215: 1211: 1207: 1203: 1196: 1193: 1188: 1184: 1180: 1176: 1172: 1168: 1164: 1160: 1156: 1152: 1148: 1144: 1140: 1133: 1130: 1125: 1121: 1117: 1113: 1108: 1103: 1099: 1095: 1091: 1076: 1073: 1068: 1064: 1060: 1056: 1052: 1048: 1044: 1037: 1034: 1029: 1025: 1021: 1017: 1013: 1009: 1005: 1001: 993: 990: 985: 981: 977: 973: 969: 965: 958: 951: 948: 942: 939: 933: 930: 924: 921: 916: 912: 908: 904: 900: 896: 892: 888: 884: 880: 876: 872: 865: 858: 855: 850: 846: 842: 838: 834: 830: 826: 822: 814: 811: 806: 802: 798: 794: 786: 783: 778: 774: 770: 766: 762: 758: 754: 750: 743: 740: 735: 731: 727: 723: 719: 715: 711: 707: 700: 697: 690: 688: 686: 682: 676: 673: 670: 664: 662: 658: 652: 650: 646: 641: 637: 633: 629: 625: 621: 614: 607: 604: 597: 595: 593: 589: 582: 580: 577: 570: 568: 562: 553: 541: 528: 526: 511: 506: 504: 500: 484: 481: 478: 454: 451: 446: 443: 437: 431: 427: 423: 420: 415: 412: 402: 384: 381: 377: 371: 368: 364: 351: 346: 344: 340: 336: 332: 328: 324: 316: 314: 287: 282: 280: 276: 272: 268: 263: 255: 253: 233: 229: 227: 226:Sossina Haile 220: 218: 214: 184: 180: 175:+ 2H + 2e β†’ H 154: 150: 144: 140: 138: 134: 128: 120: 118: 82: 75: 68: 38: 36: 34: 30: 26: 22: 18: 1571: 1559: 1542: 1538: 1506: 1502: 1456: 1452: 1442: 1432: 1391: 1387: 1377: 1344: 1340: 1330: 1305: 1302:Nano Letters 1301: 1291: 1248: 1244: 1234: 1209: 1205: 1195: 1146: 1142: 1132: 1097: 1093: 1090:Electrolyte" 1075: 1050: 1046: 1036: 1003: 1000:RSC Advances 999: 992: 967: 963: 950: 941: 932: 923: 874: 870: 857: 824: 820: 813: 796: 792: 785: 752: 748: 742: 709: 705: 699: 675: 623: 619: 606: 578: 574: 571:Applications 529: 507: 347: 320: 283: 259: 234: 230: 224: 215: 182: 181: 152: 151: 142: 141: 130: 83: 76: 69: 42: 16: 15: 1545:: 219–226. 1509:: 119–121. 540:epoxy resin 1595:Fuel cells 583:References 343:refractory 149:β†’ 2H + 2e 25:solid acid 21:fuel cells 1481:234910940 1473:2050-7488 1424:100769294 1416:1938-5862 1361:1613-6810 1322:1530-6984 1265:2041-6520 1171:1463-9084 1124:100764488 1116:0013-4651 1067:2050-7488 1028:2046-2069 984:1099-0062 899:0036-8075 841:0021-891X 777:0015-0193 734:0015-0193 640:0897-4756 554:of an SiO 501:, and an 444:− 428:σ 416:⋅ 413:ϵ 382:− 369:− 262:catalysts 1589:Category 1369:19384876 1283:29560244 1187:38976147 1179:27464340 915:10829089 907:14631049 849:96019963 561:fracture 271:graphene 1396:Bibcode 1274:5811139 1214:Bibcode 1151:Bibcode 1008:Bibcode 879:Bibcode 871:Science 757:Bibcode 714:Bibcode 339:defects 203:⁠ 191:⁠ 183:Overall 169:⁠ 157:⁠ 153:Cathode 137:Cathode 1479:  1471:  1422:  1414:  1367:  1359:  1320:  1281:  1271:  1263:  1185:  1177:  1169:  1122:  1114:  1065:  1026:  982:  913:  905:  897:  847:  839:  775:  732:  638:  67:, K). 