Knowledge (XXG)

Froude number

Source 📝

593: 2692:. R. M. Alexander found that animals of different sizes and masses travelling at different speeds, but with the same Froude number, consistently exhibit similar gaits. This study found that animals typically switch from an amble to a symmetric running gait (e.g., a trot or pace) around a Froude number of 1.0. A preference for asymmetric gaits (e.g., a canter, transverse gallop, rotary gallop, bound, or pronk) was observed at Froude numbers between 2.0 and 3.0. 206: 1441: 332: 588:{\displaystyle \rho ^{*}\equiv {\frac {\rho }{\rho _{0}}},\quad u^{*}\equiv {\frac {u}{u_{0}}},\quad r^{*}\equiv {\frac {r}{r_{0}}},\quad t^{*}\equiv {\frac {u_{0}}{r_{0}}}t,\quad \nabla ^{*}\equiv r_{0}\nabla ,\quad \mathbf {g} ^{*}\equiv {\frac {\mathbf {g} }{g_{0}}},\quad {\boldsymbol {\sigma }}^{*}\equiv {\frac {\boldsymbol {\sigma }}{p_{0}}},} 1001: 1413: 1884:
So, these flows are associated with the elevation of the topographic slopes that induce the gravity potential energy together with the pressure potential energy during the flow. Therefore, the classical Froude number should include this additional effect. For such a situation, Froude number needs to
1848:
on dynamically sensitive structures such as suspension bridges it is sometimes necessary to simulate the combined effect of the vibrating mass of the structure with the fluctuating force of the wind. In such cases, the Froude number should be respected. Similarly, when simulating hot smoke plumes
854: 2714:
One can easily see the line of "critical" flow in a kitchen or bathroom sink. Leave it unplugged and let the faucet run. Near the place where the stream of water hits the sink, the flow is supercritical. It 'hugs' the surface and moves quickly. On the outer edge of the flow pattern the flow is
2252:
The Froude number finds also a similar application in powder mixers. It will indeed be used to determine in which mixing regime the blender is working. If Fr<1, the particles are just stirred, but if Fr>1, centrifugal forces applied to the powder overcome gravity and the bed of particles
2518: 201:
introduced first the ratio of the flow velocity to the square root of the gravity acceleration times the flow depth. When the ratio was less than unity, the flow behaved like a fluvial motion (i.e., subcritical flow), and like a torrential flow motion when the ratio was greater than unity.
1280: 1169: 2683:
If total leg length is used as the characteristic length, then the theoretical maximum speed of walking has a Froude number of 1.0 since any higher value would result in takeoff and the foot missing the ground. The typical transition speed from bipedal walking to
895: 1285: 172:
the Froude number is not frequently considered since usually the equations are considered in the high Froude limit of negligible external field, leading to homogeneous equations that preserve the mathematical aspects. For example, homogeneous
758: 2679: 2419: 1968: 270: 2107:
are the pressure potential and gravity potential energies, respectively. In the classical definition of the shallow-water or granular flow Froude number, the potential energy associated with the surface elevation,
1202: 1758: 2416:, where the center of mass goes through a circular arc centered at the foot. The Froude number is the ratio of the centripetal force around the center of motion, the foot, and the weight of the animal walking: 1611: 3501: 1072: 738: 662: 2392: 2718:
The Froude number has been used to study trends in animal locomotion in order to better understand why animals use different gait patterns as well as to form hypotheses about the gaits of extinct species.
2715:
subcritical. This flow is thicker and moves more slowly. The boundary between the two areas is called a "hydraulic jump". The jump starts where the flow is just critical and Froude number is equal to 1.0.
2250: 3253:
Jikar, P. C.; Dhokey, N. B.; Shinde, S. S. (2021). "Numerical Modeling Simulation and Experimental Study of Dynamic Particle Bed Counter Current Reactor and Its Effect on Solid–Gas Reduction Reaction".
2315: 1503: 1810: 1067: 135: 1703: 2172:
is unbounded even though the kinetic energy is bounded. So, formally considering the additional contribution due to the gravitational potential energy, the singularity in Fr is removed.
3494: 2570: 2558:
may be chosen to suit the study at hand. For instance, some studies have used the vertical distance of the hip joint from the ground, while others have used total leg length.
996:{\displaystyle {\frac {\partial \mathbf {u} }{\partial t}}+\nabla \cdot \left({\frac {1}{2}}\mathbf {u} \otimes \mathbf {u} \right)={\frac {1}{\mathrm {Fr} ^{2}}}\mathbf {g} } 1888: 229:
had put forward the concept much earlier in 1852 for testing ships and propellers but Froude was unaware of it. Speed–length ratio was originally defined by Froude in his
217:(below). A sequence of 3, 6, and 12 (shown in the picture) foot scale models were constructed by Froude and used in towing trials to establish resistance and scaling laws. 3846: 3487: 2412:
The Froude number may be used to study trends in animal gait patterns. In analyses of the dynamics of legged locomotion, a walking limb is often modeled as an inverted
