Knowledge (XXG)

SpaceLiner

Source 📝

226:
distance. In line with this, a modified version of the SpaceLiner 7 capable of flying medium long-haul distances while carrying 100 passengers has been examined. Given the name SL7-100, this concept variant is suitable for Class 2 and Class 3 distance flights. To accommodate for the different SpaceLiner configurations, a long and short version of the booster stage have therefore been considered to accordingly fulfill the mission requirements depending on the required range, either in combination with the 50 or 100-passenger stage version. In addition, research into possible spaceport variants has been performed, determining mainland, offshore platform and artificial island possibilities, as well as the required infrastructure for a potential SpaceLiner spaceport.
218: 34: 235: 154: 588: 143:
systems of the early 2000s. A major challenge lies in improving the safety standards and especially the robustness and reliability of space components such as rocket engines, so that they will become suitable for the daily operation of a passenger transporter like the SpaceLiner, while also meeting the required reusability criteria.
167:
considerations, modelling and simulations of the various subsystems, and their design and integration being performed. Selected variants to the baseline configuration given different requirements and specifications were studied with associated results influencing and redirecting the entire configuration process.
225:
Possible routes, which have then formed the basis of trajectory analyses for SpaceLiner, have been identified. These are classified and grouped in terms of their distances, with Class 1 representing the longest route, and Class 3 describing the shortest yet still economically interesting and relevant
166:
At the end of 2012 investigations and ongoing studies conducted within context of the FAST20XX framework led to the refinement and definition of the SpaceLiner 7 version. Based on the results of previous studies, development has been progressing continuously with increasingly detailed and in-depth
1140: 465:
cycle mode. Having a common engine design for both SpaceLiner stages is in line with system commonality and is projected to support cost optimisation in both the development and production phases. The nozzle expansion ratio is adapted to the different missions of the booster and passenger stages.
213:
of previous versions has been modified and replaced by a single delta wing. So far, subsystems such as the passenger cabin, the cryogenic tanks, the propellant feed system and the vehicle thermal protection have been preliminarily defined and integrated. Studies have also been carried out on the
130:
20 are projected, depending on the mission and the associated trajectory flown. SpaceLiner flight times from Australia to Europe, the chosen reference mission, should take 90 minutes. Shorter distances, such as Europe to California for example, would then be achievable in no more than 60 minutes.
142:
A key aspect of the SpaceLiner concept is its full reusability and vehicle mass-production, which would closely resemble production rates of the aviation industry. Serial production is expected to deliver a significant increase in cost effectiveness compared to conventional space transportation
117:
configuration with a large uncrewed booster and a crewed stage designed for 50 passengers and 2 crew members. The fully reusable system is accelerated by a total of eleven liquid rocket engines (9 for the booster stage, 2 for the passenger stage), which are to be operated using cryogenic liquid
191:
concept is a 2015 evolution of version 2 with improved aerodynamic and flight dynamic characteristics. Based on this configuration, various technologies necessary for the SpaceLiner were experimentally and numerically examined, research that was funded by the EU research project FAST20XX.