39:Design 1477:S2CID 1420:S2CID 1341:Small 1183:S2CID 1120:S2CID 960:(PDF) 911:S2CID 867:(PDF) 845:S2CID 616:(PDF) 401:creep 335:creep 143:Anode 133:anode 59:, AsO 55:, SeO 1469:ISSN 1412:ISSN 1365:PMID 1357:ISSN 1318:ISSN 1279:PMID 1261:ISSN 1175:PMID 1167:ISSN 1112:ISSN 1063:ISSN 1024:ISSN 980:ISSN 903:PMID 895:ISSN 837:ISSN 773:ISSN 730:ISSN 636:ISSN 333:and 51:, PO 31:and 1547:doi 1543:169 1511:doi 1507:139 1461:doi 1404:doi 1349:doi 1310:doi 1269:PMC 1253:doi 1222:doi 1210:194 1159:doi 1102:doi 1098:163 1055:doi 1016:doi 972:doi 887:doi 875:303 829:doi 801:doi 765:doi 753:100 722:doi 628:doi 522:SiO 485:3.6 325:or 297:CsH 277:or 236:CsH 209:β†’ H 185:: H 145:: H 109:CsH 1591:: 1541:. 1537:. 1525:^ 1505:. 1501:. 1489:^ 1475:. 1467:. 1455:. 1451:. 1418:. 1410:. 1402:. 1390:. 1386:. 1363:. 1355:. 1343:. 1339:. 1316:. 1304:. 1300:. 1277:. 1267:. 1259:. 1247:. 1243:. 1220:. 1208:. 1204:. 1181:. 1173:. 1165:. 1157:. 1147:18 1145:. 1141:. 1118:. 1110:. 1096:. 1092:. 1086:PO 1061:. 1049:. 1045:. 1022:. 1014:. 1002:. 978:. 966:. 962:. 909:. 901:. 893:. 885:. 873:. 869:. 843:. 835:. 825:35 823:. 797:36 795:. 771:. 763:. 751:. 728:. 720:. 710:81 708:. 684:^ 660:^ 648:^ 634:. 624:23 622:. 618:. 591:^ 546:PO 534:PO 516:PO 365:10 309:PO 301:PO 292:PO 281:. 269:, 252:. 248:PO 240:PO 213:O 189:+ 179:O 155:: 113:PO 104:PO 96:PO 88:PO 1553:. 1549:: 1519:. 1513:: 1483:. 1463:: 1457:9 1426:. 1406:: 1398:: 1392:6 1371:. 1351:: 1345:5 1324:. 1312:: 1306:4 1285:. 1255:: 1249:6 1228:. 1224:: 1216:: 1189:. 1161:: 1153:: 1126:. 1104:: 1088:4 1084:2 1069:. 1057:: 1051:5 1030:. 1018:: 1010:: 1004:4 986:. 974:: 968:8 917:. 889:: 881:: 851:. 831:: 807:. 803:: 779:. 767:: 759:: 736:. 724:: 716:: 642:. 630:: 565:2 556:2 548:4 544:2 538:/ 536:4 532:2 524:2 518:4 514:2 482:= 479:n 455:T 452:k 447:Q 438:e 432:n 424:A 421:= 385:1 378:s 372:2 354:4 311:4 307:2 303:4 299:2 294:4 290:2 250:4 246:2 242:4 238:2 211:2 207:2 205:O 200:2 197:/ 194:1 187:2 177:2 173:2 171:O 166:2 163:/ 160:1 147:2 115:4 111:2 106:4 102:2 98:4 94:2 90:4 86:2 79:4 72:4 65:4 61:4 57:4 53:4 49:4 45:4

Index

fuel cells
solid acid
proton exchange membrane fuel cells
solid oxide fuel cells
Fuel_cell Β§ Types_of_fuel_cells.3B_design
anode
Cathode
Sossina Haile
catalysts
carbon nanotubes
graphene
atomic layer deposition
metal-organic chemical vapor deposition
catalyst poisoning
protonic ceramic fuel cells
solid oxide fuel cells
plastic deformation
creep
defects
refractory
superplasticity
creep
dislocation glide mechanism
activation energy
precipitate strengthening
SiO2
epoxy resin
flexural strength
fracture

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