Knowledge (XXG)

Affine group

Source 📝

2979: 2111: 2974:{\displaystyle {\begin{array}{c|cccccc}&{\color {Blue}C_{id}}&{\color {Blue}C_{1}}&{\color {Blue}C_{g}}&{\color {Blue}C_{g^{2}}}&{\color {Gray}\dots }&{\color {Blue}C_{g^{p-2}}}\\\hline {\color {Blue}\chi _{1}}&{\color {Gray}1}&{\color {Gray}1}&{\color {Blue}e^{\frac {2\pi i}{p-1}}}&{\color {Blue}e^{\frac {4\pi i}{p-1}}}&{\color {Gray}\dots }&{\color {Blue}e^{\frac {2\pi (p-2)i}{p-1}}}\\{\color {Blue}\chi _{2}}&{\color {Gray}1}&{\color {Gray}1}&{\color {Blue}e^{\frac {4\pi i}{p-1}}}&{\color {Blue}e^{\frac {8\pi i}{p-1}}}&{\color {Gray}\dots }&{\color {Blue}e^{\frac {4\pi (p-2)i}{p-1}}}\\{\color {Blue}\chi _{3}}&{\color {Gray}1}&{\color {Gray}1}&{\color {Blue}e^{\frac {6\pi i}{p-1}}}&{\color {Blue}e^{\frac {12\pi i}{p-1}}}&{\color {Gray}\dots }&{\color {Blue}e^{\frac {6\pi (p-2)i}{p-1}}}\\{\color {Gray}\dots }&{\color {Gray}\dots }&{\color {Gray}\dots }&{\color {Gray}\dots }&{\color {Gray}\dots }&{\color {Gray}\dots }&{\color {Gray}\dots }\\{\color {Blue}\chi _{p-1}}&{\color {Gray}1}&{\color {Gray}1}&{\color {Gray}1}&{\color {Gray}1}&{\color {Gray}\dots }&{\color {Gray}1}\\{\color {Blue}\chi _{p}}&{\color {Gray}p-1}&{\color {Gray}-1}&{\color {Gray}0}&{\color {Gray}0}&{\color {Gray}\dots }&{\color {Gray}0}\end{array}}} 3584: 3059: 1718: 3579:{\displaystyle {\begin{aligned}{\text{1.}}&&(x,y)&\mapsto (x+a,y+b),\\{\text{2.}}&&(x,y)&\mapsto (ax,by),&\qquad {\text{where }}ab\neq 0,\\{\text{3.}}&&(x,y)&\mapsto (ax,y+b),&\qquad {\text{where }}a\neq 0,\\{\text{4.}}&&(x,y)&\mapsto (ax+y,ay),&\qquad {\text{where }}a\neq 0,\\{\text{5.}}&&(x,y)&\mapsto (x+y,y+a)\\{\text{6.}}&&(x,y)&\mapsto (a(x\cos t+y\sin t),a(-x\sin t+y\cos t)),&\qquad {\text{where }}a\neq 0.\end{aligned}}} 1376: 1713:{\displaystyle {\begin{aligned}C_{id}&=\left\{{\begin{pmatrix}1&0\\0&1\end{pmatrix}}\right\}\,,\\C_{1}&=\left\{{\begin{pmatrix}1&b\\0&1\end{pmatrix}}{\Bigg |}b\in \mathbf {F} _{p}^{*}\right\}\,,\\{\Bigg \{}C_{a}&=\left\{{\begin{pmatrix}a&b\\0&1\end{pmatrix}}{\Bigg |}b\in \mathbf {F} _{p}\right\}{\Bigg |}a\in \mathbf {F} _{p}\setminus \{0,1\}{\Bigg \}}\,.\end{aligned}}} 1348: 974: 1151: 1100: 1950: 444: 1821: 3064: 675: 282: 3983:
The subgroup of the special affine group consisting of those transformations whose linear part has determinant 1 is the group of orientation- and volume-preserving maps. Algebraically, this group is a semidirect product
870: 1343:{\displaystyle {\begin{pmatrix}c&d\\0&1\end{pmatrix}}{\begin{pmatrix}a&b\\0&1\end{pmatrix}}{\begin{pmatrix}c&d\\0&1\end{pmatrix}}^{-1}={\begin{pmatrix}a&(1-a)d+bc\\0&1\end{pmatrix}}\,,} 182: 4446: 1381: 3855: 4252: 3027: 362:(which is uniquely defined), however, no particular subgroup is a natural choice, since no point is special – this corresponds to the multiple choices of transverse subgroup, or splitting of the 3771: 602: 2073: 985: 2116: 1843: 3053:
are real numbers (the given conditions insure that transformations are invertible, but not for making the classes distinct; for example, the identity belongs to all the classes).
65:
Over any field, the affine group may be viewed as a matrix group in a natural way. If the associated field of scalars is the real or complex field, then the affine group is a
4212: 4188: 4154: 4088: 4290: 4020: 4335: 3970: 3935: 371: 4359: 4040: 2092:
is the dimension of the last irreducible representation. Finally using the orthogonality of irreducible representations, we can complete the character table of
1757: 627: 969:{\displaystyle A=\left({\begin{array}{cc}1&0\\0&0\end{array}}\right),\qquad B=\left({\begin{array}{cc}0&1\\0&0\end{array}}\right)\,,} 212: 3660:
The proof may be done by first remarking that if an affine transformation has no fixed point, then the matrix of the associated linear map has an
3803: 131: 4392: 4670: 4634: 4609: 4584: 763:, namely the stabilizer of this affine plane; the above matrix formulation is the (transpose of) the realization of this, with the 4223: 3643:
belong to cases 1, 3, and 5. The transformations that do not preserve the orientation of the plane belong to cases 2 (with
4545: 2992: 4361:
with the translations. Geometrically, it is the subgroup of the affine group generated by the orthogonal reflections.
3732: 636: 62:), the affine group consists of those functions from the space to itself such that the image of every line is a line. 4662: 3940: 1095:{\displaystyle e^{aA+bB}=\left({\begin{array}{cc}e^{a}&{\tfrac {b}{a}}(e^{a}-1)\\0&1\end{array}}\right)\,.} 523: 316: 3640: 2009: 1945:{\displaystyle \rho _{k}{\begin{pmatrix}a&b\\0&1\end{pmatrix}}=\exp \left({\frac {2ikj\pi }{p-1}}\right)} 4690: 3030: 4516:(the addition and origin), but not necessarily scalar multiplication, and these groups differ if working over 4477: 4126: 3590: 4695: 3633: 51: 4464: 4452: 4193: 4169: 4135: 4069: 3877: 3727: 3693: 363: 118: 4271: 3987: 4700: 4305: 4059: 453:
with a vector space, the subgroup that stabilizes the origin (of the vector space) is the original
47: 3895: 3665: 3597: 482: 323:
is isomorphic to the general linear group of the same dimension (so the stabilizer of a point in
200: 102: 4666: 4630: 4605: 4580: 4376: 4370: 843: 807: 791: 4554: 4338: 439:{\displaystyle 1\to V\to V\rtimes \operatorname {GL} (V)\to \operatorname {GL} (V)\to 1\,.} 4472: 4468: 3797: 3609: 3601: 55: 4344: 4025: 3880:. In terms of the semi-direct product, the special affine group consists of all pairs 3041:, an affine coordinate system exists on which it has one of the following forms, where 4508:. Note that this containment is in general proper, since by "automorphisms" one means 4302:
is a subgroup of the affine group. Algebraically, this group is a semidirect product
4684: 4655: 4572: 4380: 4043: 3626: 3619: 3605: 1816:{\displaystyle \rho _{k}:\operatorname {Aff} (\mathbf {F} _{p})\to \mathbb {C} ^{*}} 17: 4650: 4558: 4055: 3615:
Case 3 corresponds to a scaling in one direction and a translation in another one.