179:
refers to the first version, which featured the integration of an innovative active cooling system for the areas of particularly high thermal stresses during atmospheric re-entry, which are the nose and wing leading edge sections.
126:). After engine cut-off, the passenger stage will enter a high-speed gliding flight phase and shall be capable of travelling long intercontinental distances within a very short time. Altitudes of 80 kilometers and speed beyond 138:
The concept design also foresees the passenger cabin to function as an autonomous rescue capsule which can be separated from the vehicle in case of an emergency, thus allowing the passengers to return safely to Earth.
209:. Based on results obtained from application of numerical optimisation methods which achieved an improvement of the aerodynamic, thermal and structural-mechanical properties in hypersonic flight, the initial double 905:
Trivailo, O (March 2015), "Innovative Cost Engineering Approaches, Analyses and Methods Applied to SpaceLiner - an Advanced, Hypersonic, Suborbital Spaceplane Case-Study",
131:
Acceleration loads for the passengers, and only during the propelled section of the flight, are designed to remain below 2.5 g, and well below those experienced by the
1164: 214:
economic and logistical aspects of the concept, with preliminary calculations of expected program development and production costs given necessary assumptions.
1246: 1241: 879:
Sippel, M; Bussler, L; Kopp, A; Krummen, S; Valluchi, C; Wilken, J; Prévereaud, Y; Vérant, J.-L.; Laroche, E; Sourgen, E; Bonetti, D (March 2017),
1236: 1070: 975: 816: 101:
as of 2017. Projections in 2015 were that if adequate funding was eventually secured, the SpaceLiner concept might become an operational
621: 601: 1088:"Overall Preliminary Design of the Thermal Protection System for a Long Range Hypersonic Rocket-Powered Passenger Vehicle (SpaceLiner)" 888:
AIAA 2017-2170, 21st AIAA International Space Planes and Hypersonic Systems and Technologies Conference, 6–9 March 2017, Xiamen, China
150:
funded projects such as FAST20XX and CHATT. In addition to DLR, various partners from the European aerospace sector are involved.
740:"Comparative study on options for high-speed intercontinental passenger transports: air-breathing- vs. rocket-propelled" 462: 147: 20: 626: 801:
AIAA 2015-3582, 20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, Glasgow.
90:(Deutsches Zentrum für Luft- und Raumfahrt, or DLR) in 2005. In its second role the SpaceLiner is intended as a 474:
will be used as the propellants, a combination which is both very powerful while still remaining eco-friendly.
652: 461:
The SpaceLiner concept intends to use a single type of reusable liquid rocket engine, which operates in the
98: 97:
The SpaceLiner is a very long-term project, and does not currently have funding lined up to initiate system
91: 87: 75: 678: 639: 762:
Sippel, M; Trivailo, O; Bussler, L; Lipp, S; Valluchi, C; Kaltenhäuser, S; Molina, R (September 2016),
1053:
van Foreest, A (2009). "The Progress on the SpaceLiner Design in the Frame of the FAST 20XX Program".
146:
As of 2013, the concept study was funded by DLR's internal resources, as well as in the context of EU-
1256: 1251: 1121:. 19th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, June. 2014 850: 606: 83: 1205:"Staged Combustion Cycle Rocket Engine Subsystem Definition for Future Advanced Passenger Transport" 1141:"System Studies on Active Thermal Protection of a Hypersonic Suborbital Passenger Transport Vehicle" 1185:. 18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference. 2012 611: 1180:"Preliminary Multidisciplinary Design Studies on an Upgraded 100 Passenger SpaceLiner Derivative" 593: 1055:
16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference
