Knowledge

Specialization (pre)order

Source 📝

1059:
with specialization order ≤ is finer than the upper topology and coarser than the Scott topology. Yet, such a space may fail to exist, that is, there exist partial orders for which there is no sober order-consistent topology. Especially, the Scott topology is not necessarily sober.
1017:
The specialization order yields a tool to obtain a preorder from every topology. It is natural to ask for the converse too: Is every preorder obtained as a specialization preorder of some topology?
1009:
with respect to a certain order ≤ if it induces ≤ as its specialization order and it has the above property of inaccessibility with respect to (existing) suprema of directed sets in ≤.
397:, in which closed points are the most specific, while a generic point of a space is one contained in every nonempty open subset. Specialization as an idea is applied also in 884: 1074: 1047:
There are also interesting topologies in between these two extremes. The finest sober topology that is order consistent in the above sense for a given order ≤ is the
837: 807: 1810: 1793: 1323: 1081:, see especially Chapter 5, that explains the motivations from the viewpoint of denotational semantics in computer science. See also the author's 1159: 1028:
of the order ≤ plays a special role: it is the finest topology that induces ≤. The other extreme, the coarsest topology that induces ≤, is the
1640: 1122: 377:
may or may not have. The more closed sets contain a point, the more properties the point has, and the more special it is. The usage is
1776: 1635: 1051:. The upper topology however is still the coarsest sober order-consistent topology. In fact, its open sets are even inaccessible by 1630: 1266: 937: 670: 373:, since it is contained in more open sets. This is particularly intuitive if one views closed sets as properties that a point 1348: 895: 1667: 1587: 96:. The specialization order is also important for identifying suitable topologies on partially ordered sets, as is done in 1261: 1452: 1381: 1355: 1343: 1306: 1281: 1256: 1210: 1179: 899: 1286: 1276: 128:
of the other. However, various authors disagree on which 'direction' the order should go. What is agreed is that if
1652: 1152: 1291: 994: 441: 156: 1557: 1184: 1805: 1788: 591:{0,1} with open sets {∅, {1}, {0,1}} the specialization order is the natural one (0 ≤ 0, 0 ≤ 1, and 1 ≤ 1). 1717: 1333: 698: 93: 1843: 1695: 1530: 1521: 1390: 1225: 1189: 1145: 787: 300:
For the sake of consistency, for the remainder of this article we will take the first definition, that "
1271: 1783: 1742: 1732: 1722: 1467: 1430: 1420: 1400: 1385: 1025: 666: 842: 1710: 1621: 1567: 1526: 1516: 1405: 1338: 1301: 907: 659: 1020:
Indeed, the answer to this question is positive and there are in general many topologies on a set
1749: 1602: 1511: 1501: 1442: 1360: 1102: 810: 729: 655: 607: 394: 270: 125: 1822: 1662: 1296: 1848: 1759: 1737: 1597: 1582: 1562: 1365: 444:
if and only if every upper set is also open (or equivalently every lower set is also closed).
52: 816: 1572: 1425: 1098: 611: 588: 398: 263: 85: 62: 1754: 1537: 1415: 1410: 1395: 1220: 1205: 1118: 887: 780: 571: 1311: 55:. For most spaces that are considered in practice, namely for all those that satisfy the 1078: 1672: 1657: 1647: 1506: 1484: 1462: 1048: 1029: 792: 256: 236: 17: 1837: 1771: 1727: 1705: 1577: 1447: 1435: 1240: 642: 405: 390: 148: 66: 755:
are topologically indistinguishable. It follows that if the underlying topology is T
1592: 1474: 1457: 1375: 1215: 1168: 941: 903: 225:
Both definitions have intuitive justifications: in the case of the former, we have
97: 902:
that assigns a topological space its specialization preorder. This functor has a
1798: 1491: 1370: 1235: 1056: 918: 654:
As suggested by the name, the specialization preorder is a preorder, i.e. it is
634: 28: 1766: 1700: 1541: 433: 378: 332: 160: 1817: 1690: 1496: 991: 437: 429: 408:, a branch of order theory that has ample applications in computer science. 440:. The converses are not generally true. In fact, a topological space is an 404:
The intuition of upper elements being more specific is typically found in
1612: 1479: 1230: 952: 733: 425: 365:
These restatements help to explain why one speaks of a "specialization":
354: 74: 56: 48: 32: 891: 386: 566:
need not be open or closed. The closed points of a topological space
420:
be a topological space and let ≤ be the specialization preorder on
1001:
One may describe the second property by saying that open sets are
886:
The converse, however, is not true in general. In the language of
382: 1082: 921:. Their relationship to the specialization order is more subtle: 269:(which is the motivational situation in applications related to 84:
The specialization order is often considered in applications in
1141: 1137: 1024:
that induce a given order ≤ as their specialization order. The
813:
with respect to the specialization preorders of these spaces:
775:. Hence, the specialization order is of little interest for T 1077:, 1998. Revised version of author's Ph.D. thesis. Available 1032:, the least topology within which all complements of sets ↓ 759:, then the specialization order is discrete, i.e. one has 669:
determined by the specialization preorder is just that of
273:), then under our second definition of the order, we have 1130:, vol. 142, Trans. Amer. Math. Soc., pp. 43–60 845: 819: 795: 81:
the order becomes trivial and is of little interest.