3034: 670:{\displaystyle \left({\begin{array}{c|c}M&v\\\hline 0&1\end{array}}\right)} 619: 87: 43: 1019: 931: 885: 354:
All these subgroups are conjugate, where conjugation is given by translation from
199:
is the natural one (linear transformations are automorphisms), so this defines a
3865: 3038: 59: 31: 842:
matrices representing the affine group in one dimension. It is a two-parameter
277:{\displaystyle \operatorname {Aff} (n,K)=K^{n}\rtimes \operatorname {GL} (n,K)} 4119: 3661: 4062:, the affine group can be easily specified. For example, Günter Ewald wrote: 3800:
by a vector representation", and, as above, one has the short exact sequence
828:
Each of these two classes of matrices is closed under matrix multiplication.
846: 351:: recall that if one fixes a point, an affine space becomes a vector space. 66: 3864:
The subset of all invertible affine transformations that preserve a fixed
4294: 4163: 3976:
is a linear transformation of whose determinant has absolute value 1 and
177:{\displaystyle \operatorname {Aff} (V)=V\rtimes \operatorname {GL} (V)} 825:
identity matrix with the bottom row replaced by a row of all ones.
4579:. Vol. 1. Berlin Heidelberg: Springer-Verlag. Section 2.7.6. 4441:{\displaystyle \mathbf {R} ^{1,3}\rtimes \operatorname {O} (1,3)} 4268:
is a Euclidean space (over the field of real numbers), the group
3600:
that may differ in two different directions. When working with a
339:); formally, it is the general linear group of the vector space 1751:
one-dimensional representations, decided by the homomorphism
4277: 4512:
automorphisms, i.e., they preserve the group structure on
4543:
Poole, David G. (November 1995). "The Stochastic Group".
806:
matrix in which the entries in each column sum to 1. The
469:
Representing the affine group as a semidirect product of
3872:. (The transformations themselves are sometimes called 849:, so with merely two generators (Lie algebra elements), 3850:{\displaystyle 1\to V\to V\rtimes _{\rho }G\to G\to 1.} 3033:. More precisely, given an affine transformation of an 777:) blocks corresponding to the direct sum decomposition 4467:– certain discrete subgroups of the affine group on a 4247:{\displaystyle {\mathfrak {A}}\subset {\mathfrak {P}}} 1862: 1591: 1483: 1413: 1281: 1233: 1196: 1160: 1035: 27:
Group of all affine transformations of an affine space
4395: 4347: 4308: 4274: 4226: 4196: 4172: 4138: 4072: 4028: 3990: 3943: 3898: 3806: 3735: 3696:, one can produce an affine group, sometimes denoted 3062: 2995: 2114: 2012: 1846: 1760: 1379: 1154: 988: 873: 630: 526: 449:
In the case that the affine group was constructed by
374: 215: 134: 3022:{\displaystyle \operatorname {Aff} (2,\mathbb {R} )} 813:
for passing from the above kind to this kind is the
3796:: one can say that the affine group obtained is "a 4654: 4440: 4353: 4329: 4284: 4246: 4206: 4182: 4148: 4082: 4034: 4014: 3964: 3929: 3849: 3765: 3578: 3021: 2973: 2067: 1944: 1815: 1712: 1342: 1094: 968: 669: 596: 438: 276: 176: 3766:{\displaystyle \rho :G\to \operatorname {GL} (V)} 1740:irreducible representations. By above paragraph ( 1697: 1654: 1624: 1559: 1516: 3904: 97:acting by translations, and the affine group of 4042:with the translations. It is generated by the 3722:More generally and abstractly, given any group 58:(where the associated field of scalars is the 54:from the space into itself. In the case of a 3876:.) This group is the affine analogue of the 597:{\displaystyle (v,M)\cdot (w,N)=(v+Mw,MN)\,.} 8: 3666:Jordan normal form theorem for real matrices 3636:when the coordinate axes are perpendicular. 1692: 1680: 2068:{\displaystyle p(p-1)=p-1+\chi _{p}^{2}\,,} 831:The simplest paradigm may well be the case 1741: 311:Given the affine group of an affine space 93:obtained by "forgetting" the origin, with 4402: 4397: 4394: 4346: 4307: 4276: 4275: 4273: 4238: 4237: 4228: 4227: 4225: 4198: 4197: 4195: 4174: 4173: 4171: 4140: 4139: 4137: 4074: 4073: 4071: 4027: 3989: 3942: 3916: 3899: 3897: 3826: 3805: 3734: 3558: 3438: 3377: 3356: 3293: 3272: 3212: 3188: 3131: 3067: 3063: 3061: 3012: 3011: 2994: 2960: 2951: 2942: 2933: 2921: 2906: 2896: 2890: 2879: 2870: 2861: 2852: 2843: 2834: 2818: 2812: 2801: 2792: 2783: 2774: 2765: 2756: 2747: 2699: 2693: 2684: 2653: 2647: 2616: 2610: 2601: 2592: 2582: 2576: 2528: 2522: 2513: 2482: 2476: 2445: 2439: 2430: 2421: 2411: 2405: 2357: 2351: 2342: 2311: 2305: 2274: 2268: 2259: 2250: 2240: 2234: 2214: 2209: 2203: 2194: 2182: 2177: 2171: 2161: 2155: 2145: 2139: 2126: 2120: 2115: 2113: 2061: 2055: 2050: 2011: 1906: 1857: 1851: 1845: 1807: 1803: 1802: 1789: 1784: 1765: 1759: 1702: 1696: 1695: 1671: 1666: 1653: 1652: 1641: 1636: 1623: 1622: 1586: 1568: 1558: 1557: 1549: 1538: 1533: 1528: 1515: 1514: 1478: 1460: 1448: 1408: 1388: 1380: 1378: 1336: 1276: 1264: 1228: 1191: 1155: 1153: 1088: 1053: 1034: 1026: 1018: 993: 987: 962: 930: 884: 872: 731:is naturally isomorphic to a subgroup of 635: 629: 590: 525: 483:by construction of the semidirect product 432: 373: 244: 214: 133: 3029:can take a simple form on a well-chosen 4535: 4489: 3639:The affine transformations without any 1677: 3937:, that is, the affine transformations 3781:, one gets an associated affine group 303:is matrix multiplication of a vector. 