Knowledge (XXG)

Spatial dispersion

Source đź“ť

1916: 1872: 1807: 1162: 67:. Temporal dispersion represents memory effects in systems, commonly seen in optics and electronics. Spatial dispersion on the other hand represents spreading effects and is usually significant only at microscopic length scales. Spatial dispersion contributes relatively small perturbations to optics, giving weak effects such as 1793:
Nearby crystal surfaces and boundaries, it is no longer valid to describe system response in terms of wavevectors. For a full description it is necessary to return to a full nonlocal response function (without translational symmetry), however the end effect can sometimes be described by "additional
1741: 47:
of any signals (such as light or sound) being considered. Since these small spatial structures cannot be resolved by the waves, only indirect effects (e.g. wavevector dependence) remain detectable. An example of spatial dispersion is that of visible light propagating through a crystal such as
79:
The origin of spatial dispersion can be modelled as a nonlocal response, where response to a force field appears at many locations, and can appear even in locations where the force is zero. This usually arises due to a spreading of effects by the hidden microscopic degrees of freedom.
365: 1513: 1845:
in solutions of chiral molecules. In isotropic materials without optical activity, the permittivity tensor can be broken down to transverse and longitudinal components, referring to the response to electric fields either perpendicular or parallel to the wavevector.
56:. In such a case, although the light cannot resolve the individual atoms, they nevertheless can as an aggregate affect how the light propagates. Another common mechanism is that the (e.g.) light is coupled to an excitation of the material, such as a 2022:. The values of the permeability and permittivity are different in this alternative representation, however this leads to no observable differences in real quantities such as electric field, magnetic flux density, magnetic moments, and current. 968: 574: 1568: 1902:
In plasma physics, a wave can be collisionlessly damped by particles in the plasma whose velocity matches the wave's phase velocity. This is typically represented as a spatially dispersive loss in the plasma's permittivity.
1840:
Although symmetry demands that the permittivity is isotropic for zero wavevector, this restriction does not apply for nonzero wavevector. The non-isotropic permittivity for nonzero wavevector leads to effects such as
1348: 833: 744: 448: 909: 1285: 2001: 1788: 1209: 956: 196: 609: 1560: 184: 151: 116: 2071:, especially in solids, spatial dispersion can be significant for wavelengths comparable to the lattice spacing, which typically occurs at very high frequencies ( 1790:
can lead to strange phenomena, such as the existence of multiple modes at the same frequency and wavevector direction, but with different wavevector magnitudes.
1157:{\displaystyle {\tilde {\sigma }}(k,\omega )=\int _{-\infty }^{-\infty }dx''\int _{-\infty }^{-\infty }dt''\,e^{-ikx''+i\omega t''}\sigma _{\rm {sym}}(x'',t'').} 653: 633: 1736:{\displaystyle \omega ^{2}\mu _{0}\epsilon ({\vec {k}},\omega ){\vec {E}}-({\vec {k}}\cdot {\vec {k}}){\vec {E}}+({\vec {k}}\cdot {\vec {E}}){\vec {k}}=0.} 2098:
can be seen as a spatial dispersion in the restoring forces, from the "hidden" non-mechanical degree of freedom that is the electromagnetic field.
2095: 40:. Normally, such a dependence is assumed to be absent for simplicity, however spatial dispersion exists to varying degrees in all materials. 2161: 1508:{\displaystyle P_{i}({\vec {k}},\omega )=\sum _{j}(\epsilon _{ij}({\vec {k}},\omega )-\epsilon _{0}\delta _{ij})E_{j}({\vec {k}},\omega ),} 750: 661: 464: 2189:
Agranovich, Vladimir M.; Gartstein, Yu.N. (2006). "REVIEWS OF TOPICAL PROBLEMS: Spatial dispersion and negative refraction of light".