732:
of the specialization preorder is equivalent to the
681:are topologically indistinguishable if and only if 1683: 1611: 1550: 1320: 1249: 1198: 878: 831: 801: 222:" by various authors (see, respectively, and ). 1075:Electronic Notes in Theoretical Computer Science 917:spaces for which this order is interesting: the 721:. In this case it is justified to speak of the 913:There are spaces that are more specific than T 1153: 8: 1811:Positive cone of a partially ordered group 1160: 1146: 1138: 1124:Prime ideal structure in commutative rings 562:is always closed; however, the upper set ↑ 844: 818: 794: 1794:Positive cone of an ordered vector space 479:} is a singleton one uses the notation ↑ 1090: 389:; and also with the traditional use of 1107:, New York-Heidelberg: Springer-Verlag 463:and the smallest lower set containing 381:with the classical logical notions of 928:with specialization order ≤, we have 251:However, in the case where our space 7: 455:. The smallest upper set containing 1321:Properties & Types ( 809:between two topological spaces is 637:). Thus the closed points of Spec( 25: 1777:Positive cone of an ordered field 1631:Ordered topological vector space 1071:Topological Duality in Semantics 1003:inaccessible by directed suprema 671:topological indistinguishability 938:directed complete partial order 779:topologies, especially for all 206:" is alternatively written as " 108:Consider any topological space 896:category of topological spaces 879:{\displaystyle f(x)\leq f(y).} 870: 864: 855: 849: 51:on the set of the points of a 1: 1588:Series-parallel partial order 546:} = ∩{closed sets containing 198:Unfortunately, the property " 147:} denotes the closure of the 1267:Cantor's isomorphism theorem 432:with respect to ≤ and every 292:as prime ideals of the ring 1307:Szpilrajn extension theorem 1282:Hausdorff maximal principle 1257:Boolean prime ideal theorem 900:category of preordered sets 713:are indistinguishable then 519:} = ∩{open sets containing 191:; this is commonly written 1865: 1653:Topological vector lattice 962:for every directed subset 73:). On the other hand, for 65:, this preorder is even a 1175: 442:Alexandrov-discrete space 104:Definition and motivation 1262:Cantor–Bernstein theorem 970:, ≤) and every open set 1806:Partially ordered group 1626:Specialization preorder 832:{\displaystyle x\leq y} 728:On the other hand, the 701:of ≤ is precisely the T 304:is a specialization of 202:is a specialization of 114:specialization preorder 18:Specialization preorder 1292:Kruskal's tree theorem 1287:Knaster–Tarski theorem 1277:Dushnik–Miller theorem 880: 833: 803: 120:relates two points of 94:denotational semantics 910:on a preordered set. 881: 834: 804: 705:separation axiom: if 602:are elements of Spec( 369:is more general than 124:when one lies in the 1784:Ordered vector space 1026:Alexandroff topology 1013:Topologies on orders 924:For any sober space 843: 817: 793: 723:specialization order 667:equivalence relation 650:Important properties 641:) are precisely the 412:Upper and lower sets 353:is contained in all 331:is contained in all 71:specialization order 1622:Alexandrov topology 1568:Lexicographic order 1527:Well-quasi-ordering 1055:suprema. Hence any 908:Alexandrov topology 906:, which places the 788:continuous function 578:with respect to ≤. 