Knowledge (XXG)

Sound

Source đź“ť

646: 3379: 1841:
gained from frequency transients, noisiness, unsteadiness, perceived pitch and the spread and intensity of overtones in the sound over an extended time frame. The way a sound changes over time provides most of the information for timbre identification. Even though a small section of the wave form from each instrument looks very similar, differences in changes over time between the clarinet and the piano are evident in both loudness and harmonic content. Less noticeable are the different noises heard, such as air hisses for the clarinet and hammer strikes for the piano.
533: 59: 40: 1800:
related to the physical duration of a sound. For example; in a noisy environment, gapped sounds (sounds that stop and start) can sound as if they are continuous because the offset messages are missed owing to disruptions from noises in the same general bandwidth. This can be of great benefit in understanding distorted messages such as radio signals that suffer from interference, as (owing to this effect) the message is heard as if it was continuous.
1909: 293: 525: 402: 1809: 1769:
can vary. Sometimes individuals identify different pitches for the same sound, based on their personal experience of particular sound patterns. Selection of a particular pitch is determined by pre-conscious examination of vibrations, including their frequencies and the balance between them. Specific attention is given to recognising potential harmonics. Every sound is placed on a pitch continuum from low to high.
3666: 507: 1789: 1830: 1757: 352:, and displacement of the medium vary in time. At an instant in time, the pressure, velocity, and displacement vary in space. The particles of the medium do not travel with the sound wave. This is intuitively obvious for a solid, and the same is true for liquids and gases (that is, the vibrations of particles in the gas or liquid transport the vibrations, while the 495: 296: 300: 299: 295: 294: 1500: 301: 1888:
Spatial location represents the cognitive placement of a sound in an environmental context; including the placement of a sound on both the horizontal and vertical plane, the distance from the sound source and the characteristics of the sonic environment. In a thick texture, it is possible to identify
1820:
is perceived as how "loud" or "soft" a sound is and relates to the totalled number of auditory nerve stimulations over short cyclic time periods, most likely over the duration of theta wave cycles. This means that at short durations, a very short sound can sound softer than a longer sound even though
186:
in pressure, stress, particle displacement, particle velocity, etc., propagated in a medium with internal forces (e.g., elastic or viscous), or the superposition of such propagated oscillation. (b) Auditory sensation evoked by the oscillation described in (a)." Sound can be viewed as a wave motion in
1943:
is sound waves with frequencies lower than 20 Hz. Although sounds of such low frequency are too low for humans to hear as a pitch, these sound are heard as discrete pulses (like the 'popping' sound of an idling motorcycle). Whales, elephants and other animals can detect infrasound and use it to
1768:
is perceived as how "low" or "high" a sound is and represents the cyclic, repetitive nature of the vibrations that make up sound. For simple sounds, pitch relates to the frequency of the slowest vibration in the sound (called the fundamental harmonic). In the case of complex sounds, pitch perception
382:
Motion of the medium itself. If the medium is moving, this movement may increase or decrease the absolute speed of the sound wave depending on the direction of the movement. For example, sound moving through wind will have its speed of propagation increased by the speed of the wind if the sound and
298: 1840:
is perceived as the quality of different sounds (e.g. the thud of a fallen rock, the whir of a drill, the tone of a musical instrument or the quality of a voice) and represents the pre-conscious allocation of a sonic identity to a sound (e.g. "it's an oboe!"). This identity is based on information
1616:
is dedicated to such studies. Webster's dictionary defined sound as: "1. The sensation of hearing, that which is heard; specif.: a. Psychophysics. Sensation due to stimulation of the auditory nerves and auditory centers of the brain, usually by vibrations transmitted in a material medium, commonly
1812:
Loudness information is summed over a period of about 200 ms before being sent to the auditory cortex. Louder signals create a greater 'push' on the Basilar membrane and thus stimulate more nerves, creating a stronger loudness signal. A more complex signal also creates more nerve firings and so
1799:
is perceived as how "long" or "short" a sound is and relates to onset and offset signals created by nerve responses to sounds. The duration of a sound usually lasts from the time the sound is first noticed until the sound is identified as having changed or ceased. Sometimes this is not directly
544:
Although there are many complexities relating to the transmission of sounds, at the point of reception (i.e. the ears), sound is readily dividable into two simple elements: pressure and time. These fundamental elements form the basis of all sound waves. They can be used to describe, in absolute
1705:
is a term often used to refer to an unwanted sound. In science and engineering, noise is an undesirable component that obscures a wanted signal. However, in sound perception it can often be used to identify the source of a sound and is an important component of timbre perception (see below).
936:
Those physical properties and the speed of sound change with ambient conditions. For example, the speed of sound in gases depends on temperature. In 20 Â°C (68 Â°F) air at sea level, the speed of sound is approximately 343 m/s (1,230 km/h; 767 mph) using the formula
1712:
is the component of the acoustic environment that can be perceived by humans. The acoustic environment is the combination of all sounds (whether audible to humans or not) within a given area as modified by the environment and understood by people, in context of the surrounding environment.
2358: 1260:
is the difference, in a given medium, between average local pressure and the pressure in the sound wave. A square of this difference (i.e., a square of the deviation from the equilibrium pressure) is usually averaged over time and/or space, and a square root of this average provides a
966:
In fresh water the speed of sound is approximately 1,482 m/s (5,335 km/h; 3,315 mph). In steel, the speed of sound is about 5,960 m/s (21,460 km/h; 13,330 mph). Sound moves the fastest in solid atomic hydrogen at about 36,000 m/s (129,600 km/h;
1919:
is sound waves with frequencies higher than 20,000 Hz. Ultrasound is not different from audible sound in its physical properties, but cannot be heard by humans. Ultrasound devices operate with frequencies from 20 kHz up to several gigahertz.
1618: 548:
In order to understand the sound more fully, a complex wave such as the one shown in a blue background on the right of this text, is usually separated into its component parts, which are a combination of various sound wave frequencies (and noise).
1344: 2942: 1617:
air, affecting the organ of hearing. b. Physics. Vibrational energy which occasions such a sensation. Sound is propagated by progressive longitudinal vibratory disturbances (sound waves)." This means that the correct response to the question: "
2637:
In J. Rosevear & S. Harding. (Eds.), ASME XXth National Conference proceedings. Paper presented at: Music: Educating for life: ASME XXth National Conference (pp. 22–28), Parkville, Victoria: The Australian Society for Music Education
3074: 2294: 1760:
Pitch perception. During the listening process, each sound is analysed for a repeating pattern (orange arrows) and the results forwarded to the auditory cortex as a single pitch of a certain height (octave) and chroma (note
297: 3141:
Levitin, D.J. (1999). Memory for musical attributes. In P.R. Cook (Ed.), Music, cognition, and computerized sound: An introduction to psychoacoustics (pp. 105–127). Cambridge, Massachusetts: The MIT press.
2933: 316:. One fork is hit with a rubberized mallet, causing the second fork to become visibly excited due to the oscillation caused by the periodic change in the pressure and density of the air. This is an 187:
air or other elastic media. In this case, sound is a stimulus. Sound can also be viewed as an excitation of the hearing mechanism that results in the perception of sound. In this case, sound is a
661:
The speed of sound depends on the medium the waves pass through, and is a fundamental property of the material. The first significant effort towards measurement of the speed of sound was made by
2389:
Matthews, M. (1999). Introduction to timbre. In P.R. Cook (Ed.), Music, cognition, and computerized sound: An introduction to psychoacoustic (pp. 79–88). Cambridge, Massachusetts: The MIT press.
2291: 821: 1792:
Duration perception. When a new sound is noticed (Green arrows), a sound onset message is sent to the auditory cortex. When the repeating pattern is missed, a sound offset messages is sent.