78:Construction from general linear group 2961: 2952: 2943: 2934: 2922: 2907: 2891: 2880: 2871: 2862: 2853: 2844: 2835: 2813: 2802: 2793: 2784: 2775: 2766: 2757: 2748: 2694: 2685: 2648: 2611: 2602: 2593: 2577: 2523: 2514: 2477: 2440: 2431: 2422: 2406: 2352: 2343: 2306: 2269: 2260: 2251: 2235: 2204: 2195: 2172: 2156: 2140: 2121: 7: 4604:. Belmont: Wadsworth. Section 4.12. 4629:. Belmont: Wadsworth. p. 241. 4239: 4229: 4199: 4175: 4141: 4090:of all projective collineations of 4075: 101:can be described concretely as the 4451:This example is very important in 4417: 2985:Planar affine group over the reals 206:In terms of matrices, one writes: 25: 4096:is a group which we may call the 3980:is any fixed translation vector. 3672:Other affine groups and subgroups 3664:equal to one, and then using the 1992:. Then compare with the order of 517:, and multiplication is given by 287:where here the natural action of 82:Concretely, given a vector space 4398: 1785: 1667: 1637: 1529: 838:, that is, the upper triangular 73:Relation to general linear group 4207:{\displaystyle {\mathfrak {P}}} 4183:{\displaystyle {\mathfrak {P}}} 4149:{\displaystyle {\mathfrak {A}}} 4083:{\displaystyle {\mathfrak {P}}} 4022:of the special linear group of 3557: 3355: 3271: 3187: 919: 607:This can be represented as the 4559:10.1080/00029890.1995.12004664 4435: 4423: 4318: 4312: 4285:{\displaystyle {\mathcal {E}}} 4190:consisting of all elements of 4015:{\displaystyle SL(V)\ltimes V} 4003: 3997: 3947: 3917: 3913: 3907: 3900: 3841: 3835: 3816: 3810: 3760: 3754: 3745: 3549: 3546: 3513: 3504: 3474: 3468: 3465: 3458: 3446: 3431: 3407: 3404: 3397: 3385: 3347: 3323: 3320: 3313: 3301: 3263: 3242: 3239: 3232: 3220: 3179: 3161: 3158: 3151: 3139: 3121: 3097: 3094: 3087: 3075: 3016: 3002: 2720: 2708: 2549: 2537: 2378: 2366: 2028: 2016: 1798: 1795: 1780: 1301: 1289: 1065: 1046: 587: 563: 557: 545: 539: 527: 426: 423: 417: 408: 405: 399: 384: 378: 271: 259: 234: 222: 171: 165: 147: 141: 1: 4546:American Mathematical Monthly 4330:{\displaystyle O(V)\ltimes V} 4292:of distance-preserving maps ( 4260:Isometries of Euclidean space 3965:{\displaystyle x\mapsto Mx+v} 3604:these directions need not be 747:embedded as the affine plane 4058:and the projective group of 1976:is a generator of the group 1742:§ Matrix representation 4379:is the affine group of the 3930:{\displaystyle |\det(M)|=1} 3612:need not be perpendicular. 716:row of zeros, and 1 is the 4717: 4663:Cambridge University Press 4368: 3629:combined with a dilation. 3622:combined with a dilation. 1370:conjugacy classes, namely 4627:Geometry: An Introduction 4602:Geometry: An Introduction 3868:up to sign is called the 509:is a linear transform in 485:, the elements are pairs 4653:(1985). "Section VI.1". 3625:Case 5 corresponds to a 3618:Case 4 corresponds to a 3031:affine coordinate system 4054:Presuming knowledge of 720:identity block matrix. 86:, it has an underlying 4625:Ewald, Günter (1971). 4600:Ewald, Günter (1971). 4442: 4355: 4331: 4286: 4264:When the affine space 4248: 4208: 4184: 4150: 4127:hyperplane at infinity 4084: 4036: 4016: 3966: 3931: 3851: 3767: 3632:Case 6 corresponds to 3596:Case 2 corresponds to 3589:Case 1 corresponds to 3580: 3023: 2975: 2069: 1946: 1817: 1714: 1344: 1096: 970: 794:representation is any 709:column vector, 0 is a 671: 598: 440: 278: 178: 52:affine transformations 4443: 4356: 4332: 4287: 4249: 4209: 4185: 4151: 4106:. If we proceed from 4085: 4037: 4017: 3967: 3932: 3852: 3768: 3581: 3024: 2976: 2070: 1947: 1818: 1715: 1345: 1097: 971: 672: 599: 465:Matrix representation 441: 307:Stabilizer of a point 279: 179: 4465:Affine Coxeter group 4393: 4345: 4306: 4272: 4224: 4194: 4170: 4136: 4112:to the affine space 4070: 4026: 3988: 3941: 3896: 3878:special linear group 3870:special affine group 3860:Special affine group 3804: 3733: 3694:general linear group 3060: 2993: 2112: 2010: 1844: 1758: 1377: 1152: 986: 871: 628: 524: 372: 364:short exact sequence 213: 132: 119:general linear group 40:general affine group 18:Special affine group 4657:Groups and Geometry 4060:projective geometry 4050:Projective subgroup 3681:Given any subgroup 2060: 1543: 1106:Character table of 4438: 4351: 4327: 4282: 4244: 4204: 4180: 4146: 4080: 4032: 4012: 3962: 3927: 3847: 3777:on a vector space 3763: 3576: 3574: 3019: 2971: 2969: 2965: 2956: 2947: 2938: 2929: 2917: 2902: 2884: 2875: 2866: 2857: 2848: 2839: 2830: 2806: 2797: 2788: 2779: 2770: 2761: 2752: 2741: 2689: 2680: 2643: 2606: 2597: 2588: 2570: 2518: 2509: 2472: 2435: 2426: 2417: 2399: 2347: 2338: 2301: 2264: 2255: 2246: 2228: 2199: 2190: 2167: 2151: 2135: 2065: 2046: 1942: 1887: 1813: 1723:Then we know that 1710: 1708: 1616: 