43:
The underlying physical reason for the wavevector dependence is often that the material has some spatial structure smaller than the
2048: 844: 1957: 2232:
Portigal, D. L.; Burstein, E. (1968). "Acoustical Activity and Other First-Order Spatial Dispersion Effects in Crystals".
186:, but this breaks down if the system has memory (temporal dispersion) or spreading (spatial dispersion). The most general 2056: 52:, where the refractive index depends on the direction of travel (the orientation of the wavevector) with respect to the 2179:
Agranovich & Ginzburg . Crystal Optics with Spatial Dispersion, and Excitons . 978-3-662-02408-9, 978-3-662-02406-5
2281: 2109:. For example, there is acoustical activity — the rotation of the polarization plane of transverse sound waves — in 1218: 1749: 1533:
inside such crystals. These occur when the following relationship is satisfied for a nonzero electric field vector
1170: 917: 458: 373: 360:{\displaystyle J(x,t)=\int _{-\infty }^{-\infty }dx'\int _{-\infty }^{-\infty }dt'\,\sigma (x,x',t,t')E(x',t'),} 33: 1334:
Inside crystals there may be a combination of spatial dispersion, temporal dispersion, and anisotropy. The
1526: 579: 2153: 1335: 2241: 2198: 2102: 2008: 1951: 1339: 2030: 64: 2214: 1312: 2018:
can instead be alternatively represented by a spatially dispersive contribution to permittivity
1536: 160: 1837:
In materials that have no relevant crystalline structure, spatial dispersion can be important.
838:
which yields a remarkably simple relationship between the two plane waves' complex amplitudes:
2257: 2157: 2087: 2083: 959: 53: 2249: 2206: 1842: 1308: 1304: 121: 86: 68: 21: 2141: 2110: 2079: 1315:. Spatial dispersion also plays an important role in the understanding of electromagnetic 187: 2245: 2202: 63:
Spatial dispersion can be compared to temporal dispersion, the latter often just called
2145: 2091: 1862: 1288: 638: 618: 1915: 1871: 1806: 2275: 2218: 2106: 2004: 1947: 2210: 461:) and invariant in space (space translation symmetry), then we can simplify because 2044: 1320: 1316: 29: 154: 1530: 2014:
What this means is that at nonzero frequency, any contribution to permeability
2137: 612: 44: 37: 2261: 2011:
induced by the electric field, though with a highly dispersive relationship.
2253: 2072: 2068: 1954:. Moreover, since the electric and magnetic fields are directly related by 71:. Spatial dispersion and temporal dispersion may occur in the same system. 2055:
are used, and debate over the reality of "negative permeability" seen in
1850: 57: 49: 28:
is usually described as a phenomenon where material parameters such as