135:is contained in cl{ 1603:Transitive closure 1563:Converse/Transpose 1272:Dilworth's theorem 1104:Algebraic geometry 876: 829: 799: 739:separation axiom: 570:are precisely the 395:algebraic geometry 271:algebraic geometry 1831: 1830: 1789:Partially ordered 1598:Symmetric closure 1583:Reflexive closure 1326: 1099:Hartshorne, Robin 890:, we then have a 802:{\displaystyle f} 697:. Therefore, the 53:topological space 27:In the branch of 16:(Redirected from 1856: 1573:Linear extension 1322: 1302:Mirsky's theorem 1162: 1155: 1148: 1139: 1132: 1131: 1129: 1119:Hochster, Melvin 1115: 1109: 1108: 1095: 1069:M.M. Bonsangue, 1007:order consistent 1005:. A topology is 885: 883: 882: 877: 838: 836: 835: 830: 808: 806: 805: 800: 781:Hausdorff spaces 612:commutative ring 589:Sierpinski space 572:minimal elements 399:valuation theory 308:" be written as 264:commutative ring 167:}), we say that 92:spaces occur in 86:computer science 63:separation axiom 21: 1864: 1863: 1859: 1858: 1857: 1855: 1854: 1853: 1834: 1833: 1832: 1827: 1823:Young's lattice 1679: 1607: 1546: 1396:Heyting algebra 1344:Boolean algebra 1316: 1297:Laver's theorem 1245: 1211:Boolean algebra 1206:Binary relation 1194: 1171: 1166: 1136: 1135: 1127: 1117: 1116: 1112: 1097: 1096: 1092: 1066: 1015: 942:directed subset 916: 888:category theory 841: 840: 815: 814: 791: 790: 778: 767:if and only if 758: 747:if and only if 737: 704: 652: 625:if and only if 584: 558:The lower set ↓ 451:be a subset of 414: 349:if and only if 327:if and only if 316:. We then see, 284:if and only if 106: 91: 78: 60: 23: 22: 15: 12: 11: 5: 1862: 1860: 1852: 1851: 1846: 1836: 1835: 1829: 1828: 1826: 1825: 1820: 1815: 1814: 1813: 1803: 1802: 1801: 1796: 1791: 1781: 1780: 1779: 1769: 1764: 1763: 1762: 1757: 1750:Order morphism 1747: 1746: 1745: 1735: 1730: 1725: 1720: 1715: 1714: 1713: 1703: 1698: 1693: 1687: 1685: 1681: 1680: 1678: 1677: 1676: 1675: 1670: 1668:Locally convex 1665: 1660: 1650: 1648:Order topology 1645: 1644: 1643: 1641:Order topology 1638: 1628: 1618: 1616: 1609: 1608: 1606: 1605: 1600: 1595: 1590: 1585: 1580: 1575: 1570: 1565: 1560: 1554: 1552: 1548: 1547: 1545: 1544: 1534: 1524: 1519: 1514: 1509: 1504: 1499: 1494: 1489: 1488: 1487: 1477: 1472: 1471: 1470: 1465: 1460: 1455: 1453:Chain-complete 1445: 1440: 1439: 1438: 1433: 1428: 1423: 1418: 1408: 1403: 1398: 1393: 1388: 1378: 1373: 1368: 1363: 1358: 1353: 1352: 1351: 1341: 1336: 1330: 1328: 1318: 1317: 1315: 1314: 1309: 1304: 1299: 1294: 1289: 1284: 1279: 1274: 1269: 1264: 1259: 1253: 1251: 1247: 1246: 1244: 1243: 1238: 