1527: 1508: 1438: 1340: 1330: 1258: 1221: 1185: 1092: 1082: 1044: 966: 956: 910: 667: 661: 594: 436: 274: 201:semidirect product 174: 103:semidirect product 50:of all invertible 4354:{\displaystyle V} 4035:{\displaystyle V} 3704:, analogously as 3561: 3441: 3380: 3359: 3296: 3275: 3215: 3191: 3134: 3070: 2738: 2677: 2640: 2567: 2506: 2469: 2396: 2335: 2298: 1936: 1043: 331:is isomorphic to 16:(Redirected from 4708: 4676: 4660: 4641: 4640: 4622: 4616: 4615: 4597: 4591: 4590: 4569: 4563: 4562: 4540: 4523: 4521: 4515: 4507: 4494: 4471:that preserve a 4447: 4445: 4444: 4439: 4413: 4412: 4401: 4385: 4360: 4358: 4357: 4352: 4339:orthogonal group 4336: 4334: 4333: 4328: 4301: 4291: 4289: 4288: 4283: 4281: 4280: 4267: 4253: 4251: 4250: 4245: 4243: 4242: 4233: 4232: 4217: 4213: 4211: 4210: 4205: 4203: 4202: 4189: 4187: 4186: 4181: 4179: 4178: 4161: 4155: 4153: 4152: 4147: 4145: 4144: 4129:, we obtain the 4124: 4117: 4111: 4105: 4098:projective group 4095: 4089: 4087: 4086: 4081: 4079: 4078: 4041: 4039: 4038: 4033: 4021: 4019: 4018: 4013: 3979: 3975: 3971: 3969: 3968: 3963: 3936: 3934: 3933: 3928: 3920: 3903: 3891: 3856: 3854: 3853: 3848: 3831: 3830: 3795: 3780: 3776: 3772: 3770: 3769: 3764: 3725: 3718: 3703: 3691: 3656: 3649: 3585: 3583: 3582: 3577: 3575: 3562: 3559: 3444: 3442: 3439: 3383: 3381: 3378: 3360: 3357: 3299: 3297: 3294: 3276: 3273: 3218: 3216: 3213: 3192: 3189: 3137: 3135: 3132: 3073: 3071: 3068: 3052: 3048: 3044: 3028: 3026: 3025: 3020: 3015: 2989:The elements of 2980: 2978: 2977: 2972: 2970: 2966: 2957: 2948: 2939: 2930: 2918: 2903: 2901: 2900: 2885: 2876: 2867: 2858: 2849: 2840: 2831: 2829: 2828: 2807: 2798: 2789: 2780: 2771: 2762: 2753: 2742: 2740: 2739: 2737: 2726: 2700: 2690: 2681: 2679: 2678: 2676: 2665: 2654: 2644: 2642: 2641: 2639: 2628: 2617: 2607: 2598: 2589: 2587: 2586: 2571: 2569: 2568: 2566: 2555: 2529: 2519: 2510: 2508: 2507: 2505: 2494: 2483: 2473: 2471: 2470: 2468: 2457: 2446: 2436: 2427: 2418: 2416: 2415: 2400: 2398: 2397: 2395: 2384: 2358: 2348: 2339: 2337: 2336: 2334: 2323: 2312: 2302: 2300: 2299: 2297: 2286: 2275: 2265: 2256: 2247: 2245: 2244: 2229: 2227: 2226: 2225: 2224: 2200: 2191: 2189: 2188: 2187: 2186: 2168: 2166: 2165: 2152: 2150: 2149: 2136: 2134: 2133: 2118: 2104: 2091: 2074: 2072: 2071: 2066: 2059: 2054: 2002: 1991: 1990: 1989: 1975: 1971: 1961: 1951: 1949: 1948: 1943: 1941: 1937: 1935: 1924: 1907: 1892: 1891: 1856: 1855: 1836: 1822: 1820: 1819: 1814: 1812: 1811: 1806: 1794: 1793: 1788: 1770: 1769: 1750: 1744:), there exist 1739: 1735: 1719: 1717: 1716: 1711: 1709: 1701: 1700: 1676: 1675: 1670: 1658: 1657: 1651: 1647: 1646: 1645: 1640: 1628: 1627: 1621: 1620: 1573: 1572: 1563: 1562: 1548: 1544: 1542: 1537: 1532: 1520: 1519: 1513: 1512: 1465: 1464: 1447: 1443: 1442: 1396: 1395: 1369: 1365: 1349: 1347: 1346: 1341: 1335: 1334: 1272: 1271: 1263: 1262: 1226: 1225: 1190: 1189: 1144: 1133: 1118: 1101: 1099: 1098: 1093: 1087: 1083: 1058: 1057: 1045: 1036: 1031: 1030: 1010: 1009: 975: 973: 972: 967: 961: 957: 915: 911: 863: 856: 852: 841: 837: 824: 812: 805: 786: 776: 772: 762: 746: 742: 730: 719: 715: 708: 701: 697: 693: 683: 676: 674: 673: 668: 666: 662: 618: 603: 601: 600: 595: 516: 508: 504: 500: 496: 480: 472: 460: 445: 443: 442: 437: 361: 357: 350: 338: 330: 322: 314: 302: 298: 283: 281: 280: 275: 249: 248: 198: 194: 183: 181: 180: 175: 124: 116: 108: 100: 96: 92: 85: 21: 4716: 4715: 4711: 4710: 4709: 4707: 4706: 4705: 4691:Affine geometry 4681: 4680: 4679: 4673: 4649: 4645: 4644: 4637: 4624: 4623: 4619: 4612: 4599: 4598: 4594: 4587: 4571: 4570: 4566: 4542: 4541: 4537: 4532: 4527: 4526: 4517: 4513: 4497: 4495: 4491: 4486: 4469:Euclidean space 4461: 4396: 4391: 4390: 4383: 4373: 4367: 4343: 4342: 4304: 4303: 4299: 4270: 4269: 4265: 4262: 4222: 4221: 4215: 4192: 4191: 4168: 4167: 4157: 4134: 4133: 4122: 4118:by declaring a 4113: 4107: 4101: 4091: 4068: 4067: 4052: 4024: 4023: 3986: 3985: 3977: 3973: 3939: 3938: 3894: 3893: 3881: 3862: 3822: 3802: 3801: 3798:group extension 3791: 3782: 3778: 3774: 3731: 3730: 3723: 3705: 3697: 3682: 3679: 3674: 3651: 3644: 3610:coordinate axes 3602:Euclidean plane 3573: 3572: 3555: 3461: 3443: 3435: 3434: 3400: 3382: 3374: 3373: 3353: 3316: 3298: 3290: 3289: 3269: 3235: 3217: 3209: 3208: 3185: 3154: 3136: 3128: 3127: 3090: 3072: 3058: 3057: 3050: 3046: 3042: 2991: 2990: 2987: 2968: 2967: 2958: 2949: 2940: 2931: 2919: 2904: 2892: 2887: 2886: 2877: 2868: 2859: 2850: 2841: 2832: 2814: 2809: 2808: 2799: 2790: 2781: 2772: 2763: 2754: 2744: 2743: 2727: 2701: 2695: 2691: 2682: 2666: 2655: 2649: 2645: 2629: 2618: 2612: 2608: 2599: 2590: 2578: 2573: 2572: 2556: 2530: 2524: 2520: 2511: 2495: 2484: 2478: 2474: 2458: 2447: 2441: 2437: 2428: 2419: 2407: 2402: 2401: 2385: 2359: 2353: 2349: 2340: 2324: 2313: 2307: 2303: 2287: 2276: 2270: 2266: 2257: 2248: 2236: 2231: 2230: 2210: 2205: 2201: 2192: 2178: 2173: 2169: 2157: 2153: 2141: 2137: 2122: 2110: 2109: 2102: 2093: 2084: 2079: 2008: 2007: 2001: 1993: 1988: 1983: 1982: 1981: 