17: 153:, which is varying in space (x) and time (t). Simplified laws such as 1519: 1307:, spatial dispersion plays a role in a few material effects such as 828:{\displaystyle E(x,t)=\operatorname {Re} (E_{0}e^{ikx-i\omega t})} 739:{\displaystyle J(x,t)=\operatorname {Re} (J_{0}e^{ikx-i\omega t})} 569:{\displaystyle \sigma (x,x',t,t')=\sigma _{\rm {sym}}(x-x',t-t')} 1518:
i.e., the permittivity is a wavevector- and frequency-dependent
2043:. There is some discussion over whether this is appropriate in 1910: 1866: 1801: 157:
would say that these are directly proportional to each other,
2025:
As a result, it is most common at optical frequencies to set
2007:
induced by a magnetic field can be represented instead as a
1211:
has spatial dispersion if it is dependent on the wavevector
904:{\displaystyle J_{0}={\tilde {\sigma }}(k,\omega )E_{0}.} 1946:
At nonzero frequencies, it is possible to represent all
1907:
Permittivity–permeability ambiguity at nonzero frequency
2090:
which relates stress and strain. For polar vibrations (
1927: 1883: 1818: 1996:{\displaystyle \nabla \times E=-\partial B/\partial t} 2096:
distinction between longitudinal and transverse modes
1960: 1752: 1571: 1539: 1351: 1221: 1173: 971: 920: 847: 753: 664: 641: 621: 582: 467: 376: 199: 163: 124: 89: 2105:
effects from spatial dispersion find an analogue in
1849:
For frequencies nearby an absorption line (e.g., an
1995: 1853:), spatial dispersion can play an important role. 1782: 1735: 1554: 1507: 1279: 1203: 1156: 950: 903: 827: 738: 647: 627: 603: 568: 442: 359: 178: 145: 110: 118:that is driven in response to an electric field 2086:of sound is due to a spatial dispersion in the 1280:{\displaystyle \sigma _{\rm {sym}}(x-x',t-t')} 2078:In solids, the difference in propagation for 1783:{\displaystyle \epsilon ({\vec {k}},\omega )} 1204:{\displaystyle {\tilde {\sigma }}(k,\omega )} 951:{\displaystyle {\tilde {\sigma }}(k,\omega )} 8: 2175: 2173: 2039:and only consider a dispersive permittivity 1319:. Most commonly, the spatial dispersion in 443:{\displaystyle \sigma (x,x',t,t')dx'\,dt'} 1982: 1959: 1760: 1759: 1751: 1716: 1715: 1701: 1700: 1686: 1685: 1668: 1667: 1653: 1652: 1638: 1637: 1620: 1619: 1599: 1598: 1586: 1576: 1570: 1541: 1540: 1538: 1482: 1481: 1472: 1456: 1446: 1419: 1418: 1406: 1393: 1366: 1365: 1356: 1350: 1227: 1226: 1220: 1175: 1174: 1172: 1113: 1112: 1071: 1066: 1046: 1038: 1014: 1006: 973: 972: 970: 922: 921: 919: 892: 862: 861: 852: 846: 798: 788: 752: 709: 699: 663: 640: 620: 588: 587: 581: 516: 515: 466: 428: 375: 285: 265: 257: 233: 225: 198: 162: 123: 88: 2132: 2130: 2128: 2126: 2122: 1299:Spatial dispersion in electromagnetism 1215:. This occurs if the spatial function 962:of the space-time response function: 7: 457:If the system is invariant in time ( 83:As an example, consider the current 2150:Electrodynamics of Continuous Media 604:{\displaystyle \sigma _{\rm {sym}}} 1987: 1976: 1961: 1234: 1231: 1228: 1120: 1117: 1114: 1050: 1042: 1018: 1010: 595: 592: 589: 523: 520: 517: 269: 261: 237: 229: 14: 2113:, analogous to optical activity. 