217: 1158: 1066: 971: 812: 1116:"Cryogenic Propellant Tank and Feedline Design Studies in the Framework of the CHATT Project" 1058: 963: 858: 804: 531: 960:
18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference
19:
This article is about the DLR passenger transportation vehicle. For other definitions, see
1087: 616: 467: 33: 854: 1230: 505: 471: 132: 862: 792:
Sippel, M; Schwanekamp, T; Trivailo, O; Kopp, A; Bauer, C; Garbers, N (July 2015),
234: 1021: 153: 952: 880: 793: 127: 771:
IAC-16-D2.4.03, 67th International Astronautical Congress, Guadalajara, Mexico.
763: 739: 923: 709: 696: 665: 583: 210: 102: 79: 1204: 1115: 285: 1212:
Space Propulsion 2014, Session 30 - ST - Future Liquid Stages & Engines
1139:
T. Schwanekamp, F. Meyer, T. Reimer, I. Petkov, A, Tröltzsch, M. Siggel.
835: 1062: 967: 808: 687: 1095:
7th European Workshop on Thermal Protection Systems and Hot Structures
1000:
4th CSA-IAA Conference on Advanced Space Technology, September 2011
881:"Advanced Simulations of Reusable Hypersonic Rocket-Powered Stages" 205:
As of 2015, the latest configuration under study at the DLR is the
233: 216: 152: 644:
Institut für Raumfahrtsysteme, Systemanalyse Raumtransport (SART)
114: 1146:. AIAA Aviation Conference, AIAA 2014-2372, Atlanta, June. 2014 993:"Development of the SpaceLiner Concept and its Latest Progress" 764:"Evolution of the SpaceLiner towards a Reusable TSTO-Launcher" 242:
The specifications of the SpaceLiner 7 passenger version are:
123: 119: 1179: 1178:
T. Schwanekamp; J. Bütünley; M. Sippel (24 September 2012).
992: 670:
THE SPACELINER MOVIE 4K ✈ hypersonic travel in the year 2050
924:"Progress of SpaceLiner Rocket-Powered High-Speed Concept" 94:(RLV) capable of delivering heavy payloads into orbit. 794:"SpaceLiner Technical Progress and Mission Definition" 738:
Sippel, M; Klevanski, J; Steelant, J (October 2005),
38:
Artist's impression of the SpaceLiner 7 during ascent
991:
Schwanekamp, T; Bauer, C; Kopp, A (September 2012).
922:
M. Sippel; T. Schwanekamp; O. Trivailo; A. Lentsch.
221:
Classification of possible routes for the SpaceLiner
836:"Promising roadmap alternatives for the SpaceLiner" 59: 51: 43: 157:History of SpaceLiner development up to version 7 953:"Technical Maturation of the SpaceLiner Concept" 733: 731: 113:The SpaceLiner concept consists of a two-stage, 1203:Sippel, M; Schwanekamp, T; et al. (2014). 680:To Australia in 90 minutes at hypersonic speed 653:"New Road Map For DLR's Suborbital SpaceLiner" 8: 1163:: CS1 maint: multiple names: authors list ( 26: 1029:Journal of Thermodynamics and Heat Transfer 1022:"Transpiration Cooling Using Liquid Water" 900: 898: 896: 874: 872: 787: 785: 783: 781: 779: 173:was the first version, conceived in 2005. 32: 25: 917: 915: 829: 827: 757: 755: 476: 244: 16:German concept space hypersonic airliner 727: 478: 246: 1156: 1114:T. Schwanekamp; C. Ludwig; M. Sippel. 7: 115:vertical takeoff, horizontal landing 622:Zero Emission Hyper Sonic Transport 602:Airbus Defence and Space Spaceplane 14: 413:3.7 km/s (13,300 km/h) 1247:Space launch vehicles of Germany 1242:Proposed reusable launch systems 586: 951:Sippel, M; et al. (2012). 863:10.1016/j.actaastro.2010.01.020 697:"SpaceLiner - Animation (2012)" 567:Thrust per engine (sea level): 410:7 km/s (25,200 km/h) 1237:Proposed space launch vehicles 545:Specific impulse (sea level): 1: 1020:van Foreest, A; et al., 512:Mass flow rate (per engine): 501:Combustion chamber pressure: 556:Thrust per engine (vacuum): 436:up to about. 18,000 km 666:"SpaceLiner - Movie (2019)" 463:full-flow staged combustion 381:Main engines cut-off mass: 21:spaceliner (disambiguation) 1273: 834:Sippel, M (Jun–Jul 2010). 627:Earth-to-Earth spaceflight 268:(Australia–Europe mission) 18: 514: 503: 495: 435: 293: 279: 31: 326:Max. fuselage diameter: 92:reusable launch vehicle 88:German Aerospace Center 254:(50 passenger version) 239: 222: 158: 237: 220: 156: 607:Boeing Sonic Cruiser 238:SpaceLiner7 drawings 84:supersonic transport 1183:(PDF; 2370 kB) 1144:(PDF; 2370 kB) 1119:(PDF; 2370 kB) 1086:Garbers, N (2013). 