704: 340:
of a stereo speaker. The sound source creates vibrations in the surrounding medium. As the source continues to vibrate the medium, the vibrations propagate away from the source at the
1821:
they are presented at the same intensity level. Past around 200 ms this is no longer the case and the duration of the sound no longer affects the apparent loudness of the sound.
891: 1547: 951:
effect, to the sound amplitude, which means there are non-linear propagation effects, such as the production of harmonics and mixed tones not present in the original sound (see
2275: 1495:{\displaystyle L_{\mathrm {p} }=10\,\log _{10}\left({\frac {{p}^{2}}{{p_{\mathrm {ref} }}^{2}}}\right)=20\,\log _{10}\left({\frac {p}{p_{\mathrm {ref} }}}\right){\mbox{ dB}}\,} 1323:
Pa), that is between 101323.6 and 101326.4 Pa. As the human ear can detect sounds with a wide range of amplitudes, sound pressure is often measured as a level on a logarithmic
777: 745: 853: 2218: 1644:
for humans or sometimes it relates to a particular animal. Other species have different ranges of hearing. For example, dogs can perceive vibrations higher than 20 kHz.
1321: 1294: 2838:
Jones, S.; Longe, O.; Pato, M.V. (1998). "Auditory evoked potentials to abrupt pitch and timbre change of complex tones: electrophysiological evidence of streaming?".
383:
wind are moving in the same direction. If the sound and wind are moving in opposite directions, the speed of the sound wave will be decreased by the speed of the wind.
1699:. Furthermore, humans have developed culture and technology (such as music, telephone and radio) that allows them to generate, record, transmit, and broadcast sound. 919: 1624:
The physical reception of sound in any hearing organism is limited to a range of frequencies. Humans normally hear sound frequencies between approximately 20 
2355: 604:, the corresponding wavelengths of sound waves range from 17 m (56 ft) to 17 mm (0.67 in). Sometimes speed and direction are combined as a 1242: 653:
approaching the speed of sound. The white halo is formed by condensed water droplets thought to result from a drop in air pressure around the aircraft (see
1590:
attempts to match the response of the human ear to noise and A-weighted sound pressure levels are labeled dBA. C-weighting is used to measure peak levels.
2630: 1583: 2733:"The Role of Temporal Fine Structure Processing in Pitch Perception, Masking, and Speech Perception for Normal-Hearing and Hearing-Impaired People" 3588: 77: 3126: 1856:, in this context, relates to the cognitive separation of auditory objects. In music, texture is often referred to as the difference between 1556: 665:. He believed the speed of sound in a particular substance was equal to the square root of the pressure acting on it divided by its density: 3264: 3197: 1745: 528:
A 'pressure over time' graph of a 20 ms recording of a clarinet tone demonstrates the two fundamental elements of sound: Pressure and Time.
320:. When an additional piece of metal is attached to a prong, the effect becomes less pronounced as resonance is not achieved as effectively. 645: 3315: 76: 2462: 2377:
Kendall, R.A. (1986). The role of acoustic signal partitions in listener categorization of musical phrases. Music Perception, 185–213.
1205: 2272: 2665: 2585: 601: 3237: 2222: 390:
determines the rate at which sound is attenuated. For many media, such as air or water, attenuation due to viscosity is negligible.
3223: 1235: 654: 594: 1621:" is "yes", and "no", dependent on whether being answered using the physical, or the psychophysical definition, respectively. 1570:
in water. Without a specified reference sound pressure, a value expressed in decibels cannot represent a sound pressure level.
1269:
RMS sound pressure (94 dBSPL) in atmospheric air implies that the actual pressure in the sound wave oscillates between (1 atm
486:(in case of transverse waves) of the matter, and the kinetic energy of the displacement velocity of particles of the medium. 428:
Studies has shown that sound waves are able to carry a tiny amount of mass and is surrounded by a weak gravitational field.
2251: 2601: 540:
of different frequencies. The bottom waves have higher frequencies than those above. The horizontal axis represents time.
2432: 2330: 1833:
Timbre perception, showing how a sound changes over time. Despite a similar waveform, differences over time are evident.
960: 713:
corrected the formula by deducing that the phenomenon of sound travelling is not isothermal, as believed by Newton, but
444:
waves. It requires a medium to propagate. Through solids, however, it can be transmitted as both longitudinal waves and
379:
and pressure of the medium. This relationship, affected by temperature, determines the speed of sound within the medium.
1652: 1228: 782: 3427: 2127: 671: 483: 478:
The energy carried by an oscillating sound wave converts back and forth between the potential energy of the extra
3548: 68: 3603: 2627: 2001: 1935: 1551: 506: 154:
range, elicit an auditory percept in humans. In air at atmospheric pressure, these represent sound waves with
3483: 3340: 3308: 3109:
Cariani, Peter; Micheyl, Christophe (2012). "Toward a Theory of Information Processing in Auditory Cortex".
2965:
Massaro, D.W. (1972). "Preperceptual images, processing time, and perceptual units in auditory perception".
494: 245: 241: 87: 1679:, or earthquake, produces (and is characterized by) its unique sounds. Many species, such as frogs, birds, 3422: 3332: 2974: 479: 457: 453: 441: 222: 31: 2680:
Rosen, Stuart (1992-06-29). "Temporal information in speech: acoustic, auditory and linguistic aspects".
1716:
There are, historically, six experimentally separable ways in which sound waves are analysed. They are:
858: 3563: 3461: 3378: 3365: 2041: 2021: 2011: 1517: 1046: 337: 309: 750: 726: 600:
Sound that is perceptible by humans has frequencies from about 20 Hz to 20,000 Hz. In air at
233:, on the other hand, is concerned with the recording, manipulation, mixing, and reproduction of sound. 2400: 1740:. Some of these terms have a standardised definition (for instance in the ANSI Acoustical Terminology 1608:
from its use in physics is that in physiology and psychology, where the term refers to the subject of
826: 3019: 2886: 2689: 2506: 2162: 1696: 1130: 710: 627: 357: 277: 2979: 532: 236:
Applications of acoustics are found in almost all aspects of modern society, subdisciplines include
3583: 3493: 1672: 718: 418: 253: 123: 1299: 1272: 39: 3705: 3669: 3515: 3466: 3301: 3261: 2496: 2196: 2016: 1991: 1979: 1964: 1923: 1883: 1741: 1737: 1676: 1169: 956: 608: 394:
When sound is moving through a medium that does not have constant physical properties, it may be
317: 3505: 2873:
Nishihara, M.; Inui, K.; Morita, T.; Kodaira, M.; Mochizuki, H.; Otsuru, N.; Kakigi, R. (2014).
2577: 3246: 2875:"Echoic memory: Investigation of its temporal resolution by auditory offset cortical responses" 1912:
Approximate frequency ranges corresponding to ultrasound, with rough guide of some applications
3639: 3471: 3176: 3168: 3122: 3035: 2992: 2914: 2855: 2820: 2770: 2752: 2713: 2705: 2661: 2581: 2532: 2116: 2051: 2031: 2026: 1996: 1692: 1025: 714: 437: 325: 257: 2797:
Krumbholz, K.; Patterson, R.; Seither-Preisler, A.; Lammertmann, C.; Lütkenhöner, B. (2003).
1944:
communicate. It can be used to detect volcanic eruptions and is used in some types of music.
1868:, but it can also relate (for example) to a busy cafe; a sound which might be referred to as 3695: 3649: 3568: 3532: 3500: 3451: 3360: 3160: 3114: 3066: 3027: 2984: 2904: 2894: 2847: 2810: 2760: 2744: 2697: 2653: 2522: 2514: 2458: 2106: 1796: 1780:(random noise spread evenly across octaves) as white noise has more high frequency content. 1721: 1511: 1262: 952: 414: 904: 524: 3644: 3598: 3439: 3397: 3268: 3241: 2634: 2362: 2298: 2279: 2152: 2101: 2036: 1908: 1898: 1889:
multiple sound sources using a combination of spatial location and timbre identification.