1914: 1870: 1805: 2211:10.1070/PU2006v049n10ABEH006067 2063:Spatial dispersion in acoustics 2049:effective medium approximations 2152:. Vol. 8 (2nd ed.). 1794:boundary conditions" (ABC's). 1777: 1765: 1756: 1721: 1712: 1706: 1691: 1682: 1673: 1664: 1658: 1643: 1634: 1625: 1616: 1604: 1595: 1546: 1529:, one can find the plane wave 1499: 1487: 1478: 1465: 1436: 1424: 1415: 1399: 1383: 1371: 1362: 1274: 1240: 1198: 1186: 1180: 1148: 1126: 996: 984: 978: 945: 933: 927: 885: 873: 867: 822: 781: 769: 757: 733: 692: 680: 668: 563: 529: 505: 471: 414: 380: 351: 329: 323: 289: 215: 203: 140: 128: 105: 93: 1: 2057:negative index metamaterials 576:for some convolution kernel 2084:longitudinal acoustic modes 2298: 1860: 1555:{\displaystyle {\vec {E}}} 1342:vector can be written as: 1167:The conductivity function 179:{\displaystyle J=\sigma E} 2080:transverse acoustic modes 459:time translation symmetry 75:Origin: nonlocal response 2254:10.1103/PhysRev.170.673 611:. We can also consider 454:conductivity function. 1997: 1784: 1746:Spatial dispersion in 1737: 1556: 1509: 1281: 1205: 1158: 952: 905: 829: 740: 649: 629: 605: 570: 444: 361: 180: 147: 146:{\displaystyle E(x,t)} 112: 111:{\displaystyle J(x,t)} 2154:Butterworth-Heinemann 1998: 1785: 1738: 1557: 1510: 1336:constitutive relation 1282: 1206: 1159: 953: 906: 830: 741: 650: 630: 606: 571: 445: 362: 181: 148: 113: 2103:electromagnetic wave 1958: 1750: 1569: 1537: 1349: 1219: 1171: 969: 918: 845: 751: 662: 639: 619: 580: 465: 374: 197: 161: 122: 87: 2246:1968PhRv..170..673P 2203:2006PhyU...49.1029A 2031:vacuum permeability 1527:Maxwell's equations 1054: 1022: 914:where the function 273: 241: 36:have dependence on 2282:Physical phenomena 1993: 1926:. You can help by 1882:. You can help by 1817:. You can help by 1798:In isotropic media 1780: 1733: 1552: 1505: 1398: 1313:doppler broadening 1287:is not pointlike ( 1277: 1201: 1154: 1034: 1002: 948: 901: 825: 736: 645: 625: 601: 566: 440: 357: 253: 221: 176: 143: 108: 26:spatial dispersion 2163:978-0-7506-2634-7 2088:elasticity tensor 1944: 1943: 1900: 1899: 1835: 1834: 1768: 1724: 1709: 1694: 1676: 1661: 1646: 1628: 1607: 1549: 1490: 1427: 1389: 1374: 1183: 981: 960:Fourier transform 930: 870: 648:{\displaystyle J} 628:{\displaystyle E} 54:crystal structure 2289: 2266: 2265: 2229: 2223: 2222: 2186: 2180: 2177: 2168: 2167: 2134: 2111:chiral materials 2002: 2000: 1999: 1994: 1986: 1950:as time-varying 1939: 1936: 1918: 1911: 1895: 1892: 1874: 1867: 1843:optical activity 1830: 1827: 1809: 