1063:10.2514/6.2009-7438 996:(PDF; 1672 kB) 968:10.2514/6.2012-5850 927:(PDF; 2370 kB) 855:2010AcAau..66.1652S 809:10.2514/6.2015-3582 612:HyperMach SonicStar 441:Number of engines: 400:approx. 75 km 397:approx. 80 km 162:Concept development 86:, conceived at the 82:, winged passenger 74:is a concept for a 28: 1091:(PDF; 138 kB) 849:(11–12): 1652–58. 594:Spaceflight portal 420:Max. Mach number: 240: 223: 159: 1072:978-1-60086-968-6 977:978-1-60086-931-0 843:Acta Astronautica 818:978-1-62410-320-9 577: 576: 520:Expansion ratio: 454: 453: 367:Propellant mass: 269: 262: 255: 69: 68: 1264: 1222: 1221: 1219: 1218: 1209: 1200: 1194: 1193: 1191: 1190: 1184: 1175: 1169: 1168: 1162: 1154: 1152: 1151: 1145: 1136: 1130: 1129: 1127: 1126: 1120: 1111: 1105: 1104: 1102: 1101: 1092: 1083: 1077: 1076: 1050: 1044: 1043: 1042: 1040: 1026: 1017: 1011: 1010: 1008: 1007: 997: 988: 982: 981: 957: 948: 942: 941: 939: 938: 928: 919: 910: 909: 902: 891: 890: 885: 876: 867: 866: 840: 831: 822: 821: 798: 789: 774: 773: 768: 759: 750: 749: 744: 735: 717: 710:"The SpaceLiner" 704: 691: 685: 673: 660: 659:, 18 August 2015 647: 640:"The SpaceLiner" 596: 591: 590: 589: 532:Specific impulse 483:Passenger Stage 480:Characteristics 477: 299:Overall height: 274:Overall length: 267: 260: 253: 251:Passenger stage 245: 122:) and hydrogen ( 36: 29: 1272: 1271: 1267: 1266: 1265: 1263: 1262: 1261: 1227: 1226: 1225: 1216: 1214: 1207: 1202: 1201: 1197: 1188: 1186: 1182: 1177: 1176: 1172: 1155: 1149: 1147: 1143: 1138: 1137: 1133: 1124: 1122: 1118: 1113: 1112: 1108: 1099: 1097: 1090: 1085: 1084: 1080: 1073: 1052: 1051: 1047: 1038: 1036: 1024: 1019: 1018: 1014: 1005: 1003: 995: 990: 989: 985: 978: 955: 950: 949: 945: 936: 934: 926: 921: 920: 913: 904: 903: 894: 883: 878: 877: 870: 838: 833: 832: 825: 819: 796: 791: 790: 777: 766: 761: 760: 753: 742: 737: 736: 729: 725: 708: 695: 683: 677: 664: 651: 638: 635: 617:SpaceX Starship 592: 587: 585: 582: 493:Mixture ratio: 488: 484: 468:liquid hydrogen 459: 394:Max. altitude: 266: 259: 252: 232: 164: 111: 64: 39: 24: 17: 12: 11: 5: 1270: 1268: 1260: 1259: 1254: 1249: 1244: 1239: 1229: 1228: 1224: 1223: 1195: 1170: 1131: 1106: 1078: 1071: 1045: 1012: 983: 976: 943: 911: 892: 868: 823: 817: 775: 751: 747:Iac-05-D2.4.09 726: 724: 721: 720: 719: 706: 693: 675: 662: 649: 634: 633:External links 631: 630: 629: 624: 619: 614: 609: 604: 598: 597: 581: 578: 575: 574: 571: 568: 564: 563: 560: 557: 553: 552: 549: 546: 542: 541: 538: 535: 528: 527: 524: 521: 517: 516: 515:515 kg/s 513: 509: 508: 502: 498: 497: 494: 490: 489: 485: 481: 458: 455: 452: 451: 448: 445: 442: 438: 437: 434: 430: 429: 427: 424: 421: 417: 416: 414: 411: 408: 404: 403: 401: 398: 395: 391: 390: 388: 385: 382: 378: 377: 374: 371: 368: 364: 363: 360: 357: 354: 350: 349: 346: 343: 340: 336: 335: 333: 330: 327: 323: 322: 320: 317: 314: 313:Cabin length: 310: 309: 306: 303: 300: 296: 295: 292: 289: 282: 281: 278: 275: 271: 270: 263: 261:(long version) 256: 249: 231: 230:Technical data 228: 163: 160: 110: 107: 105:in the 2040s. 67: 66: 61: 57: 56: 53: 49: 48: 45: 41: 40: 37: 15: 13: 10: 9: 6: 4: 3: 2: 1269: 1258: 1255: 1253: 1250: 1248: 1245: 1243: 1240: 1238: 1235: 1234: 1232: 1213: 1206: 1199: 1196: 1181: 1174: 1171: 1166: 1160: 1142: 1135: 1132: 1117: 1110: 1107: 1096: 1089: 1082: 1079: 1074: 1068: 1064: 1060: 1056: 1049: 1046: 1034: 1030: 1023: 1016: 1013: 1001: 994: 987: 984: 979: 973: 969: 965: 961: 954: 947: 944: 932: 925: 918: 916: 912: 908: 901: 899: 897: 893: 889: 882: 875: 873: 869: 864: 860: 856: 852: 848: 844: 837: 830: 828: 824: 820: 814: 810: 806: 802: 795: 788: 786: 784: 782: 780: 776: 772: 765: 758: 756: 752: 748: 741: 734: 732: 728: 722: 