1849: 1733: 1688: 1613: 1599: 1187: 1064: 618: 584: 465: 445: 410: 401: 329: 265: 206: 151: 3273: 3234: 3023: 2890: 2693: 2510: 356:
position of the particles over time does not change). During propagation, waves can be
3700: 3690: 3593: 3578: 3525: 2909: 2874: 2765: 2732: 2570: 2527: 2484: 2147: 2111: 1808: 1680: 1559: 1256: 1148: 998: 640: 589: 580: 341: 230: 158:
of 17 meters (56 ft) to 1.7 centimeters (0.67 in). Sound waves above 20 
2851: 1813:
sounds louder (for the same wave amplitude) than a simpler sound, such as a sine wave.
3684: 3558: 3520: 3488: 3443: 3405: 3355: 3350: 3164: 3054: 2157: 2142: 1765: 1717: 1641: 1266: 948: 650: 261: 237: 171: 119: 3553: 2310: 2132: 1788: 1575: 1112: 930: 662: 622: 469: 249: 83: 3278: 1852:
relates to the number of sound sources and the interaction between them. The word
1619:
if a tree falls in a forest and no one is around to hear it, does it make a sound?
947:. The speed of sound is also slightly sensitive, being subject to a second-order 475:
Sound waves may be viewed using parabolic mirrors and objects that produce sound.
409:
The mechanical vibrations that can be interpreted as sound can travel through all
3118: 2899: 75: 3573: 3385: 2657: 2247: 2046: 1829: 1776:(random noise spread evenly across all frequencies) sounds higher in pitch than 1773: 1668: 1637: 1587: 1567: 1563: 1085: 922: 612: 461: 365: 306: 183: 3256: 1756: 1582:
weighted so that the measured level matches perceived levels more closely. The
3634: 3624: 3410: 3070: 2815: 2798: 2748: 2605: 2322: 2121: 1940: 1916: 1777: 1709: 1664: 1656: 571: 560: 361: 273: 167: 163: 155: 131: 127: 98: 3284:
Audio Check: a free collection of audio tests and test tones playable on-line
3172: 2756: 2709: 3415: 3345: 3324: 3288: 3211: 2137: 2006: 1974: 1959: 1870: 1865: 1861: 1660: 1579: 576: 567: 557: 537: 395: 387: 313: 281: 214: 210: 200: 147: 115: 3251: 3180: 2918: 2824: 2774: 2701: 2536: 2518: 2427: 2207:
ANSI S1.1-1994. American National Standard: Acoustic Terminology. Sec 3.03.
213:, sound, ultrasound, and infrasound. A scientist who works in the field of 3235:
Sounds Amazing; a KS3/4 learning resource for sound and waves (uses Flash)
3113:. Springer Handbook of Auditory Research. Vol. 43. pp. 351–390. 3039: 2996: 2859: 2717: 2554:(Fifth ed.). Cambridge, Mass.: The Riverside Press. pp. 950–951. 17: 3510: 3478: 2075: 1817: 1725: 605: 449: 371:
The behavior of sound propagation is generally affected by three things:
349: 345: 336:. The sound waves are generated by a sound source, such as the vibrating 166:
and are not audible to humans. Sound waves below 20 Hz are known as
48: 2799:"Neuromagnetic evidence for a pitch processing center in Heschl's gyrus" 893:, which is also known as the Newton–Laplace equation. In this equation, 344:, thus forming the sound wave. At a fixed distance from the source, the 205:
Acoustics is the interdisciplinary science that deals with the study of
3456: 3096:
Kamien, R. (1980). Music: an appreciation. New York: McGraw-Hill. p. 62
3010:
Zwislocki, J.J. (1969). "Temporal summation of loudness: an analysis".
2065: 1324: 376: 107: 3224:"Stanford scientists created a sound so loud it instantly boils water" 3031: 2483:
Trachenko, K.; Monserrat, B.; Pickard, C. J.; Brazhkin, V. V. (2020).
324:
Sound can propagate through a medium such as air, water and solids as
3289:
More Sounds Amazing; a sixth-form learning resource about sound waves
2988: 1857: 1837: 1729: 1684: 422: 333: 269: 2648:
Viemeister, Neal F.; Plack, Christopher J. (1993), "Time Analysis",
2311:
Beyond cloning: Harnessing the power of virtual quantum broadcasting
2501: 1555:. Commonly used reference sound pressures, defined in the standard 2407:. The University of Tennessee, Department of Physics and Astronomy 2086: 1969: 1907: 1828: 1807: 1787: 1755: 1702: 1648: 1625: 926: 644: 531: 523: 400: 291: 188: 143: 38: 30:
This article is about audible acoustic waves. For other uses, see
3155:. Effects of ultrasound and infrasound relevant to human health. 2787:
De Cheveigne, A. (2005). Pitch perception models. Pitch, 169-233.
2604:(Fourth ed.). Houghton Mifflin Company. 2000. Archived from 959:
effects are important, the speed of sound is calculated from the
921:
is the density. Thus, the speed of sound is proportional to the
3619: 2437: 2080: 2071: 553: 44: 3297: 3104: 3102: 2385: 2383: 1629: 159: 631:, which is not a characteristic of longitudinal sound waves. 3293: 3283: 57: 436:
Sound is transmitted through gases, plasma, and liquids as
2602:"The American Heritage Dictionary of the English Language" 536:
Sounds can be represented as a mixture of their component
2737:
Journal of the Association for Research in Otolaryngology
709:
This was later proven wrong and the French mathematician
482:(in case of longitudinal waves) or lateral displacement 3151:
Leventhall, Geoff (2007-01-01). "What is infrasound?".
563:, which are characterized by these generic properties: 2373: 2371: 1485: 1520: 1347: 1302: 1275: 907: 861: 829: 785: 753: 729: 674: 2628:
The elements of music: what are they, and who cares?