1802: 1789: 1787: 1786: 1781: 1770: 1769: 1761: 1742: 1740: 1739: 1734: 1726: 1725: 1717: 1711: 1710: 1702: 1696: 1695: 1687: 1678: 1677: 1669: 1663: 1662: 1654: 1648: 1647: 1639: 1630: 1629: 1621: 1609: 1608: 1600: 1591: 1590: 1581: 1580: 1561: 1559: 1558: 1553: 1551: 1550: 1542: 1514: 1512: 1511: 1506: 1492: 1491: 1483: 1477: 1476: 1464: 1463: 1451: 1450: 1429: 1428: 1420: 1414: 1413: 1397: 1376: 1375: 1367: 1361: 1360: 1326:is of interest. 1309:optical activity 1305:electromagnetism 1286: 1284: 1283: 1278: 1273: 1256: 1239: 1238: 1237: 1210: 1208: 1207: 1202: 1185: 1184: 1176: 1163: 1161: 1160: 1155: 1147: 1136: 1125: 1124: 1123: 1107: 1106: 1105: 1088: 1065: 1053: 1045: 1033: 1021: 1013: 983: 982: 974: 957: 955: 954: 949: 932: 931: 923: 910: 908: 907: 902: 897: 896: 872: 871: 863: 857: 856: 834: 832: 831: 826: 821: 820: 793: 792: 745: 743: 742: 737: 732: 731: 704: 703: 654: 652: 651: 646: 634: 632: 631: 626: 610: 608: 607: 602: 600: 599: 598: 575: 573: 572: 567: 562: 545: 528: 527: 526: 504: 487: 449: 447: 446: 441: 439: 427: 413: 396: 366: 364: 363: 358: 350: 339: 322: 305: 284: 272: 264: 252: 240: 232: 185: 183: 182: 177: 152: 150: 149: 144: 117: 115: 114: 109: 69:optical activity 22:continuous media 2297: 2296: 2292: 2291: 2290: 2288: 2287: 2286: 2272: 2271: 2270: 2269: 2234:Physical Review 2231: 2230: 2226: 2191:Physics-Uspekhi 2188: 2187: 2183: 2178: 2171: 2164: 2146:L.P. Pitaevskii 2136: 2135: 2124: 2119: 2092:optical phonons 2065: 2038: 1956: 1955: 1940: 1934: 1931: 1924:needs expansion 1909: 1896: 1890: 1887: 1880:needs expansion 1865: 1859: 1831: 1825: 1822: 1815:needs expansion 1800: 1748: 1747: 1582: 1572: 1567: 1566: 1535: 1534: 1468: 1452: 1442: 1402: 1352: 1347: 1346: 1332: 1301: 1266: 1249: 1222: 1217: 1216: 1169: 1168: 1140: 1129: 1108: 1098: 1081: 1067: 1058: 1026: 967: 966: 916: 915: 888: 848: 843: 842: 794: 784: 749: 748: 705: 695: 660: 659: 637: 636: 617: 616: 583: 578: 577: 555: 538: 511: 497: 480: 463: 462: 432: 420: 406: 389: 372: 371: 343: 332: 315: 298: 277: 245: 195: 194: 188:linear response 159: 158: 120: 119: 85: 84: 77: 12: 11: 5: 2295: 2293: 2285: 2284: 2274: 2273: 2268: 2267: 2240:(3): 673–678. 2224: 2181: 2169: 2162: 2121: 2120: 2118: 2115: 2107:acoustic waves 2064: 2061: 2036: 1992: 1989: 1985: 1981: 1978: 1975: 1972: 1969: 1966: 1963: 1948:magnetizations 1942: 1941: 1921: 1919: 1908: 1905: 1898: 1897: 1877: 1875: 1863:Landau damping 1861:Main article: 1858: 1857:Landau damping 1855: 1833: 1832: 1812: 1810: 1799: 1796: 1779: 1776: 1773: 1767: 1764: 1758: 1755: 1744: 1743: 1732: 1729: 1723: 1720: 1714: 1708: 1705: 1699: 1693: 1690: 1684: 1681: 1675: 1672: 1666: 1660: 1657: 1651: 1645: 1642: 1636: 1633: 1627: 1624: 1618: 1615: 1612: 1606: 1603: 1597: 