1977: 1973: 1963: 1956: 1925: 1908: 1902: 1886: 1885: 1880: 1874: 1873: 1868: 1858: 1847: 1842: 1841: 1827: 1801: 1783: 1761: 1756: 1755: 1745: 1737: 1733: 1724: 1707: 1706: 1665: 1635: 1615: 1614: 1609: 1603: 1602: 1597: 1587: 1585: 1581: 1574: 1564: 1554: 1553: 1507: 1506: 1501: 1495: 1494: 1489: 1479: 1477: 1473: 1466: 1456: 1453: 1452: 1437: 1436: 1431: 1425: 1424: 1419: 1409: 1404: 1397: 1384: 1375: 1374: 1367: 1363: 1354: 1329: 1328: 1323: 1317: 1316: 1287: 1277: 1257: 1256: 1251: 1245: 1244: 1239: 1229: 1227: 1220: 1219: 1214: 1208: 1207: 1202: 1192: 1184: 1183: 1178: 1172: 1171: 1166: 1156: 1150: 1149: 1135: 1131: 1122: 1120: 1116: 1107: 1081: 1080: 1075: 1069: 1068: 1049: 1032: 1022: 1014: 989: 984: 983: 955: 954: 949: 943: 942: 937: 926: 909: 908: 903: 897: 896: 891: 880: 869: 868: 858: 854: 850: 839: 832: 814: 810: 795: 778: 774: 764: 748: 744: 732: 724: 717: 710: 703: 699: 695: 685: 681: 660: 659: 654: 648: 647: 642: 631: 626: 625: 608: 522: 521: 510: 506: 502: 501:is a vector in 498: 486: 474: 470: 467: 454: 370: 369: 359: 355: 340: 332: 324: 320: 312: 309: 300: 288: 240: 211: 210: 196: 188: 130: 129: 122: 110: 106: 98: 94: 90: 83: 80: 75: 56:Euclidean space 28: 23: 22: 15: 12: 11: 5: 4714: 4712: 4704: 4703: 4698: 4693: 4683: 4682: 4678: 4677: 4671: 4646: 4643: 4642: 4635: 4617: 4610: 4592: 4585: 4564: 4553:(9): 798–801. 4534: 4533: 4531: 4528: 4525: 4524: 4488: 4487: 4485: 4482: 4481: 4480: 4475: 4460: 4457: 4449: 4448: 4437: 4434: 4431: 4428: 4425: 4422: 4419: 4416: 4411: 4408: 4405: 4400: 4377:Poincaré group 4371:Poincaré group 4369:Main article: 4366: 4365:Poincaré group 4363: 4350: 4326: 4323: 4320: 4317: 4314: 4311: 4279: 4261: 4258: 4257: 4256: 4255: 4254: 4241: 4236: 4231: 4201: 4177: 4143: 4077: 4051: 4048: 4044:shear mappings 4031: 4011: 4008: 4005: 4002: 3999: 3996: 3993: 3961: 3958: 3955: 3952: 3949: 3946: 3926: 3923: 3919: 3915: 3912: 3909: 3906: 3902: 3874:equiaffinities 3861: 3858: 3846: 3843: 3840: 3837: 3834: 3829: 3825: 3821: 3818: 3815: 3812: 3809: 3787: 3762: 3759: 3756: 3753: 3750: 3747: 3744: 3741: 3738: 3728:representation 3678: 3675: 3673: 3670: 3587: 3586: 3571: 3568: 3565: 3556: 3554: 3551: 3548: 3545: 3542: 3539: 3536: 3533: 3530: 3527: 3524: 3521: 3518: 3515: 3512: 3509: 3506: 3503: 3500: 3497: 3494: 3491: 3488: 3485: 3482: 3479: 3476: 3473: 3470: 3467: 3464: 3462: 3460: 3457: 3454: 3451: 3448: 3445: 3437: 3436: 3433: 3430: 3427: 3424: 3421: 3418: 3415: 3412: 3409: 3406: 3403: 3401: 3399: 3396: 3393: 3390: 3387: 3384: 3376: 3375: 3372: 3369: 3366: 3363: 3354: 3352: 3349: 3346: 3343: 3340: 3337: 3334: 3331: 3328: 3325: 3322: 3319: 3317: 3315: 3312: 3309: 3306: 3303: 3300: 3292: 3291: 3288: 3285: 3282: 3279: 3270: 3268: 3265: 3262: 3259: 3256: 3253: 3250: 3247: 3244: 3241: 3238: 3236: 3234: 3231: 3228: 3225: 3222: 3219: 3211: 3210: 3207: 3204: 3201: 3198: 3195: 3186: 3184: 3181: 3178: 3175: 3172: 3169: 3166: 3163: 3160: 3157: 3155: 3153: 3150: 3147: 3144: 3141: 3138: 3130: 3129: 3126: 3123: 3120: 3117: 3114: 3111: 3108: 3105: 3102: 3099: 3096: 3093: 3091: 3089: 3086: 3083: 3080: 3077: 3074: 3066: 3065: 3018: 3014: 3010: 3007: 3004: 3001: 2998: 2986: 2983: 2982: 2981: 2964: 2959: 2955: 2950: 2946: 2941: 2937: 2932: 2928: 2925: 2920: 2916: 2913: 2910: 2905: 2899: 2895: 2889: 2888: 2883: 2878: 2874: 2869: 2865: 2860: 2856: 2851: 2847: 2842: 2838: 2833: 2827: 2824: 2821: 2817: 2811: 2810: 2805: 2800: 2796: 2791: 2787: 2782: 2778: 2773: 2769: 2764: 2760: 2755: 2751: 2746: 2745: 2736: 2733: 2730: 2725: 2722: 2719: 2716: 2713: 2710: 2707: 2704: 2698: 2692: 2688: 2683: 2675: 2672: 2669: 2664: 2661: 2658: 2652: 2646: 2638: 2635: 2632: 2627: 2624: 2621: 2615: 2609: 2605: 2600: 2596: 2591: 2585: 2581: 2575: 2574: 2565: 2562: 2559: 2554: 2551: 2548: 2545: 2542: 2539: 2536: 2533: 2527: 2521: 2517: 2512: 2504: 2501: 2498: 2493: 2490: 2487: 2481: 2475: 2467: 2464: 2461: 2456: 2453: 2450: 2444: 2438: 2434: 2429: 2425: 2420: 2414: 2410: 2404: 2403: 2394: 2391: 2388: 2383: 2380: 2377: 2374: 2371: 2368: 2365: 2362: 2356: 2350: 2346: 2341: 2333: 2330: 2327: 2322: 2319: 2316: 2310: 2304: 2296: 2293: 2290: 2285: 2282: 2279: 2273: 2267: 2263: 2258: 2254: 2249: 2243: 2239: 2233: 2232: 2223: 2220: 2217: 2213: 2208: 2202: 2198: 2193: 2185: 2181: 2176: 2170: 2164: 2160: 2154: 2148: 2144: 2138: 2132: 2129: 2125: 2119: 2117: 2098: 2082: 2076: 2075: 2064: 2058: 2053: 2049: 2045: 2042: 2039: 2036: 2033: 2030: 2027: 2024: 2021: 2018: 2015: 1997: 1984: 1953: 1952: 1940: 1934: 1931: 1928: 1923: 1920: 1917: 1914: 1911: 1905: 1901: 1898: 1895: 1890: 1884: 1881: 1879: 1876: 1875: 1872: 1869: 1867: 1864: 1863: 1861: 1854: 1850: 1824: 1823: 1810: 1805: 1800: 1797: 1792: 1787: 1782: 1779: 1776: 1773: 1768: 1764: 1729: 1721: 1720: 1705: 1699: 1694: 1691: 1688: 1685: 1682: 1679: 1674: 1669: 1664: 1661: 1656: 1650: 1644: 1639: 1634: 1631: 1626: 1619: 1613: 1610: 1608: 1605: 1604: 1601: 1598: 1596: 1593: 1592: 1590: 1584: 1580: 1577: 1575: 1571: 1567: 1561: 1556: 1555: 