2485:"Speed of sound from fundamental physical constants" 2459:"Scientists find upper limit for the speed of sound" 2356:
Timbre perception and auditory object identification
448:. Longitudinal sound waves are waves of alternating 150:
lying between about 20 Hz and 20 kHz, the
3612: 3541: 3438: 3396: 3331: 2840:
Electroencephalography and Clinical Neurophysiology
1201: 1183: 1165: 1144: 1126: 1108: 1081: 1060: 1042: 1021: 994: 982: 977: 417:. The matter that supports the sound is called the 27:
Vibration that travels via pressure waves in matter
2569: 2426:Nemiroff, R.; Bonnell, J., eds. (19 August 2007). 2350: 2348: 1541: 1494: 1315: 1288: 913: 885: 847: 815: 771: 739: 698: 556:are often simplified to a description in terms of 1691:to produce sound. In some species, these produce 1632:), The upper limit decreases with age. Sometimes 3012:The Journal of the Acoustical Society of America 2186:. Western Electrical Company. 1969. p. 2.1. 1926:is commonly used for diagnostics and treatment. 816:{\displaystyle c={\sqrt {\gamma \cdot p/\rho }}} 472:at right angle to the direction of propagation. 2184:Fundamentals of Telephone Communication Systems 1744:). More recent approaches have also considered 2219:"PACS 2010 Regular Edition—Acoustics Appendix" 611:; wave number and direction are combined as a 3309: 1746:temporal envelope and temporal fine structure 1586:(IEC) has defined several weighting schemes. 1236: 699:{\displaystyle c={\sqrt {\frac {p}{\rho }}}.} 8: 3153:Progress in Biophysics and Molecular Biology 2563: 2561: 717:. He added another factor to the equation— 3316: 3302: 3294: 1647:As a signal perceived by one of the major 1243: 1229: 405:Spherical compression (longitudinal) waves 2978: 2908: 2898: 2814: 2764: 2552:Sound. In Webster's Collegiate Dictionary 2526: 2500: 1584:International Electrotechnical Commission 1574:Since the human ear does not have a flat 1526: 1525: 1519: 1491: 1484: 1465: 1464: 1455: 1442: 1437: 1419: 1405: 1404: 1399: 1392: 1387: 1384: 1371: 1366: 1353: 1352: 1346: 1306: 1301: 1279: 1274: 906: 873: 868: 860: 828: 803: 792: 784: 759: 754: 752: 730: 728: 681: 673: 209:in gasses, liquids, and solids including 126:such as a gas, liquid or solid. In human 2292:Can you hear sounds in space? (Beginner) 221:, while someone working in the field of 170:. Different animal species have varying 3257:Hearing curves and on-line hearing test 2652:, Springer New York, pp. 116–154, 2175: 3055:"Gestalt phenomena in musical texture" 2650:Springer Handbook of Auditory Research 974: 518:Longitudinal and transverse plane wave 96: 2242: 2240: 1636:refers to only those vibrations with 625:waves, have the additional property, 468:(in solids) are waves of alternating 7: 3274:Conversion of sound units and levels 3252:Introduction to the Physics of Sound 2124:— sound at extremely low frequencies 1651:, sound is used by many species for 386:The viscosity of the medium. Medium 1748:as perceptually relevant analyses. 886:{\displaystyle c={\sqrt {K/\rho }}} 855:, the final equation came up to be 779:, thus coming up with the equation 456:pressure, causing local regions of 375:A complex relationship between the 2333:from the original on 10 April 2014 2254:from the original on 30 April 2015 1542:{\displaystyle p_{\mathrm {ref} }} 1533: 1530: 1527: 1472: 1469: 1466: 1412: 1409: 1406: 1354: 25: 772:{\displaystyle {\sqrt {p/\rho }}} 740:{\displaystyle {\sqrt {\gamma }}} 602:standard temperature and pressure 3665: 3664: 3377: 3165:10.1016/j.pbiomolbio.2006.07.006 2731:Moore, Brian C.J. (2008-10-15). 848:{\displaystyle K=\gamma \cdot p} 505: 493: 421:. Sound cannot travel through a 146:. Only acoustic waves that have 97:Problems playing this file? See 73: 3247:HyperPhysics: Sound and Hearing 3080:from the original on 2015-11-21 2948:from the original on 2013-06-28 2465:from the original on 2020-10-09 2217:Acoustical Society of America. 398:(either dispersed or focused). 47:produces sound via a vibrating 3053:Cohen, D.; Dubnov, S. (1997), 2576:. Dover Publications. p.  2572:Music, Physics and Engineering 2568:Olson, Harry F. Autor (1967). 1687:, have also developed special 933:of the medium to its density. 901:is the velocity of sound, and 413:: gases, liquids, solids, and 1: 3059:Journal of New Music Research 2852:10.1016/s0168-5597(97)00077-4 1663:, and communication. Earth's 897:is the elastic bulk modulus, 3119:10.1007/978-1-4614-2314-0_13 2900:10.1371/journal.pone.0106553 2682:Phil. Trans. R. Soc. Lond. B 2433:Astronomy Picture of the Day 2323:"What Does Sound Look Like?" 1675:, such as fire, rain, wind, 1628:and 20,000 Hz (20  1578:, sound pressures are often 1316:{\displaystyle +{\sqrt {2}}} 1289:{\displaystyle -{\sqrt {2}}} 1265:(RMS) value. For example, 1 961:relativistic Euler equations 545:terms, every sound we hear. 2658:10.1007/978-1-4612-2728-1_4 1612:by the brain. The field of 1604:A distinct use of the term 655:Prandtl–Glauert singularity 3722: 3262:Audio for the 21st Century 2248:"The Propagation of sound" 2128:List of unexplained sounds 1933: 1896: 1881: 1597: 638: 198: 29: 3660: 3372: 3222:Eric Mack (20 May 2019). 3212:Resources in your library 3111:The Human Auditory Cortex 3071:10.1080/09298219708570732 2749:10.1007/s10162-008-0143-x 2329:. YouTube. 9 April 2014. 1224: 1219: 182:Sound is defined as "(a) 2282:Northwestern University. 2273:Is there sound in space? 2002:Characteristic impedance 1936:Perception of infrasound 1552:reference sound pressure 138:of such waves and their 3341:Architectural acoustics 2816:10.1093/cercor/13.7.765 500:Longitudinal plane wave 246:architectural acoustics 242:audio signal processing 88:United States Navy Band 3428:Fletcher–Munson curves 3423:Equal-loudness contour 3333:Acoustical engineering 2702:10.1098/rstb.1992.0070 2550:Webster, Noah (1936). 