1233: 1228: 1223: 1218: 1213: 1208: 1202: 1200: 1196: 1195: 1193: 1192: 1187: 1182: 1176: 1173: 1172: 1167: 1165: 1164: 1157: 1150: 1142: 1134: 1133: 1110: 1089: 1088: 1087: 1086: 1073:, volume 8 of 1065: 1062: 1049:Scott topology 1030:upper topology 1014: 1011: 999: 998: 960: 914: 875: 872: 869: 866: 863: 860: 857: 854: 851: 848: 828: 825: 822: 798: 776: 756: 735: 702: 651: 648: 647: 646: 643:maximal ideals 592: 583: 580: 556: 555: 524: 413: 410: 391:generic points 363: 362: 340: 298: 297: 257:prime spectrum 249: 248: 237:if and only if 185:generalization 173:specialization 141: 140: 105: 102: 89: 76: 58: 37:specialization 24: 14: 13: 10: 9: 6: 4: 3: 2: 1861: 1850: 1847: 1845: 1842: 1841: 1839: 1824: 1821: 1819: 1816: 1812: 1809: 1808: 1807: 1804: 1800: 1797: 1795: 1792: 1790: 1787: 1786: 1785: 1782: 1778: 1775: 1774: 1773: 1772:Ordered field 1770: 1768: 1765: 1761: 1758: 1756: 1753: 1752: 1751: 1748: 1744: 1741: 1740: 1739: 1736: 1734: 1731: 1729: 1728:Hasse diagram 1726: 1724: 1721: 1719: 1716: 1712: 1709: 1708: 1707: 1706:Comparability 1704: 1702: 1699: 1697: 1694: 1692: 1689: 1688: 1686: 1682: 1674: 1671: 1669: 1666: 1664: 1661: 1659: 1656: 1655: 1654: 1651: 1649: 1646: 1642: 1639: 1637: 1634: 1633: 1632: 1629: 1627: 1623: 1620: 1619: 1617: 1614: 1610: 1604: 1601: 1599: 1596: 1594: 1591: 1589: 1586: 1584: 1581: 1579: 1578:Product order 1576: 1574: 1571: 1569: 1566: 1564: 1561: 1559: 1556: 1555: 1553: 1551:Constructions 1549: 1543: 1539: 1535: 1532: 1528: 1525: 1523: 1520: 1518: 1515: 1513: 1510: 1508: 1505: 1503: 1500: 1498: 1495: 1493: 1490: 1486: 1483: 1482: 1481: 1478: 1476: 1473: 1469: 1466: 1464: 1461: 1459: 1456: 1454: 1451: 1450: 1449: 1448:Partial order 1446: 1444: 1441: 1437: 1436:Join and meet 1434: 1432: 1429: 1427: 1424: 1422: 1419: 1417: 1414: 1413: 1412: 1409: 1407: 1404: 1402: 1399: 1397: 1394: 1392: 1389: 1387: 1383: 1379: 1377: 1374: 1372: 1369: 1367: 1364: 1362: 1359: 1357: 1354: 1350: 1347: 1346: 1345: 1342: 1340: 1337: 1335: 1334:Antisymmetric 1332: 1331: 1329: 1325: 1319: 1313: 1310: 1308: 1305: 1303: 1300: 1298: 1295: 1293: 1290: 1288: 1285: 1283: 1280: 1278: 1275: 1273: 1270: 1268: 1265: 1263: 1260: 1258: 1255: 1254: 1252: 1248: 1242: 1241:Weak ordering 1239: 1237: 1234: 1232: 1229: 1227: 1226:Partial order 1224: 1222: 1219: 1217: 1214: 1212: 1209: 1207: 1204: 1203: 1201: 1197: 1191: 1188: 1186: 1183: 1181: 1178: 1177: 1174: 1170: 1163: 1158: 1156: 1151: 1149: 1144: 1143: 1140: 1126: 1125: 1120: 1114: 1111: 1106: 1105: 1100: 1094: 1091: 1084: 1080: 1076: 1072: 1068: 1067: 1063: 1061: 1058: 1054: 1050: 1045: 1043: 1039: 1035: 1031: 1027: 1023: 1018: 1012: 1010: 1008: 1004: 996: 993: 989: 985: 981: 977: 973: 969: 965: 961: 958: 954: 950: 946: 943: 940:, i.e. every 939: 935: 931: 930: 929: 927: 922: 920: 911: 909: 905: 901: 897: 893: 889: 873: 867: 861: 858: 852: 846: 826: 823: 820: 812: 796: 789: 784: 782: 774: 770: 766: 762: 754: 750: 746: 742: 738: 731: 