1552: 1547: 1541: 1536: 1531: 1526: 1523: 1518: 1511: 1505: 1502: 1500: 1497: 1496: 1493: 1490: 1488: 1485: 1484: 1482: 1476: 1472: 1469: 1467: 1463: 1459: 1455: 1454: 1451: 1446: 1441: 1435: 1432: 1430: 1427: 1426: 1423: 1420: 1418: 1415: 1414: 1412: 1407: 1403: 1400: 1398: 1394: 1391: 1387: 1383: 1382: 1359: 1351: 1350: 1339: 1333: 1327: 1324: 1322: 1319: 1318: 1315: 1312: 1309: 1306: 1303: 1300: 1297: 1294: 1291: 1288: 1286: 1283: 1282: 1280: 1275: 1270: 1267: 1261: 1255: 1252: 1250: 1247: 1246: 1243: 1240: 1238: 1235: 1234: 1232: 1224: 1218: 1215: 1213: 1210: 1209: 1206: 1203: 1201: 1198: 1197: 1195: 1188: 1182: 1179: 1177: 1174: 1173: 1170: 1167: 1165: 1162: 1161: 1159: 1127: 1119: 1112: 1104: 1103: 1102: 1091: 1086: 1079: 1076: 1074: 1071: 1070: 1067: 1064: 1061: 1056: 1052: 1048: 1042: 1039: 1033: 1029: 1025: 1021: 1020: 1017: 1013: 1008: 1005: 1002: 999: 996: 992: 977: 976: 965: 960: 953: 950: 948: 945: 944: 941: 938: 936: 933: 932: 929: 925: 922: 918: 914: 907: 904: 902: 899: 898: 895: 892: 890: 887: 886: 883: 879: 876: 678: 677: 665: 658: 655: 653: 650: 649: 646: 643: 641: 638: 637: 634: 605: 604: 593: 589: 586: 583: 580: 577: 574: 571: 568: 565: 562: 559: 556: 553: 550: 547: 544: 541: 538: 535: 532: 529: 466: 463: 447: 446: 435: 431: 428: 425: 422: 419: 416: 413: 410: 407: 404: 401: 398: 395: 392: 389: 386: 383: 380: 377: 308: 305: 285: 284: 273: 270: 267: 264: 261: 258: 255: 252: 247: 243: 239: 236: 233: 230: 227: 224: 221: 218: 187:The action of 185: 184: 173: 170: 167: 164: 161: 158: 155: 152: 149: 146: 143: 140: 137: 79: 76: 74: 71: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 4713: 4702: 4699: 4697: 4694: 4692: 4689: 4688: 4686: 4674: 4672:0-521-31694-4 4668: 4664: 4659: 4658: 4652: 4651:Lyndon, Roger 4648: 4647: 4638: 4636:9780534000349 4632: 4628: 4621: 4618: 4613: 4611:9780534000349 4607: 4603: 4596: 4593: 4588: 4586:9780534000349 4582: 4578: 4574: 4568: 4565: 4560: 4556: 4552: 4548: 4547: 4539: 4536: 4529: 4520: 4511: 4505: 4501: 4493: 4490: 4483: 4479: 4476: 4474: 4470: 4466: 4463: 4462: 4458: 4456: 4454: 4432: 4429: 4426: 4420: 4414: 4409: 4406: 4403: 4389: 4388: 4387: 4382: 4381:Lorentz group 4378: 4372: 4364: 4362: 4348: 4340: 4324: 4321: 4315: 4309: 4297: 4296: 4259: 4234: 4220: 4219: 4165: 4160: 4132: 4128: 4121: 4116: 4110: 4104: 4099: 4094: 4065: 4064: 4063: 4061: 4057: 4049: 4047: 4045: 4029: 4009: 4006: 4000: 3994: 3991: 3981: 3959: 3956: 3953: 3950: 3944: 3924: 3921: 3910: 3889: 3885: 3879: 3875: 3871: 3867: 3859: 3857: 3844: 3838: 3832: 3827: 3823: 3819: 3813: 3807: 3799: 3794: 3790: 3785: 3757: 3751: 3748: 3742: 3739: 3736: 3729: 3720: 3717: 3713: 3709: 3701: 3695: 3689: 3685: 3676: 3671: 3669: 3667: 3663: 3658: 3654: 3650:) or 3 (with 3647: 3642: 3637: 3635: 3630: 3628: 3627:shear mapping 3623: 3621: 3620:shear mapping 3616: 3613: 3611: 3607: 3606:perpendicular 3603: 3599: 3594: 3592: 3569: 3566: 3563: 3552: 3543: 3540: 3537: 3534: 3531: 3528: 3525: 3522: 3519: 3516: 3510: 3507: 3501: 3498: 3495: 3492: 3489: 3486: 3483: 3480: 3477: 3471: 3463: 3455: 3452: 3449: 3428: 3425: 3422: 3419: 3416: 3413: 3410: 3402: 3394: 3391: 3388: 3370: 3367: 3364: 3361: 3350: 3344: 3341: 3338: 3335: 3332: 3329: 3326: 3318: 3310: 3307: 3304: 3286: 3283: 3280: 3277: 3266: 3260: 3257: 3254: 3251: 3248: 3245: 3237: 3229: 3226: 3223: 3205: 3202: 3199: 3196: 3193: 3182: 3176: 3173: 3170: 3167: 3164: 3156: 3148: 3145: 3142: 3124: 3118: 3115: 3112: 3109: 3106: 3103: 3100: 3092: 3084: 3081: 3078: 3056: 3055: 3054: 3040: 3036: 3032: 3008: 3005: 2999: 2996: 2984: 2962: 2953: 2944: 2935: 2926: 2923: 2914: 2911: 2908: 2897: 2893: 2881: 2872: 2863: 2854: 2845: 2836: 2825: 2822: 2819: 2815: 2803: 2794: 2785: 2776: 2767: 2758: 2749: 2734: 2731: 2728: 2723: 2717: 2714: 2711: 2705: 2702: 2696: 2686: 2673: 2670: 2667: 2662: 2659: 2656: 2650: 2636: 2633: 2630: 2625: 2622: 2619: 2613: 2603: 2594: 2583: 2579: 2563: 2560: 2557: 2552: 2546: 2543: 2540: 2534: 2531: 2525: 2515: 2502: 2499: 2496: 2491: 2488: 2485: 2479: 2465: 2462: 2459: 2454: 2451: 2448: 2442: 2432: 2423: 2412: 2408: 2392: 2389: 2386: 2381: 2375: 2372: 2369: 2363: 2360: 2354: 2344: 2331: 2328: 2325: 2320: 2317: 2314: 2308: 2294: 2291: 2288: 2283: 2280: 2277: 2271: 2261: 2252: 2241: 2237: 2221: 2218: 2215: 2211: 2206: 2196: 2183: 2179: 2174: 2162: 2158: 2146: 2142: 2130: 2127: 2123: 2108: 2107: 2106: 2101: 2097: 2089: 2085: 2062: 2056: 2051: 2047: 2043: 2040: 2037: 2034: 2031: 2025: 2022: 2019: 2013: 2006: 2005: 2004: 2000: 1996: 1987: 1980: 1970: 1966: 1959: 1938: 1932: 1929: 1926: 1921: 1918: 1915: 1912: 1909: 1903: 1899: 1896: 1893: 1888: 1882: 1877: 1870: 1865: 1859: 1852: 1848: 1840: 1839: 1838: 1834: 1830: 1808: 1790: 1777: 1774: 1771: 1766: 1762: 1754: 1753: 1752: 1748: 1743: 1732: 1728: 1703: 1689: 1686: 1683: 1672: 1662: 1659: 1648: 1642: 1632: 1629: 1617: 1611: 1606: 1599: 1594: 1588: 1582: 1578: 1576: 1569: 1565: 1550: 1545: 1539: 1534: 1524: 1521: 1509: 1503: 1498: 1491: 1486: 1480: 1474: 1470: 