2519:10.1126/sciadv.abc8662 2405:Elements of Physics II 1913: 1834: 1814: 1793: 1762: 1543: 1496: 1317: 1290: 915: 887: 849: 817: 773: 741: 700: 658: 541: 529: 406: 321: 223:acoustical engineering 118:that propagates as an 62: 52: 32:Sound (disambiguation) 3564:Hermann von Helmholtz 3462:Fundamental frequency 3366:Sympathetic resonance 2626:Burton, R.L. (2015). 2301:. Cornell University. 2083:- subjective loudness 2042:Sound intensity level 2022:Particle displacement 2012:Particle acceleration 1911: 1832: 1811: 1791: 1759: 1544: 1497: 1318: 1291: 1047:Particle displacement 916: 914:{\displaystyle \rho } 888: 850: 818: 774: 742: 701: 648: 535: 527: 512:Transverse plane wave 404: 305:Experiment using two 304: 252:, electro-acoustics, 61: 42: 2967:Psychological Review 2163:Structural acoustics 1671:, and virtually any 1640:that are within the 1518: 1345: 1329:sound pressure level 1300: 1273: 1131:Sound energy density 971:Sound pressure level 905: 859: 827: 783: 751: 727: 672: 452:deviations from the 312:usually at the same 278:underwater acoustics 3584:Werner Meyer-Eppler 3494:Missing fundamental 3024:1969ASAJ...46..431Z 2935:The auditory system 2932:Corwin, J. (2009), 2891:2014PLoSO...9j6553N 2694:1992RSPTB.336..367R 2511:2020SciA....6.8662T 2399:Breinig, Marianne. 2365:. Hearing, 425–461. 2354:Handel, S. (1995). 2089:- unit of frequency 1673:physical phenomenon 1514:sound pressure and 254:environmental noise 227:acoustical engineer 124:transmission medium 3467:Frequency spectrum 3279:Sound calculations 3267:2009-01-23 at the 3240:2012-03-13 at the 2633:2020-05-10 at the 2361:2020-01-10 at the 2297:2017-06-18 at the 2278:2017-10-16 at the 2197:ANSI/ASA S1.1-2013 2017:Particle amplitude 1992:Acoustic impedance 1980:Sound reproduction 1965:Musical instrument 1924:Medical ultrasound 1914: 1884:Sound localization 1835: 1815: 1794: 1763: 1742:ANSI/ASA S1.1-2013 1539: 1492: 1489: 1313: 1286: 1170:Acoustic impedance 978:Sound measurements 967:80,530 mph). 911: 883: 845: 813: 769: 737: 696: 659: 570:, or its inverse, 542: 530: 438:longitudinal waves 407: 326:longitudinal waves 322: 318:acoustic resonance 63: 53: 3678: 3677: 3640:Musical acoustics 3472:harmonic spectrum 3198:Library resources 3128:978-1-4614-2313-3 3032:10.1121/1.1911708 2688:(1278): 367–373. 2052:Sound power level 2032:Sound energy flux 2027:Particle velocity 1997:Acoustic velocity 1986:Sound measurement 1576:spectral response 1488: 1478: 1425: 1311: 1284: 1253: 1252: 1206:Transmission loss 1026:Particle velocity 881: 811: 767: 735: 691: 690: 302: 258:musical acoustics 225:may be called an 86:performed by the 78: 16:(Redirected from 3713: 3668: 3667: 3569:Carleen Hutchins 3501:Combination tone 3388: 3381: 3361:String vibration 3318: 3311: 3304: 3295: 3231: 3185: 3184: 3148: 3142: 3139: 3133: 3132: 3106: 3097: 3094: 3088: 3087: 3086: 3085: 3079: 3050: 3044: 3043: 3007: 3001: 3000: 2989:10.1037/h0032264 2982: 2962: 2956: 2955: 2954: 2953: 2947: 2940: 2929: 2923: 2922: 2912: 2902: 2870: 2864: 2863: 2835: 2829: 2828: 2818: 2794: 2788: 2785: 2779: 2778: 2768: 2728: 2722: 2721: 2677: 2671: 2670: 2645: 2639: 2624: 2618: 2617: 2615: 2613: 2608:on June 25, 2008 2598: 2592: 2591: 2575: 2565: 2556: 2555: 2547: 2541: 2540: 2530: 2504: 2495:(41): eabc8662. 2489:Science Advances 2480: 2474: 2473: 2471: 2470: 2455: 2449: 2448: 2446: 2444: 2423: 2417: 2416: 2414: 2412: 2396: 2390: 2387: 2378: 2375: 2366: 2352: 2343: 2342: 2340: 2338: 2319: 2313: 2308: 2302: 2289: 2283: 2270: 2264: 2263: 2261: 2259: 2244: 2235: 2234: 2232: 2230: 2221:. Archived from 2214: 2208: 2205: 2199: 2194: 2188: 2187: 2180: 1878:Spatial location 1738:spatial location 1683:and terrestrial 1653:detecting danger 1548: 1546: 1545: 1540: 1538: 1537: 1536: 1512:root-mean-square 1501: 1499: 1498: 1493: 1490: 1486: 1483: 1479: 1477: 1476: 1475: 1456: 1447: 1446: 1430: 1426: 1424: 1423: 1418: 1417: 1416: 1415: 1397: 1396: 1391: 1385: 1376: 1375: 1359: 1358: 1357: 1322: 1320: 1319: 1314: 1312: 1307: 1295: 1293: 1292: 1287: 1285: 1280: 1263:root mean square 1245: 1238: 1231: 1215: 1212: 1204: 1197: 1194: 1186: 1179: 1176: 1168: 1161: 1155: 1147: 1140: 1137: 1129: 1122: 1119: 1111: 1104: 1092: 1084: 1077: 1071: 1063: 1056: 1053: 1045: 1038: 1032: 1024: 1017: 1005: 997: 975: 953:parametric array 946: 920: 918: 917: 912: 892: 890: 889: 884: 882: 877: 869: 854: 852: 851: 846: 822: 820: 819: 814: 812: 807: 793: 778: 776: 775: 770: 768: 763: 755: 746: 744: 743: 738: 736: 731: 723:—and multiplied 705: 703: 702: 697: 692: 683: 682: 621:, also known as 619:Transverse waves 538:Sinusoidal waves 509: 497: 466:transverse waves 446:transverse waves 303: 207:mechanical waves 80: 79: 69:Drum - Cadence A 60: 21: 3721: 3720: 3716: 3715: 3714: 3712: 3711: 3710: 3681: 3680: 3679: 3674: 3656: 3608: 3599:D. Van Holliday 3537: 3506:Mersenne's laws 3440:Audio frequency 3434: 3398:Psychoacoustics 3392: 3391: 3384: 3370: 3327: 3322: 3269:Wayback Machine 3242:Wayback Machine 3221: 3218: 3217: 3216: 3206: 3205: 3201: 3194: 3189: 3188: 3150: 3149: 3145: 3140: 3136: 3129: 3108: 3107: 3100: 3095: 3091: 3083: 3081: 3077: 3052: 3051: 3047: 3018:(2B): 431–441. 