726: 724: 720: 716: 712: 708: 700: 696: 692: 688: 684: 680: 676: 672: 668: 663: 661: 657: 649: 644: 640: 636: 632: 628: 624: 620: 616: 613: 609: 605: 601: 597: 593: 590: 586: 585: 581: 579: 577: 573: 569: 565: 561: 553: 549: 545: 541: 537: 533: 529: 525: 522: 518: 514: 510: 506: 502: 498: 497: 496: 494: 490: 486: 482: 478: 474: 470: 466: 462: 458: 454: 450: 445: 443: 439: 435: 431: 427: 423: 419: 411: 409: 407: 406:domain theory 402: 400: 396: 392: 388: 384: 380: 376: 372: 368: 360: 357:that contain 356: 352: 348: 344: 341: 338: 335:that contain 334: 330: 326: 322: 319: 318: 317: 315: 311: 307: 303: 295: 291: 287: 283: 279: 276: 275: 274: 272: 268: 265: 261: 258: 254: 246: 242: 238: 235: 231: 228: 227: 226: 223: 221: 217: 213: 209: 205: 201: 196: 194: 190: 186: 182: 178: 174: 170: 166: 163:containing { 162: 158: 154: 150: 149:singleton set 146: 138: 134: 131: 130: 129: 127: 123: 119: 115: 111: 103: 101: 99: 95: 87: 82: 80: 72: 68: 67:partial order 64: 61: 54: 50: 47:is a natural 46: 42: 38: 34: 30: 19: 1844:Order theory 1625: 1615:& Orders 1593:Star product 1522:Well-founded 1475:Prefix order 1431:Distributive 1421:Complemented 1391:Foundational 1356:Completeness 1312:Zorn's lemma 1216:Cyclic order 1199:Key concepts 1169:Order theory 1123: 1113: 1103: 1093: 1070: 1052: 1046: 1044:) are open. 1041: 1037: 1033: 1021: 1019: 1016: 1006: 1002: 1000: 995:intersection 987: 983: 979: 975: 971: 967: 963: 956: 948: 944: 933: 925: 923: 919:sober spaces 912: 904:left adjoint 785: 772: 768: 764: 760: 752: 748: 744: 740: 727: 722: 718: 714: 710: 706: 699:antisymmetry 694: 690: 686: 682: 678: 674: 664: 653: 638: 635:prime ideals 630: 626: 622: 618: 614: 603: 599: 595: 575: 567: 563: 559: 557: 551: 547: 543: 539: 535: 531: 527: 520: 516: 512: 508: 504: 500: 492: 488: 484: 480: 476: 472: 468: 467:is denoted ↓ 464: 460: 459:is denoted ↑ 456: 452: 448: 446: 421: 417: 415: 403: 374: 370: 366: 364: 358: 350: 346: 342: 336: 328: 324: 320: 313: 309: 305: 301: 299: 293: 289: 285: 281: 277: 266: 259: 252: 250: 244: 240: 233: 229: 224: 219: 215: 211: 207: 203: 199: 197: 192: 188: 184: 180: 176: 172: 168: 164: 157:intersection 155:}, i.e. the 152: 144: 142: 136: 132: 121: 117: 113: 109: 107: 98:order theory 83: 70: 69:(called the 44: 40: 36: 26: 1799:Riesz space 1760:Isomorphism 1636:Normal cone 1558:Composition 1492:Semilattice 1401:Homogeneous 1386:Equivalence 1236:Total order 1057:sober space 951:, ≤) has a 673:. That is, 333:closed sets 161:closed sets 29:mathematics 1838:Categories 1767:Order type 1701:Cofinality 1542:Well-order 1517:Transitive 1406:Idempotent 1339:Asymmetric 1064:References 1036:(for some 936:, ≤) is a 660:transitive 471:. In case 434:closed set 379:consistent 214:" and as " 143:(where cl{ 1818:Upper set 1755:Embedding 1691:Antichain 1512:Tolerance 1502:Symmetric 1497:Semiorder 1443:Reflexive 1361:Connected 992:non-empty 974:, if sup 894:from the 859:≤ 824:≤ 656:reflexive 495:one has: 