1594: 1589: 1585: 1579: 1575: 1548: 1545: 1516: 1515: 1504: 1501: 1498: 1495: 1489: 1486: 1480: 1475: 1471: 1467: 1462: 1459: 1455: 1449: 1445: 1441: 1438: 1435: 1432: 1426: 1423: 1417: 1412: 1409: 1405: 1401: 1396: 1392: 1388: 1385: 1382: 1379: 1373: 1370: 1364: 1359: 1355: 1331: 1330:Crystal optics 1328: 1300: 1297: 1291:) response in 1289:delta function 1276: 1272: 1269: 1265: 1262: 1259: 1255: 1252: 1248: 1245: 1242: 1236: 1233: 1230: 1225: 1200: 1197: 1194: 1191: 1188: 1182: 1179: 1165: 1164: 1153: 1150: 1146: 1143: 1139: 1135: 1132: 1128: 1122: 1119: 1116: 1111: 1104: 1101: 1097: 1094: 1091: 1087: 1084: 1080: 1077: 1074: 1070: 1064: 1061: 1057: 1052: 1049: 1044: 1041: 1037: 1032: 1029: 1025: 1020: 1017: 1012: 1009: 1005: 1001: 998: 995: 992: 989: 986: 980: 977: 958:is given by a 947: 944: 941: 938: 935: 929: 926: 912: 911: 900: 895: 891: 887: 884: 881: 878: 875: 869: 866: 860: 855: 851: 836: 835: 824: 819: 816: 813: 810: 807: 804: 801: 797: 791: 787: 783: 780: 777: 774: 771: 768: 765: 762: 759: 756: 746: 735: 730: 727: 724: 721: 718: 715: 712: 708: 702: 698: 694: 691: 688: 685: 682: 679: 676: 673: 670: 667: 644: 624: 615:solutions for 597: 594: 591: 586: 565: 561: 558: 554: 551: 548: 544: 541: 537: 534: 531: 525: 522: 519: 514: 510: 507: 503: 500: 496: 493: 490: 486: 483: 479: 476: 473: 470: 438: 435: 431: 426: 423: 419: 416: 412: 409: 405: 402: 399: 395: 392: 388: 385: 382: 379: 368: 367: 356: 353: 349: 346: 342: 338: 335: 331: 328: 325: 321: 318: 314: 311: 308: 304: 301: 297: 294: 291: 288: 283: 280: 276: 271: 268: 263: 260: 256: 251: 248: 244: 239: 236: 231: 228: 224: 220: 217: 214: 211: 208: 205: 202: 175: 172: 169: 166: 142: 139: 136: 133: 130: 127: 107: 104: 101: 98: 95: 92: 76: 73: 13: 10: 9: 6: 4: 3: 2: 2294: 2283: 2280: 2279: 2277: 2263: 2259: 2255: 2251: 2247: 2243: 2239: 2235: 2228: 2225: 2220: 2216: 2212: 2208: 2204: 2200: 2196: 2192: 2185: 2182: 2176: 2174: 2170: 2165: 2159: 2155: 2151: 2147: 2143: 2142:E.M. Lifshitz 2139: 2133: 2131: 2129: 2127: 2123: 2116: 2114: 2112: 2108: 2104: 2099: 2097: 2093: 2089: 2085: 2081: 2076: 2074: 2070: 2062: 2060: 2058: 2054: 2050: 2046: 2045:metamaterials 2042: 2035: 2032: 2028: 2023: 2021: 2017: 2012: 2010: 2006: 2005:magnetization 1990: 1983: 1979: 1973: 1970: 1967: 1964: 1953: 1952:polarizations 1949: 1938: 1935:December 2015 1929: 1925: 1922:This section 1920: 1917: 1913: 1912: 1906: 1904: 1894: 1891:December 2015 1885: 1881: 1878:This section 1876: 1873: 1869: 1868: 1864: 1856: 1854: 1852: 1847: 1844: 1838: 1829: 1826:December 2015 1820: 1816: 1813:This section 1811: 1808: 1804: 1803: 1797: 1795: 1791: 1774: 1771: 1762: 1753: 1730: 1727: 1718: 1703: 1697: 1688: 1679: 1670: 1655: 1649: 1640: 1631: 1622: 1613: 1610: 1601: 1592: 1587: 1583: 