3009: 3008: 3004: 2980:10.1.1.468.6614 2964: 2963: 2959: 2951: 2949: 2945: 2938: 2931: 2930: 2926: 2872: 2871: 2867: 2837: 2836: 2832: 2803:Cerebral Cortex 2796: 2795: 2791: 2786: 2782: 2730: 2729: 2725: 2679: 2678: 2674: 2668: 2647: 2646: 2642: 2635:Wayback Machine 2625: 2621: 2611: 2609: 2600: 2599: 2595: 2588: 2567: 2566: 2559: 2549: 2548: 2544: 2482: 2481: 2477: 2468: 2466: 2457: 2456: 2452: 2442: 2440: 2425: 2424: 2420: 2410: 2408: 2398: 2397: 2393: 2388: 2381: 2376: 2369: 2363:Wayback Machine 2353: 2346: 2336: 2334: 2321: 2320: 2316: 2309: 2305: 2299:Wayback Machine 2290: 2286: 2280:Wayback Machine 2271: 2267: 2257: 2255: 2246: 2245: 2238: 2228: 2226: 2216: 2215: 2211: 2206: 2202: 2195: 2191: 2182: 2181: 2177: 2172: 2167: 2153:Sound synthesis 2102:Acoustic theory 2037:Sound impedance 1950: 1938: 1932: 1906: 1901: 1899:Audio frequency 1895: 1886: 1880: 1847: 1827: 1806: 1786: 1754: 1614:psychoacoustics 1602: 1600:Psychoacoustics 1596: 1521: 1516: 1515: 1460: 1451: 1438: 1400: 1398: 1386: 1380: 1367: 1348: 1343: 1342: 1337: 1298: 1297: 1296:Pa) and (1 atm 1271: 1270: 1249: 1220: 1213: 1210: 1202: 1195: 1192: 1188:Audio frequency 1184: 1177: 1174: 1166: 1156: 1153: 1145: 1138: 1135: 1127: 1120: 1117: 1109: 1103: 1093: 1090: 1082: 1072: 1069: 1065:Sound intensity 1061: 1054: 1051: 1043: 1033: 1030: 1022: 1016: 1006: 1003: 995: 990: 985: 973: 938: 903: 902: 857: 856: 825: 824: 781: 780: 749: 748: 725: 724: 670: 669: 643: 637: 522: 521: 520: 519: 515: 514: 513: 510: 502: 501: 498: 434: 411:forms of matter 368:by the medium. 330:transverse wave 292: 290: 266:psychoacoustics 203: 197: 180: 152:audio frequency 134:, sound is the 104: 103: 95: 93: 92: 91: 90: 81: 74: 71: 64: 58: 35: 28: 23: 22: 15: 12: 11: 5: 3719: 3717: 3709: 3708: 3703: 3698: 3693: 3683: 3682: 3676: 3675: 3673: 3672: 3661: 3658: 3657: 3655: 3654: 3653: 3652: 3647: 3637: 3632: 3627: 3622: 3616: 3614: 3613:Related topics 3610: 3609: 3607: 3606: 3601: 3596: 3594:Joseph Sauveur 3591: 3586: 3581: 3579:Marin Mersenne 3576: 3571: 3566: 3561: 3556: 3551: 3545: 3543: 3539: 3538: 3536: 3535: 3530: 3529: 3528: 3518: 3513: 3508: 3503: 3498: 3497: 3496: 3491: 3486: 3476: 3475: 3474: 3464: 3459: 3454: 3448: 3446: 3436: 3435: 3433: 3432: 3431: 3430: 3420: 3419: 3418: 3413: 3402: 3400: 3394: 3393: 3390: 3389: 3382: 3374: 3373: 3371: 3369: 3368: 3363: 3358: 3353: 3348: 3343: 3337: 3335: 3329: 3328: 3323: 3321: 3320: 3313: 3306: 3298: 3292: 3291: 3286: 3281: 3276: 3271: 3259: 3254: 3249: 3244: 3232: 3215: 3214: 3208: 3207: 3196: 3195: 3193: 3192:External links 3190: 3187: 3186: 3159:(1): 130–137. 3143: 3134: 3127: 3098: 3089: 3065:(4): 277–314, 3045: 3002: 2973:(2): 124–145. 2957: 2924: 2885:(8): e106553. 2865: 2846:(2): 131–142. 2830: 2809:(7): 765–772. 2789: 2780: 2743:(4): 399–406. 2723: 2672: 2666: 2640: 2619: 2593: 2586: 2557: 2542: 2475: 2450: 2428:"A Sonic Boom" 2418: 2401:"Polarization" 2391: 2379: 2367: 2344: 2314: 2303: 2284: 2265: 2236: 2225:on 14 May 2013 2209: 2200: 2189: 2174: 2173: 2171: 2168: 2166: 2165: 2160: 2155: 2150: 2148:Sonic weaponry 2145: 2140: 2135: 2130: 2125: 2119: 2114: 2112:Doppler effect 2109: 2104: 2098: 2097: 2095: 2091: 2090: 2084: 2078: 2069: 2062: 2061: 2059: 2055: 2054: 2049: 2044: 2039: 2034: 2029: 2024: 2019: 2014: 2009: 2004: 1999: 1994: 1988: 1987: 1983: 1982: 1977: 1972: 1967: 1962: 1956: 1955: 1951: 1949: 1946: 1931: 1928: 1905: 1902: 1894: 1891: 1882:Main article: 1879: 1876: 1846: 1843: 1826: 1823: 1805: 1802: 1785: 1782: 1753: 1750: 1598:Main article: 1595: 1592: 1572: 1571: 1535: 1532: 1529: 1524: 1503: 1502: 1482: 1474: 1471: 1468: 1463: 1459: 1454: 1450: 1445: 1441: 1436: 1433: 1429: 1422: 1414: 1411: 1408: 1403: 1395: 1390: 1383: 1379: 1374: 1370: 1365: 1362: 1356: 1351: 1338:is defined as 1335: 1310: 1305: 1283: 1278: 1257:Sound pressure 1251: 1250: 1248: 1247: 1240: 1233: 1225: 1222: 1221: 1217: 1216: 1208: 1199: 1198: 1190: 1181: 1180: 1172: 1163: 1162: 1151: 1149:Sound exposure 1142: 1141: 1133: 1124: 1123: 1115: 1106: 1105: 1101: 1088: 1079: 1078: 1067: 1058: 1057: 1049: 1040: 1039: 1028: 1019: 1018: 1014: 1001: 999:Sound pressure 992: 991: 988: 986: 984:Characteristic 983: 980: 979: 972: 969: 910: 880: 876: 872: 867: 864: 844: 841: 838: 835: 832: 810: 806: 802: 799: 796: 791: 788: 766: 762: 758: 734: 707: 706: 695: 689: 686: 680: 677: 641:Speed of sound 639:Main article: 636: 633: 598: 597: 592: 590:Speed of sound 587: 581:sound pressure 574: 517: 516: 511: 504: 503: 499: 492: 491: 490: 489: 488: 440:, also called 433: 430: 392: 391: 384: 380: 342:speed of sound 328:and also as a 289: 286: 231:audio engineer 199:Main article: 196: 193: 179: 176: 172:hearing ranges 94: 82: 72: 67: 66: 65: 56: 55: 54: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 3718: 3707: 3704: 3702: 3699: 3697: 3694: 3692: 3689: 3688: 3686: 3671: 3663: 3662: 3659: 3651: 3648: 3646: 3643: 3642: 3641: 3638: 3636: 3633: 3631: 3628: 3626: 3623: 3621: 3618: 3617: 3615: 3611: 3605: 3602: 3600: 3597: 3595: 3592: 3590: 3589:Lord Rayleigh 3587: 3585: 3582: 3580: 3577: 3575: 3572: 3570: 3567: 3565: 3562: 3560: 3559:Ernst Chladni 3557: 3555: 3552: 3550: 3547: 3546: 3544: 3540: 3534: 3531: 3527: 3524: 3523: 3522: 3521:Standing wave 3519: 3517: 3514: 3512: 3509: 3507: 3504: 3502: 3499: 3495: 3492: 3490: 3489:Inharmonicity 3487: 3485: 3482: 3481: 3480: 3477: 3473: 3470: 3469: 3468: 3465: 3463: 3460: 3458: 3455: 3453: 3450: 3449: 3447: 3445: 3441: 3437: 3429: 3426: 3425: 3424: 3421: 3417: 3414: 3412: 3409: 3408: 3407: 3404: 3403: 3401: 3399: 3395: 3387: 3383: 3380: 3376: 3375: 3367: 3364: 3362: 3359: 3357: 3356:Soundproofing 3354: 3352: 3351:Reverberation 3349: 3347: 3344: 3342: 3339: 3338: 3336: 3334: 3330: 3326: 3319: 3314: 3312: 3307: 3305: 3300: 3299: 3296: 3290: 3287: 3285: 3282: 3280: 3277: 3275: 3272: 3270: 3266: 3263: 3260: 3258: 3255: 3253: 3250: 3248: 3245: 3243: 3239: 3236: 3233: 3229: 3225: 3220: 3219: 3213: 3210: 3209: 3204: 3199: 3191: 3182: 3178: 3174: 3170: 3166: 3162: 3158: 3154: 3147: 3144: 3138: 3135: 3130: 3124: 3120: 