1468: 1461: 1457: 1449: 1444: 1439: 1433: 1428: 1421: 1416: 1410: 1405: 1401: 1399: 1392: 1389: 1385: 1373: 1372: 1371: 1362: 1358: 1337: 1331: 1325: 1320: 1313: 1310: 1307: 1304: 1298: 1295: 1292: 1284: 1278: 1273: 1268: 1265: 1259: 1253: 1248: 1241: 1236: 1230: 1222: 1216: 1211: 1204: 1199: 1193: 1186: 1180: 1175: 1168: 1163: 1157: 1148: 1147: 1146: 1142: 1138: 1130: 1126: 1115: 1111: 1105: 1089: 1084: 1077: 1072: 1062: 1059: 1054: 1050: 1040: 1037: 1027: 1023: 1015: 1011: 1006: 1003: 1000: 997: 994: 990: 982: 981: 980: 963: 958: 951: 946: 939: 934: 927: 923: 920: 916: 912: 905: 900: 893: 888: 881: 877: 874: 867: 866: 865: 862: 848: 845: 835: 829: 826: 822: 818: 809: 803: 799: 793: 788: 785: 781: 771: 767: 760: 756: 752: 740: 736: 728: 721: 714: 706: 692: 688: 663: 656: 651: 644: 639: 632: 624: 623: 622: 621: 616: 612: 591: 584: 581: 578: 575: 572: 569: 566: 560: 554: 551: 548: 542: 536: 533: 530: 520: 519: 518: 514: 494: 490: 484: 478: 464: 462: 458: 452: 433: 429: 420: 414: 411: 402: 396: 393: 390: 387: 381: 375: 368: 367: 366: 365: 352: 348: 344: 336: 328: 318: 306: 304: 296: 292: 268: 265: 262: 256: 253: 250: 245: 241: 237: 231: 228: 225: 219: 216: 209: 208: 207: 204: 202: 192: 168: 162: 159: 156: 153: 150: 144: 138: 135: 128: 127: 126: 120: 114: 104: 89: 77: 72: 70: 68: 63: 61: 57: 53: 49: 45: 41: 37: 33: 19: 4696:Group theory 4656: 4626: 4620: 4601: 4595: 4576: 4567: 4550: 4544: 4538: 4518: 4509: 4503: 4499: 4492: 4450: 4374: 4293: 4263: 4158: 4131:affine group 4130: 4114: 4108: 4102: 4097: 4092: 4056:projectivity 4053: 3982: 3887: 3883: 3873: 3869: 3863: 3792: 3788: 3783: 3721: 3715: 3711: 3707: 3699: 3687: 3683: 3680: 3677:General case 3659: 3652: 3645: 3638: 3634:similarities 3631: 3624: 3617: 3614: 3608:, since the 3595: 3591:translations 3588: 3035:affine plane 2988: 2099: 2095: 2087: 2080: 2077: 1998: 1994: 1985: 1978: 1968: 1964: 1957: 1954: 1832: 1828: 1825: 1746: 1730: 1726: 1722: 1360: 1356: 1352: 1140: 1136: 1128: 1124: 1121: 1113: 1109: 978: 860: 857:, such that 833: 830: 827: 820: 816: 801: 797: 789: 783: 779: 769: 765: 758: 754: 750: 738: 734: 726: 722: 712: 704: 694:matrix over 690: 686: 679: 620:block matrix 614: 610: 606: 512: 492: 488: 476: 468: 456: 450: 448: 353: 346: 342: 334: 326: 310: 294: 290: 286: 205: 190: 186: 112: 88:affine space 81: 64: 60:real numbers 44:affine space 39: 36:affine group 35: 29: 4502:) < Aut( 4214:that leave 3866:volume form 3641:fixed point 3560:where  3358:where  3274:where  3190:where  844:non-Abelian 319:of a point 32:mathematics 4701:Lie groups 4685:Categories 4573:Berger, M. 4530:References 4453:relativity 4295:isometries 4120:hyperplane 3710:) := 3662:eigenvalue 2003:, we have 1134:has order 808:similarity 723:Formally, 317:stabilizer 4478:Holomorph 4421:⁡ 4415:⋊ 4322:⋉ 4235:⊂ 4007:⋉ 3948:↦ 3842:→ 3836:→ 3828:ρ 3824:⋊ 3817:→ 3811:→ 3752:⁡ 3746:→ 3737:ρ 3567:≠ 3541:⁡ 3526:⁡ 3517:− 3499:⁡ 3484:⁡ 3466:↦ 3405:↦ 3365:≠ 3321:↦ 3281:≠ 3240:↦ 3200:≠ 3159:↦ 3095:↦ 3037:over the 3000:⁡ 2954:… 2924:− 2912:− 2894:χ 2873:… 2823:− 2816:χ 2804:… 2795:… 2786:… 2777:… 2768:… 2759:… 2750:… 2732:− 2715:− 2706:π 2687:… 2671:− 2660:π 2634:− 2623:π 2580:χ 2561:− 2544:− 2535:π 2516:… 2500:− 2489:π 2463:− 2452:π 2409:χ 2390:− 2373:− 2364:π 2345:… 2329:− 2318:π 2292:− 2281:π 2238:χ 2219:− 2197:… 2048:χ 2038:− 2023:− 1930:− 1922:π 1900:⁡ 1849:ρ 1831:= 1, 2,… 1809:∗ 1799:→ 1778:⁡ 1763:ρ 1678:∖ 1663:∈ 1633:∈ 1540:∗ 1525:∈ 1296:− 1266:− 1060:− 864:, where 847:Lie group 543:⋅ 427:→ 415:⁡ 409:→ 397:⁡ 391:⋊ 385:→ 379:→ 257:⁡ 251:⋊ 220:⁡ 163:⁡ 157:⋊ 139:⁡ 67:Lie group 4577:Geometry 4575:(1987). 4459:See also 4164:subgroup 4125:to be a 4066:The set 3686:< GL( 3598:scalings 1837:, where 1353:we know 1145:. Since 979:so that 819:+ 1) × ( 800:+ 1) × ( 613:+ 1) × ( 497:, where 451:starting 4473:lattice 4337:of the 4218:fixed. 4162:as the 3692:of the 792:similar 753:, 1) | 743:, with 481:, then 325:Aff(2, 46:is the 42:of any 4669:  4633:  4608:  4583:  4496:Since 4384:O(1,3) 3972:where 3726:and a 3655:< 0 3648:< 0 3049:, and 2078:hence 684:is an 680:where 333:GL(2, 315:, the 117:, the 34:, the 4510:group 4484:Notes 4298:) of 3892:with 3039:reals 840:2 × 2 775:1 × 1 718:1 × 1 48:group 4667:ISBN 4631:ISBN 4606:ISBN 4581:ISBN 4375:The 3706:Aff( 3698:Aff( 2094:Aff( 1960:= −1 1955:and 1826:for 1736:has 1725:Aff( 1366:has 1355:Aff( 1143:− 1) 1123:Aff( 1108:Aff( 853:and 823:+ 1) 804:+ 1) 773:and 725:Aff( 711:1 × 617:+ 1) 505:and 4555:doi 4551:102 4498:GL( 4341:of 4166:of 4156:of 4100:of 3905:det 3773:of 3657:). 3538:cos 3523:sin 3496:sin 3481:cos 2997:Aff 2090:− 1 1897:exp 1835:− 1 1775:Aff 1749:− 1 836:= 1 733:GL( 707:× 1 702:an 511:GL( 475:GL( 473:by 455:GL( 358:to 299:on 289:GL( 217:Aff 195:on 189:GL( 136:Aff 121:of 111:GL( 109:by 105:of 38:or 30:In 4687:: 4665:. 4661:. 4549:. 4455:. 4386:: 4046:. 3886:, 3845:1. 3749:GL 3719:. 3714:⋊ 3668:. 3646:ab 3593:. 3570:0. 3440:6. 3379:5. 3295:4. 3214:3. 3133:2. 3069:1. 3045:, 2657:12 2105:: 2086:= 1972:, 1967:= 1962:, 859:= 790:A 787:. 