1577: 1573: 1565: 1564: 1563: 1543: 1532: 1528: 1523: 1521: 1502: 1496: 1493: 1484: 1473: 1469: 1460: 1457: 1453: 1447: 1443: 1439: 1433: 1430: 1421: 1410: 1407: 1403: 1394: 1390: 1386: 1380: 1377: 1368: 1357: 1353: 1345: 1344: 1343: 1341: 1337: 1329: 1327: 1325: 1322: 1318: 1317:metamaterials 1314: 1310: 1306: 1298: 1296: 1294: 1290: 1270: 1267: 1263: 1260: 1257: 1253: 1250: 1246: 1243: 1223: 1214: 1195: 1192: 1189: 1177: 1151: 1144: 1141: 1137: 1133: 1130: 1109: 1102: 1099: 1095: 1092: 1089: 1085: 1082: 1078: 1075: 1072: 1068: 1062: 1059: 1055: 1047: 1039: 1035: 1030: 1027: 1023: 1015: 1007: 1003: 999: 993: 990: 987: 975: 965: 964: 963: 961: 942: 939: 936: 924: 898: 893: 889: 882: 879: 876: 864: 858: 853: 849: 841: 840: 839: 817: 814: 811: 808: 805: 802: 799: 795: 789: 785: 778: 775: 772: 766: 763: 760: 754: 747: 728: 725: 722: 719: 716: 713: 710: 706: 700: 696: 689: 686: 683: 677: 674: 671: 665: 658: 657: 656: 642: 622: 614: 584: 559: 556: 552: 549: 546: 542: 539: 535: 532: 512: 508: 501: 498: 494: 491: 488: 484: 481: 477: 474: 468: 460: 455: 453: 436: 433: 429: 424: 421: 417: 410: 407: 403: 400: 397: 393: 390: 386: 383: 377: 354: 347: 344: 340: 336: 333: 326: 319: 316: 312: 309: 306: 302: 299: 295: 292: 286: 281: 278: 274: 266: 258: 254: 249: 246: 242: 234: 226: 222: 218: 212: 209: 206: 200: 193: 192: 191: 190:is given by: 189: 173: 170: 167: 164: 156: 137: 134: 131: 125: 102: 99: 96: 90: 81: 74: 72: 70: 66: 61: 59: 55: 51: 46: 41: 39: 35: 31: 27: 23: 19: 2237: 2233: 2227: 2197:(10): 1029. 2194: 2190: 2184: 2149: 2100: 2077: 2075:and above). 2066: 2052: 2040: 2033: 2026: 2024: 2019: 2015: 2013: 2009:polarization 1945: 1932: 1928:adding to it 1923: 1901: 1888: 1884:adding to it 1879: 1848: 1839: 1836: 1823: 1819:adding to it 1814: 1792: 1745: 1531:normal modes 1525:Considering 1524: 1517: 1340:polarization 1333: 1323: 1321:permittivity 1302: 1292: 1212: 1166: 913: 837: 456: 451: 369: 82: 78: 62: 42: 34:conductivity 30:permittivity 25: 15: 2138:L.D. Landau 2117:References 613:plane wave 65:dispersion 45:wavelength 38:wavevector 2262:0031-899X 2219:119408077 2073:gigahertz 2069:acoustics 1988:∂ 1977:∂ 1974:− 1965:× 1962:∇ 1775:ω 1766:→ 1754:ϵ 1722:→ 1707:→ 1698:⋅ 1692:→ 1674:→ 1659:→ 1650:⋅ 1644:→ 1632:− 1626:→ 1614:ω 1605:→ 1593:ϵ 1584:μ 1574:ω 1547:→ 1497:ω 1488:→ 1454:δ 1444:ϵ 1440:− 1434:ω 1425:→ 1404:ϵ 1391:∑ 1381:ω 1372:→ 1264:− 1247:− 1224:σ 1196:ω 1181:~ 1178:σ 1110:σ 1096:ω 1073:− 1051:∞ 1048:− 1043:∞ 1040:− 1036:∫ 1019:∞ 1016:− 1011:∞ 1008:− 1004:∫ 994:ω 979:~ 976:σ 943:ω 928:~ 925:σ 883:ω 868:~ 865:σ 815:ω 809:− 779:⁡ 726:ω 720:− 690:⁡ 655:like so: 585:σ 553:− 536:− 513:σ 469:σ 378:σ 287:σ 270:∞ 267:− 262:∞ 259:− 255:∫ 238:∞ 235:− 230:∞ 227:− 223:∫ 171:σ 155:Ohm's law 2276:Category 2148:(1984). 