3116: 3112: 3105: 3103: 3099: 3093: 3090: 3076: 3072: 3068: 3064: 3060: 3056: 3049: 3046: 3041: 3037: 3033: 3029: 3025: 3021: 3017: 3013: 3006: 3003: 2998: 2994: 2990: 2986: 2981: 2976: 2972: 2968: 2961: 2958: 2944: 2937: 2936: 2928: 2925: 2920: 2916: 2911: 2906: 2901: 2896: 2892: 2888: 2884: 2880: 2876: 2869: 2866: 2861: 2857: 2853: 2849: 2845: 2841: 2834: 2831: 2826: 2822: 2817: 2812: 2808: 2804: 2800: 2793: 2790: 2784: 2781: 2776: 2772: 2767: 2762: 2758: 2754: 2750: 2746: 2742: 2738: 2734: 2727: 2724: 2719: 2715: 2711: 2707: 2703: 2699: 2695: 2691: 2687: 2683: 2676: 2673: 2669: 2667:9781461276449 2663: 2659: 2655: 2651: 2644: 2641: 2636: 2632: 2629: 2623: 2620: 2607: 2603: 2597: 2594: 2589: 2587:9780486217697 2583: 2579: 2574: 2573: 2564: 2562: 2558: 2553: 2546: 2543: 2538: 2534: 2529: 2524: 2520: 2516: 2512: 2508: 2503: 2498: 2494: 2490: 2486: 2479: 2476: 2464: 2460: 2454: 2451: 2439: 2435: 2434: 2429: 2422: 2419: 2406: 2402: 2395: 2392: 2386: 2384: 2380: 2374: 2372: 2368: 2364: 2360: 2357: 2351: 2349: 2345: 2332: 2328: 2324: 2318: 2315: 2312: 2307: 2304: 2300: 2296: 2293: 2288: 2285: 2281: 2277: 2274: 2269: 2266: 2253: 2249: 2243: 2241: 2237: 2224: 2220: 2213: 2210: 2204: 2201: 2198: 2193: 2190: 2185: 2179: 2176: 2169: 2164: 2161: 2159: 2158:Soundproofing 2156: 2154: 2151: 2149: 2146: 2144: 2143:Reverberation 2141: 2139: 2136: 2134: 2131: 2129: 2126: 2123: 2120: 2118: 2115: 2113: 2110: 2108: 2105: 2103: 2100: 2099: 2096: 2093: 2092: 2088: 2085: 2082: 2079: 2077: 2073: 2070: 2067: 2064: 2063: 2060: 2057: 2056: 2053: 2050: 2048: 2045: 2043: 2040: 2038: 2035: 2033: 2030: 2028: 2025: 2023: 2020: 2018: 2015: 2013: 2010: 2008: 2005: 2003: 2000: 1998: 1995: 1993: 1990: 1989: 1985: 1984: 1981: 1978: 1976: 1973: 1971: 1968: 1966: 1963: 1961: 1958: 1957: 1954:Sound sources 1953: 1952: 1947: 1945: 1942: 1937: 1929: 1927: 1925: 1921: 1918: 1910: 1903: 1900: 1892: 1890: 1885: 1877: 1875: 1873: 1872: 1867: 1863: 1859: 1855: 1851: 1850:Sonic texture 1844: 1842: 1839: 1831: 1824: 1822: 1819: 1810: 1803: 1801: 1798: 1790: 1783: 1781: 1779: 1775: 1772:For example: 1770: 1767: 1758: 1751: 1749: 1747: 1743: 1739: 1735: 1734:sonic texture 1731: 1727: 1723: 1719: 1714: 1711: 1707: 1704: 1700: 1698: 1694: 1690: 1686: 1682: 1678: 1674: 1670: 1666: 1662: 1658: 1654: 1650: 1645: 1643: 1642:hearing range 1639: 1635: 1631: 1627: 1622: 1620: 1615: 1611: 1607: 1601: 1593: 1591: 1589: 1585: 1581: 1577: 1569: 1566:in air and 1 1565: 1561: 1558: 1554: 1553: 1522: 1513: 1509: 1505: 1504: 1480: 1461: 1457: 1452: 1448: 1443: 1439: 1434: 1431: 1427: 1420: 1401: 1393: 1388: 1381: 1377: 1372: 1368: 1363: 1360: 1349: 1341: 1340: 1339: 1334: 1330: 1326: 1308: 1303: 1281: 1276: 1268: 1264: 1259: 1258: 1246: 1241: 1239: 1234: 1232: 1227: 1226: 1223: 1218: 1209: 1207: 1200: 1191: 1189: 1182: 1173: 1171: 1164: 1159: 1152: 1150: 1143: 1134: 1132: 1125: 1116: 1114: 1107: 1100: 1096: 1089: 1087: 1080: 1075: 1068: 1066: 1059: 1050: 1048: 1041: 1036: 1029: 1027: 1020: 1013: 1009: 1002: 1000: 993: 987: 981: 976: 970: 968: 964: 962: 958: 954: 950: 945: 941: 934: 932: 928: 924: 908: 900: 896: 878: 874: 870: 865: 862: 842: 839: 836: 833: 830: 808: 804: 800: 797: 794: 789: 786: 764: 760: 756: 732: 722: 721: 716: 712: 693: 687: 684: 678: 675: 668: 667: 666: 664: 656: 652: 647: 642: 634: 632: 630: 629: 624: 620: 616: 614: 610: 607: 603: 596: 593: 591: 588: 586: 582: 578: 575: 573: 569: 566: 565: 564: 562: 559: 555: 550: 546: 539: 534: 526: 508: 496: 487: 485: 481: 476: 473: 471: 467: 463: 459: 455: 451: 447: 443: 439: 431: 429: 426: 424: 420: 416: 412: 403: 399: 397: 389: 385: 381: 378: 374: 373: 372: 369: 367: 363: 359: 355: 351: 347: 343: 339: 335: 331: 327: 319: 315: 311: 308: 287: 285: 283: 279: 275: 271: 267: 263: 262:noise control 259: 255: 251: 247: 243: 239: 238:aeroacoustics 234: 232: 228: 224: 220: 216: 212: 208: 202: 194: 192: 190: 185: 177: 175: 173: 169: 165: 162:are known as 161: 157: 153: 149: 145: 141: 137: 133: 129: 125: 121: 120:acoustic wave 117: 113: 109: 102: 100: 89: 85: 84:Drum cadences 70: 50: 46: 41: 37: 33: 19: 3629: 3604:Thomas Young 3554:Jens Blauert 3542:Acousticians 3227: 3202: 3156: 3152: 3146: 3137: 3110: 3092: 3082:, retrieved 3062: 3058: 3048: 3015: 3011: 3005: 2970: 2966: 2960: 2950:, retrieved 2934: 2927: 2882: 2878: 2868: 2843: 2839: 2833: 2806: 2802: 2792: 2783: 2740: 2736: 2726: 2685: 2681: 2675: 2649: 2643: 2622: 2610:. Retrieved 2606:the original 2596: 2571: 2551: 2545: 2492: 2488: 2478: 2467:. Retrieved 2453: 2441:. Retrieved 2431: 2421: 2409:. Retrieved 2404: 2394: 2335:. Retrieved 2326: 2317: 2306: 2287: 2268: 2256:. Retrieved 2227:. Retrieved 2223:the original 2212: 2203: 2192: 2183: 2178: 2133:Musical tone 2074:- perceived 1939: 1922: 1915: 1887: 1869: 1853: 1848: 1836: 1816: 1795: 1771: 1764: 1715: 1708: 1701: 1646: 1633: 1623: 1609: 1605: 1603: 1573: 1550: 1507: 1332: 1328: 1255: 1254: 1157: 1113:Sound energy 1098: 1094: 1073: 1034: 1011: 1007: 965: 957:relativistic 943: 942:= 331 + 0.6 939: 935: 931:bulk modulus 898: 894: 719: 708: 663:Isaac Newton 660: 628:polarization 626: 617: 599: 551: 547: 543: 477: 474: 470:shear stress 435: 427: 408: 393: 370: 353: 323: 307:tuning forks 250:bioacoustics 235: 226: 218: 204: 181: 139: 135: 111: 105: 36: 3574:Franz Melde 3549:John Backus 3533:Subharmonic 3386:Spectrogram 2047:Sound power 1774:white noise 1638:frequencies 1588:A-weighting 1327:scale. The 1086:Sound power 923:square root 613:wave vector 561:plane waves 480:compression 462:rarefaction 458:compression 454:equilibrium 442:compression 310:oscillating 219:acoustician 184:Oscillation 156:wavelengths 148:frequencies 3685:Categories 3635:Ultrasound 