782:⊕ 768:× 757:∈ 749:{( 737:⊕ 698:, 689:× 491:, 461:. 412:GL 394:GL 345:, 293:, 254:GL 203:. 160:GL 125:: 69:. 4675:. 4639:. 4614:. 4589:. 4561:. 4557:: 4522:. 4519:R 4514:V 4506:) 4504:V 4500:V 4436:) 4433:3 4430:, 4427:1 4424:( 4418:O 4410:3 4407:, 4404:1 4399:R 4349:V 4325:V 4319:) 4316:V 4313:( 4310:O 4300:A 4278:E 4266:A 4240:P 4230:A 4216:ω 4200:P 4176:P 4159:A 4142:A 4123:ω 4115:A 4109:P 4103:P 4093:P 4076:P 4030:V 4010:V 4004:) 4001:V 3998:( 3995:L 3992:S 3978:v 3974:M 3960:v 3957:+ 3954:x 3951:M 3945:x 3925:1 3922:= 3918:| 3914:) 3911:M 3908:( 3901:| 3890:) 3888:v 3884:M 3882:( 3839:G 3833:G 3820:V 3814:V 3808:1 3793:G 3789:ρ 3786:⋊ 3784:V 3779:V 3775:G 3761:) 3758:V 3755:( 3743:G 3740:: 3724:G 3716:G 3712:V 3708:G 3702:) 3700:G 3690:) 3688:V 3684:G 3653:a 3564:a 3553:, 3550:) 3547:) 3544:t 3535:y 3532:+ 3529:t 3520:x 3514:( 3511:a 3508:, 3505:) 3502:t 3493:y 3490:+ 3487:t 3478:x 3475:( 3472:a 3469:( 3459:) 3456:y 3453:, 3450:x 3447:( 3432:) 3429:a 3426:+ 3423:y 3420:, 3417:y 3414:+ 3411:x 3408:( 3398:) 3395:y 3392:, 3389:x 3386:( 3371:, 3368:0 3362:a 3351:, 3348:) 3345:y 3342:a 3339:, 3336:y 3333:+ 3330:x 3327:a 3324:( 3314:) 3311:y 3308:, 3305:x 3302:( 3287:, 3284:0 3278:a 3267:, 3264:) 3261:b 3258:+ 3255:y 3252:, 3249:x 3246:a 3243:( 3233:) 3230:y 3227:, 3224:x 3221:( 3206:, 3203:0 3197:b 3194:a 3183:, 3180:) 3177:y 3174:b 3171:, 3168:x 3165:a 3162:( 3152:) 3149:y 3146:, 3143:x 3140:( 3125:, 3122:) 3119:b 3116:+ 3113:y 3110:, 3107:a 3104:+ 3101:x 3098:( 3088:) 3085:y 3082:, 3079:x 3076:( 3051:t 3047:b 3043:a 3017:) 3013:R 3009:, 3006:2 3003:( 2963:0 2945:0 2936:0 2927:1 2915:1 2909:p 2898:p 2882:1 2864:1 2855:1 2846:1 2837:1 2826:1 2820:p 2735:1 2729:p 2724:i 2721:) 2718:2 2712:p 2709:( 2703:6 2697:e 2674:1 2668:p 2663:i 2651:e 2637:1 2631:p 2626:i 2620:6 2614:e 2604:1 2595:1 2584:3 2564:1 2558:p 2553:i 2550:) 2547:2 2541:p 2538:( 2532:4 2526:e 2503:1 2497:p 2492:i 2486:8 2480:e 2466:1 2460:p 2455:i 2449:4 2443:e 2433:1 2424:1 2413:2 2393:1 2387:p 2382:i 2379:) 2376:2 2370:p 2367:( 2361:2 2355:e 2332:1 2326:p 2321:i 2315:4 2309:e 2295:1 2289:p 2284:i 2278:2 2272:e 2262:1 2253:1 2242:1 2222:2 2216:p 2212:g 2207:C 2184:2 2180:g 2175:C 2163:g 2159:C 2147:1 2143:C 2131:d 2128:i 2124:C 2103:) 2100:p 2096:F 2088:p 2083:p 2081:χ 2063:, 2057:2 2052:p 2044:+ 2041:1 2035:p 2032:= 2029:) 2026:1 2020:p 2017:( 2014:p 1999:p 1995:F 1986:p 1979:F 1974:g 1969:g 1965:a 1958:i 1939:) 1933:1 1927:p 1919:j 1916:k 1913:i 1910:2 1904:( 1894:= 1889:) 1883:1 1878:0 1871:b 1866:a 1860:( 1853:k 1833:p 1829:k 1804:C 1796:) 1791:p 1786:F 1781:( 1772:: 1767:k 1747:p 1738:p 1734:) 1731:p 1727:F 1704:. 1698:} 1693:} 1690:1 1687:, 1684:0 1681:{ 1673:p 1668:F 1660:a 1655:| 1649:} 1643:p 1638:F 1630:b 1625:| 1618:) 1612:1 1607:0 1600:b 1595:a 1589:( 1583:{ 1579:= 1570:a 1566:C 1560:{ 1551:, 1546:} 1535:p 1530:F 1522:b 1517:| 1510:) 1504:1 1499:0 1492:b 1487:1 1481:( 1475:{ 1471:= 1462:1 1458:C 1450:, 1445:} 1440:) 1434:1 1429:0 1422:0 1417:1 1411:( 1406:{ 1402:= 1393:d 1390:i 1386:C 1368:p 1364:) 1361:p 1357:F 1338:, 1332:) 1326:1 1321:0 1314:c 1311:b 1308:+ 1305:d 1302:) 1299:a 1293:1 1290:( 1285:a 1279:( 1274:= 1269:1 1260:) 1254:1 1249:0 1242:d 1237:c 1231:( 1223:) 1217:1 1212:0 1205:b 1200:a 1194:( 1187:) 1181:1 1176:0 1169:d 1164:c 1158:( 1141:p 1139:( 1137:p 1132:) 1129:p 1125:F 1117:) 1114:p 1110:F 1090:. 1085:) 1078:1 1073:0 1066:) 1063:1 1055:a 1051:e 1047:( 1041:a 1038:b 1028:a 1024:e 1016:( 1012:= 1007:B 1004:b 1001:+ 998:A 995:a 991:e 964:, 959:) 952:0 947:0 940:1 935:0 928:( 924:= 921:B 917:, 913:) 906:0 901:0 894:0 889:1 882:( 878:= 875:A 861:B 855:B 851:A 834:n 821:n 817:n 815:( 811:P 802:n 798:n 796:( 784:K 780:V 770:n 766:n 761:} 759:V 755:v 751:v 745:V 741:) 739:K 735:V 729:) 727:V 713:n 705:n 700:v 696:K 691:n 687:n 682:M 664:) 657:1 652:0 645:v 640:M 633:( 615:n 611:n 609:( 592:. 588:) 585:N 582:M 579:, 576:w 573:M 570:+ 567:v 564:( 561:= 558:) 555:N 552:, 549:w 546:( 540:) 537:M 534:, 531:v 528:( 515:) 513:V 507:M 503:V 499:v 495:) 493:M 489:v 487:( 479:) 477:V 471:V 459:) 457:V 434:. 430:1 424:) 421:V 418:( 406:) 403:V 400:( 388:V 382:V 376:1 360:q 356:p 349:) 347:p 343:A 341:( 337:) 335:R 329:) 327:R 321:p 313:A 301:K 297:) 295:K 291:n 272:) 269:K 266:, 263:n 260:( 246:n 242:K 238:= 235:) 232:K 229:, 226:n 223:( 197:V 193:) 191:V 172:) 169:V 166:( 154:V 151:= 148:) 145:V 142:( 123:V 115:) 113:V 107:V 99:A 95:V 91:A 84:V 20:)

Index

Special affine group
mathematics
affine space
group
affine transformations
Euclidean space
real numbers
Lie group
affine space
semidirect product
general linear group
semidirect product
stabilizer
short exact sequence
by construction of the semidirect product
block matrix
similar
similarity
non-Abelian
Lie group
§ Matrix representation
affine coordinate system
affine plane
reals
translations
scalings
Euclidean plane
perpendicular
coordinate axes
shear mapping

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.