1338:for the 1271:′ 1254:′ 1145:″ 1134:″ 1103:″ 1086:″ 1063:″ 1031:″ 560:′ 543:′ 502:′ 485:′ 452:nonlocal 437:′ 425:′ 411:′ 394:′ 348:′ 337:′ 320:′ 303:′ 282:′ 250:′ 2242:Bibcode 2199:Bibcode 2094:), the 2029:to the 1851:exciton 450:is the 58:plasmon 50:calcite 18:physics 16:In the 2260:  2217:  2160:  2047:where 2003:, the 1520:tensor 370:where 2215:S2CID 2101:Many 1293:x-x' 2258:ISSN 2158:ISBN 2082:and 2051:for 1311:and 635:and 2250:doi 2238:170 2207:doi 2067:In 1930:. 1886:. 1821:. 1303:In 32:or 20:of 2278:: 2256:. 2248:. 2236:. 2213:. 2205:. 2195:49 2193:. 2172:^ 2156:. 2144:; 2140:; 2125:^ 2059:. 1731:0. 1562:: 1522:. 1295:. 776:Re 687:Re 60:. 24:, 2264:. 2252:: 2244:: 2221:. 2209:: 2201:: 2166:. 2053:ÎĽ 2041:ε 2037:0 2034:ÎĽ 2027:ÎĽ 2020:ε 2016:ÎĽ 1991:t 1984:/ 1980:B 1971:= 1968:E 1937:) 1933:( 1893:) 1889:( 1828:) 1824:( 1778:) 1772:, 1763:k 1757:( 1728:= 1719:k 1713:) 1704:E 1689:k 1683:( 1680:+ 1671:E 1665:) 1656:k 1641:k 1635:( 1623:E 1617:) 1611:, 1602:k 1596:( 1588:0 1578:2 1544:E 1503:, 1500:) 1494:, 1485:k 1479:( 1474:j 1470:E 1466:) 1461:j 1458:i 1448:0 1437:) 1431:, 1422:k 1416:( 1411:j 1408:i 1400:( 1395:j 1387:= 1384:) 1378:, 1369:k 1363:( 1358:i 1354:P 1324:ε 1275:) 1268:t 1261:t 1258:, 1251:x 1244:x 1241:( 1235:m 1232:y 1229:s 1213:k 1199:) 1193:, 1190:k 1187:( 1152:. 1149:) 1142:t 1138:, 1131:x 1127:( 1121:m 1118:y 1115:s 1100:t 1093:i 1090:+ 1083:x 1079:k 1076:i 1069:e 1060:t 1056:d 1028:x 1024:d 1000:= 997:) 991:, 988:k 985:( 946:) 940:, 937:k 934:( 899:. 894:0 890:E 886:) 880:, 877:k 874:( 859:= 854:0 850:J 823:) 818:t 812:i 806:x 803:k 800:i 796:e 790:0 786:E 782:( 773:= 770:) 767:t 764:, 761:x 758:( 755:E 734:) 729:t 723:i 717:x 714:k 711:i 707:e 701:0 697:J 693:( 684:= 681:) 678:t 675:, 672:x 669:( 666:J 643:J 623:E 596:m 593:y 590:s 564:) 557:t 550:t 547:, 540:x 533:x 530:( 524:m 521:y 518:s 509:= 506:) 499:t 495:, 492:t 489:, 482:x 478:, 475:x 472:( 434:t 430:d 422:x 418:d 415:) 408:t 404:, 401:t 398:, 391:x 387:, 384:x 381:( 355:, 352:) 345:t 341:, 334:x 330:( 327:E 324:) 317:t 313:, 310:t 307:, 300:x 296:, 293:x 290:( 279:t 275:d 247:x 243:d 219:= 216:) 213:t 210:, 207:x 204:( 201:J 174:E 168:= 165:J 141:) 138:t 135:, 132:x 129:( 126:E 106:) 103:t 100:, 97:x 94:( 91:J

Index

physics
continuous media
permittivity
conductivity
wavevector
wavelength
calcite
crystal structure
plasmon
dispersion
optical activity
Ohm's law
linear response
time translation symmetry
plane wave
Fourier transform
delta function
electromagnetism
optical activity
doppler broadening
metamaterials
permittivity
constitutive relation
polarization
tensor
Maxwell's equations
normal modes

adding to it
optical activity

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