3625:Infrasound 3411:Bark scale 3084:2015-11-19 2952:2013-04-06 2502:2004.04818 2469:2020-10-09 2170:References 2122:Infrasound 1941:Infrasound 1934:See also: 1930:Infrasound 1917:Ultrasound 1904:Ultrasound 1897:See also: 1778:pink noise 1710:Soundscape 1665:atmosphere 1657:navigation 1610:perception 1594:Perception 949:anharmonic 649:U.S. Navy 572:wavelength 558:sinusoidal 366:attenuated 274:ultrasound 178:Definition 168:infrasound 164:ultrasound 140:perception 132:psychology 128:physiology 122:through a 99:media help 18:Sound wave 3706:Acoustics 3516:Resonance 3416:Mel scale 3346:Monochord 3325:Acoustics 3173:0079-6107 2975:CiteSeerX 2757:1525-3961 2710:0962-8436 2138:Resonance 2068:, decibel 2007:Mel scale 1975:Sound box 1960:Earphones 1893:Frequency 1871:cacophony 1866:homophony 1862:polyphony 1661:predation 1580:frequency 1562:, are 20 1560:S1.1-1994 1449:⁡ 1378:⁡ 1331:(SPL) or 1277:− 909:ρ 879:ρ 840:⋅ 837:γ 809:ρ 798:⋅ 795:γ 765:ρ 733:γ 715:adiabatic 688:ρ 595:Direction 585:Intensity 577:Amplitude 568:Frequency 396:refracted 388:viscosity 362:refracted 358:reflected 338:diaphragm 314:frequency 282:vibration 215:acoustics 211:vibration 201:Acoustics 195:Acoustics 189:sensation 136:reception 116:vibration 3670:Category 3511:Overtone 3479:Harmonic 3265:Archived 3238:Archived 3181:16934315 3075:archived 2943:archived 2919:25170608 2879:PLOS ONE 2825:12816892 2775:18855069 2631:Archived 2537:33036979 2463:Archived 2359:Archived 2331:Archived 2295:Archived 2276:Archived 2252:Archived 2076:loudness 1948:See also 1818:Loudness 1804:Loudness 1797:Duration 1784:Duration 1726:loudness 1722:duration 1487: dB 823:. Since 606:velocity 464:, while 450:pressure 350:velocity 346:pressure 49:membrane 3696:Hearing 3457:Formant 3040:5804115 3020:Bibcode 2997:5024158 2910:4149571 2887:Bibcode 2860:9566626 2766:2580810 2718:1354376 2690:Bibcode 2612:May 20, 2528:7546695 2507:Bibcode 2443:26 June 2411:4 March 2337:9 April 2258:26 June 2094:General 1854:texture 1845:Texture 1685:mammals 1510:is the 1325:decibel 1097:, SWL, 1010:, SPL, 989:Symbols 929:of the 925:of the 711:Laplace 415:plasmas 377:density 354:average 288:Physics 142:by the 108:physics 3650:Violin 3484:Series 3200:about 3179:  3171:  3125:  3038:  2995:  2977:  2917:  2907:  2858:  2823:  2773:  2763:  2755:  2716:  2708:  2664:  2584:  2535:  2525:  2229:22 May 1858:unison 1838:Timbre 1825:Timbre 1761:name). 1730:timbre 1697:speech 1689:organs 1681:marine 1649:senses 1506:where 1211:  1203:  1193:  1185:  1175:  1167:  1154:  1146:  1136:  1128:  1118:  1110:  1091:  1083:  1070:  1062:  1055:δ 1052:  1044:  1031:  1023:  1004:  996:  955:). If 651:F/A-18 609:vector 552:Sound 484:strain 423:vacuum 419:medium 334:solids 280:, and 270:speech 217:is an 3701:Waves 3691:Sound 3645:Piano 3630:Sound 3444:pitch 3406:Pitch 3203:Sound 3078:(PDF) 2946:(PDF) 2939:(PDF) 2497:arXiv 2058:Units 1970:Sonar 1766:Pitch 1752:Pitch 1736:and 1718:pitch 1703:Noise 1669:water 1634:sound 1606:sound 1549:is a 1160:, SEL 1076:, SIL 1037:, SVL 927:ratio 720:gamma 635:Speed 623:shear 554:waves 432:Waves 364:, or 229:. An 144:brain 114:is a 112:sound 3620:Echo 3526:Node 3452:Beat 3442:and 3228:CNET 3177:PMID 3169:ISSN 3123:ISBN 3036:PMID 2993:PMID 2915:PMID 2856:PMID 2821:PMID 2771:PMID 2753:ISSN 2714:PMID 2706:ISSN 2662:ISBN 2638:Inc. 2614:2010 2582:ISBN 2533:PMID 2445:2015 2438:NASA 2413:2024 2339:2014 2260:2015 2231:2013 2117:Echo 2107:Beat 2081:phon 2072:sone 1864:and 1695:and 1693:song 1677:surf 1557:ANSI 460:and 130:and 45:drum 3161:doi 3115:doi 3067:doi 3028:doi 2985:doi 2905:PMC 2895:doi 2848:doi 2844:108 2811:doi 2761:PMC 2745:doi 2698:doi 2686:336 2654:doi 2578:249 2523:PMC 2515:doi 2327:NPR 1630:kHz 1568:ÎĽPa 1564:ÎĽPa 1440:log 1369:log 747:by 583:or 332:in 276:, 160:kHz 106:In 3687:: 3226:. 3175:. 3167:. 3157:93 3121:. 3101:^ 3073:, 3063:26 3061:, 3057:, 3034:. 3026:. 3016:46 3014:. 2991:. 2983:. 2971:79 2969:. 2941:, 2913:. 2903:. 2893:. 2881:. 2877:. 2854:. 2842:. 2819:. 2807:13 2805:. 2801:. 2769:. 2759:. 2751:. 2739:. 2735:. 2712:. 2704:. 2696:. 2684:. 2660:, 2580:. 2560:^ 2531:. 2521:. 2513:. 2505:. 2491:. 2487:. 2461:. 2436:. 2430:. 2403:. 2382:^ 2370:^ 2347:^ 2325:. 2250:. 2239:^ 2087:Hz 2066:dB 1874:. 1860:, 1732:, 1728:, 1724:, 1720:, 1667:, 1659:, 1655:, 1626:Hz 1444:10 1435:20 1373:10 1364:10 1267:Pa 1214:TL 1196:AF 1102:WA 1015:PA 963:. 657:). 615:. 579:, 425:. 360:, 348:, 284:. 272:, 268:, 264:, 260:, 256:, 248:, 244:, 240:, 191:. 174:. 110:, 43:A 3317:e 3310:t 3303:v 3230:. 3183:. 3163:: 3131:. 3117:: 3069:: 3042:. 3030:: 3022:: 2999:. 2987:: 2921:. 2897:: 2889:: 2883:9 2862:. 2850:: 2827:. 2813:: 2777:. 2747:: 2741:9 2720:. 2700:: 2692:: 2656:: 2616:. 2590:. 2539:. 2517:: 2509:: 2499:: 2493:6 2472:. 2447:. 2415:. 2341:. 2262:. 2233:. 1534:f 1531:e 1528:r 1523:p 1508:p 1481:) 1473:f 1470:e 1467:r 1462:p 1458:p 1453:( 1432:= 1428:) 1421:2 1413:f 1410:e 1407:r 1402:p 1394:2 1389:p 1382:( 1361:= 1355:p 1350:L 1336:p 1333:L 1309:2 1304:+ 1282:2 1244:e 1237:t 1230:v 1178:Z 1158:E 1139:w 1121:W 1099:L 1095:P 1074:I 1035:v 1012:L 1008:p 944:T 940:v 899:c 895:K 875:/ 871:K 866:= 863:c 843:p 834:= 831:K 805:/ 801:p 790:= 787:c 761:/ 757:p 694:. 685:p 679:= 676:c 101:. 51:. 34:. 20:)

Index

Sound wave
Sound (disambiguation)

drum
membrane
Drum - Cadence A
Drum cadences
United States Navy Band
media help
physics
vibration
acoustic wave
transmission medium
physiology
psychology
brain
frequencies
audio frequency
wavelengths
kHz
ultrasound
infrasound
hearing ranges
Oscillation
sensation
Acoustics
mechanical waves
vibration
acoustics
acoustical engineering

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