438:lower set 430:upper set 355:open sets 179:and that 88:, where T 41:canonical 31:known as 1849:Topology 1613:Topology 1480:Preorder 1463:Eulerian 1426:Complete 1376:Directed 1366:Covering 1231:Preorder 1190:Category 1185:Glossary 1121:(1969), 1101:(1977), 1083:homepage 953:supremum 839:implies 811:monotone 730:symmetry 608:spectrum 582:Examples 538: : 511: : 426:open set 424:. Every 49:preorder 45:preorder 33:topology 1718:Duality 1696:Cofinal 1684:Related 1663:Fréchet 1540:)  1416:Bounded 1411:Lattice 1384:)  1382:Partial 1250:Results 1221:Lattice 982:, then 898:to the 892:functor 617:) then 606:) (the 587:In the 550:} = cl{ 387:species 255:is the 243:} ⊆ cl{ 159:of all 126:closure 1743:Subnet 1723:Filter 1673:Normed 1658:Banach 1624:& 1531:Better 1468:Strict 1458:Graded 1349:topics 1180:Topics 1079:online 978:is in 487:. For 428:is an 260:Spec R 112:. The 79:spaces 35:, the 1733:Ideal 1711:Graph 1507:Total 1485:Total 1371:Dense 1128:(PDF) 990:have 689:and 610:of a 483:and ↓ 436:is a 383:genus 262:of a 193:y ⤳ x 183:is a 171:is a 116:≤ on 1324:list 986:and 966:of ( 955:sup 947:of ( 786:Any 751:and 709:and 677:and 665:The 658:and 633:(as 447:Let 416:Let 385:and 39:(or 1738:Net 1538:Pre 1053:any 1040:in 594:If 574:of 530:= { 503:= { 475:= { 393:in 239:cl{ 187:of 175:of 1840:: 783:. 771:= 763:≤ 743:≤ 725:. 717:= 693:≤ 685:≤ 662:. 629:⊆ 621:≤ 598:, 554:}. 542:≤ 534:∈ 523:}. 515:≤ 507:∈ 491:∈ 401:. 345:≤ 323:≤ 312:≤ 288:⊆ 280:≤ 247:}. 232:≤ 218:≤ 210:≤ 195:. 139:}, 100:. 43:) 1536:( 1533:) 1529:( 1380:( 1327:) 1161:e 1154:t 1147:v 1085:. 1042:X 1038:x 1034:x 1022:X 997:. 988:O 984:S 980:O 976:S 972:O 968:X 964:S 959:, 957:S 949:X 945:S 934:X 932:( 926:X 915:0 874:. 871:) 868:y 865:( 862:f 856:) 853:x 850:( 847:f 827:y 821:x 797:f 777:1 773:y 769:x 765:y 761:x 757:1 753:y 749:x 745:y 741:x 736:0 734:R 719:y 715:x 711:y 707:x 703:0 695:x 691:y 687:y 683:x 679:y 675:x 645:. 639:R 631:p 627:q 623:q 619:p 615:R 604:R 600:q 596:p 576:X 568:X 564:x 560:x 552:x 548:x 544:x 540:y 536:X 532:y 528:x 526:↓ 521:x 517:y 513:x 509:X 505:y 501:x 499:↑ 493:X 489:x 485:x 481:x 477:x 473:A 469:A 465:A 461:A 457:A 453:X 449:A 422:X 418:X 375:x 371:x 367:y 361:. 359:x 351:y 347:y 343:x 339:. 337:y 329:x 325:y 321:x 314:y 310:x 306:y 302:x 296:. 294:R 290:x 286:y 282:x 278:y 267:R 253:X 245:y 241:x 234:y 230:x 220:x 216:y 212:y 208:x 204:y 200:x 189:x 181:y 177:y 169:x 165:y 153:y 151:{ 145:y 137:y 133:x 122:X 118:X 110:X 90:0 77:1 75:T 59:0 57:T 20:)

Index

Specialization preorder
mathematics
topology
preorder
topological space
T0
separation axiom
partial order
T1 spaces
computer science
denotational semantics
order theory
closure
singleton set
intersection
closed sets
if and only if
prime spectrum
commutative ring
algebraic geometry
closed sets
open sets
consistent
genus
species
generic points
algebraic geometry
valuation theory
domain theory
open set

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.