715: 711: 707: 702: 698: 694: 689: 682: 681: 676: 671: 667: 663: 658: 657:Aviation Week 654: 650: 645: 641: 637: 636: 632: 628: 625: 623: 620: 618: 615: 613: 610: 608: 605: 603: 600: 599: 595: 584: 579: 573:1961 kN 572: 570:1830 kN 569: 566: 565: 562:2206 kN 561: 559:2268 kN 558: 555: 554: 550: 547: 544: 543: 539: 536: 533: 530: 529: 525: 522: 519: 518: 511: 510: 507: 500: 499: 492: 491: 486: 482: 479: 475: 473: 472:liquid oxygen 469: 466:Furthermore, 464: 456: 449: 446: 443: 440: 439: 432: 431: 428: 425: 422: 419: 418: 415: 412: 409: 406: 405: 402: 399: 396: 393: 392: 389: 386: 383: 380: 379: 375: 372: 369: 366: 365: 361: 358: 355: 352: 351: 347: 344: 341: 338: 337: 334: 331: 328: 325: 324: 321: 318: 315: 312: 311: 307: 304: 301: 298: 297: 290: 287: 284: 283: 276: 273: 272: 264: 257: 250: 247: 243: 236: 229: 227: 219: 215: 212: 208: 203: 202: 198: 197: 193: 190: 186: 185: 181: 178: 174: 172: 168: 161: 155: 151: 149: 144: 140: 136: 134: 133:Space Shuttle 129: 125: 121: 116: 108: 106: 104: 100: 95: 93: 89: 85: 81: 77: 73: 65:50 passengers 62: 58: 54: 50: 46: 42: 35: 30: 22: 1215:. Retrieved 1211: 1198: 1187:. Retrieved 1173: 1148:. Retrieved 1134: 1123:. Retrieved 1109: 1098:. Retrieved 1094: 1081: 1054: 1048: 1037:, retrieved 1032: 1028: 1015: 1004:. Retrieved 999: 986: 959: 946: 935:. Retrieved 930: 907:Ph.D. Thesis 906: 887: 846: 842: 800: 770: 746: 713: 700: 679: 669: 656: 643: 460: 433:Max. range: 407:Max. speed: 376:1502 t 373:1272 t 362:1832 t 359:1467 t 353:Total mass: 339:Empty mass: 316:15.3 m 308:21.5 m 302:12.1 m 294:36.0 m 291:33.0 m 280:82.3 m 277:65.6 m 241: 224: 207:SpaceLiner 7 206: 204: 201:SpaceLiner 6 200: 199: 196:SpaceLiner 5 195: 194: 189:SpaceLiner 4 188: 187: 184:SpaceLiner 3 183: 182: 177:SpaceLiner 2 176: 175: 171:SpaceLiner 1 170: 169: 165: 145: 141: 137: 135:astronauts. 112: 96: 71: 70: 60:Crew members 1257:Spaceplanes 1252:Spaceflight 387:213 t 384:151 t 370:220 t 356:366 t 348:328 t 345:198 t 342:130 t 332:8.6 m 329:6.4 m 305:8.7 m 248:Parameters 99:development 55:under study 1231:Categories 1217:2015-10-14 1189:2013-05-10 1150:2015-10-14 1125:2015-10-14 1100:2014-04-24 1006:2013-05-10 937:2014-04-24 723:References 534:(vacuum): 457:Propulsion 211:delta wing 103:spaceplane 80:hypersonic 76:suborbital 72:SpaceLiner 27:SpaceLiner 1039:26 August 1002:. DE: DLR 686:(video), 286:Wing span 1159:cite web 1057:. AIAA. 1035:(4), DLR 962:. AIAA. 931:IAC 2013 714:You tube 701:You tube 580:See also 118:oxygen ( 851:Bibcode 716:(video) 703:(video) 672:(video) 487:Booster 258:Booster 109:Concept 63:2 crew 47:Germany 44:Country 1069:  974:  815:  684:(blog) 551:389 s 548:363 s 540:437 s 537:449 s 52:Status 1208:(PDF) 1025:(PDF) 956:(PDF) 933:. IAF 884:(PDF) 839:(PDF) 797:(PDF) 767:(PDF) 743:(PDF) 690:: DLR 646:, DLR 526:33.0 523:59.0 504:16.0 265:Total 1165:link 1067:ISBN 1041:2015 972:ISBN 813:ISBN 496:6.0 470:and 128:Mach 1059:doi 964:doi 859:doi 805:doi 506:MPa 450:11 426:14 423:24 148:FP7 124:LH2 120:LOX 1233:: 1210:. 1161:}} 1157:{{ 1093:. 1065:. 1033:23 1031:, 1027:, 998:. 970:. 958:. 929:. 914:^ 895:^ 886:, 871:^ 857:. 847:66 845:. 841:. 826:^ 811:, 803:, 799:, 778:^ 769:, 754:^ 745:, 730:^ 712:, 699:, 688:DE 668:, 655:, 642:, 447:9 444:2 319:- 288:: 78:, 1220:. 1192:. 1167:) 1153:. 1128:. 1103:. 1075:. 1061:: 1009:. 980:. 966:: 940:. 865:. 861:: 853:: 807:: 718:. 705:. 692:. 674:. 661:. 648:. 23:.

Index

spaceliner (disambiguation)

suborbital
hypersonic
supersonic transport
German Aerospace Center
reusable launch vehicle
development
spaceplane
vertical takeoff, horizontal landing
LOX
LH2
Mach
Space Shuttle
FP7

delta wing


Wing span
full-flow staged combustion
liquid hydrogen
liquid oxygen
MPa
Specific impulse
Spaceflight portal
Airbus Defence and Space Spaceplane
Boeing Sonic Cruiser
HyperMach SonicStar
SpaceX Starship

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.