238: 2054: 1408:{\displaystyle {\frac {D\mathbf {u} }{Dt}}+\mathrm {Eu} {\frac {\nabla p}{\rho }}={\frac {1}{\mathrm {Re} }}\nabla ^{2}u+{\frac {1}{\mathrm {Fr} ^{2}}}{\hat {g}}} 329:, need to be defined. These should be chosen such that the dimensionless variables are all of order one. The following dimensionless variables are thus obtained: 1708: 849:{\displaystyle {\frac {D\mathbf {u} }{Dt}}+\mathrm {Eu} {\frac {1}{\rho }}\nabla \cdot {\boldsymbol {\sigma }}={\frac {1}{\mathrm {Fr} ^{2}}}\mathbf {g} } 1554: 671: 600: 2513:{\displaystyle \mathrm {Fr} ={\frac {\text{centripetal force}}{\text{gravitational force}}}={\frac {\;{\frac {mv^{2}}{l}}\;}{mg}}={\frac {v^{2}}{gl}}} 1849:
combined with natural wind, Froude number scaling is necessary to maintain the correct balance between buoyancy forces and the momentum of the wind.
3510: 3417:
Vaughan, Christopher L.; O'Malley, Mark J. (2005). "Froude and the contribution of naval architecture to our understanding of bipedal locomotion".
291:
The term was converted into non-dimensional terms and was given Froude's name in recognition of the work he did. In France, it is sometimes called
2327: 2209: 1455: 2122:, is not considered. The extended Froude number differs substantially from the classical Froude number for higher surface elevations. The term 3457: 3407: 3307: 3215: 2900: 2272: 1769: 1039: 97: 2262: 2206:
is the impeller radius (in engineering the diameter is much more frequently employed), the Froude number then takes the following form:
3474: 1547:
In the case of planing craft, where the waterline length is too speed-dependent to be meaningful, the Froude number is best defined as
2056:
is the distance from the point of the mass release along the channel to the point where the flow hits the horizontal reference datum;
1173:
Free Euler equations are conservative. The limit of high Froude numbers (low external field) is thus notable and can be studied with
225:, who used a series of scale models to measure the resistance each model offered when towed at a given speed. The naval constructor 1665: 2754: 2128:
emerges from the change of the geometry of the moving mass along the slope. Dimensional analysis suggests that for shallow flows
1027: 185:
the Froude number is a significant figure used to determine the resistance of a partially submerged object moving through water.
174: 2180:
In the study of stirred tanks, the Froude number governs the formation of surface vortices. Since the impeller tip velocity is
2722:
In addition particle bed behavior can be quantified by Froude number (Fr) in order to establish the optimum operating window.
1275:{\displaystyle {\boldsymbol {\sigma }}=p\mathbf {I} +\mu \left(\nabla \mathbf {u} +(\nabla \mathbf {u} )^{\mathsf {T}}\right)} 3656: 1164:{\displaystyle {\frac {D\mathbf {u} }{Dt}}+\mathrm {Eu} {\frac {\nabla p}{\rho }}={\frac {1}{\mathrm {Fr} ^{2}}}{\hat {g}}} 2396:
The densimetric Froude number is usually preferred by modellers who wish to nondimensionalize a speed preference to the
1638:
flow velocity, averaged over the cross-section perpendicular to the flow direction. The wave velocity, termed celerity
1186: 3856: 3382: 3183: 2400:
which is more commonly encountered when considering stratified shear layers. For example, the leading edge of a
1885:
be re-defined. The extended Froude number is defined as the ratio between the kinetic and the potential energy:
3733: 3716: 2880: 2743: 316: 597:
Substitution of these inverse relations in the Euler momentum equations, and definition of the Froude number:
3851: 3711: 3611: 3245: 2701: 2197: 1997: 1862: 1541: 665: 2917: 3189:
Essai sur la solution numerique de quelques problemes relatifs au mouvement permanent des eaux courantes
158: 3571: 3566: 3291: 2968: 2780: 2748: 75: 3475:
https://web.archive.org/web/20070927085042/http://www.qub.ac.uk/waves/fastferry/reference/MCA457.pdf
3194:
An essay on the numerical solution to some problems relative to the steady movement of running water
3636: 1174: 878: 741: 31: 3606: 3546: 3023:"Powder Mixing - Powder Mixers Design - Ribbon blender, Paddle mixer, Drum blender, Froude Number" 3820: 3351: 3279: 3142: 2992: 2708: 2162:
are both of order unity. If the mass is shallow with a virtually bed-parallel free-surface, then
1825: 1424: 1015: 1007: 182: 2539: 2168:
can be disregarded. In this situation, if the gravity potential is not taken into account, then
1551:
and the reference length is taken as the cubic root of the volumetric displacement of the hull:
205: 1448:
In marine hydrodynamic applications, the Froude number is usually referenced with the notation
871:(corresponding to negligible stress) general Cauchy momentum equation becomes an inhomogeneous 3775: 3740: 3521: 3453: 3434: 3403: 3369: 3303: 3271: 3227:"Development of the BĂ©langer Equation and Backwater Equation by Jean-Baptiste BĂ©langer (1828)" 3226: 3211: 3171: 2984: 2937: 2896: 2397: 194: 2674:{\displaystyle \mathrm {Fr} ={\frac {v^{2}}{gl}}={\frac {(lf)^{2}}{gl}}={\frac {lf^{2}}{g}}.} 3825: 3701: 3696: 3681: 3646: 3556: 3426: 3359: 3343: 3263: 3241: 3187: 3163: 3134: 2976: 2929: 2888: 1845: 1817: 1518: 873: 178: 51: 3479: 2711:
or subcritical) depends upon whether the Froude number is greater than or less than unity.
2032: 3790: 3770: 3728: 3723: 3551: 2760: 2401: 2187: 1440: 1420: 2972: 3800: 3780: 3765: 3760: 3706: 3691: 3666: 3661: 3651: 3631: 3621: 3586: 3531: 3364: 3331: 3201: 2980: 2933: 2734: â€“ Vector field which is used to mathematically describe the motion of a continuum 1625: 1537: 1196: 307:
we start from the Cauchy momentum equation in its dimensionless (nondimensional) form.
303:
To show how the Froude number is linked to general continuum mechanics and not only to
226: 222: 169: 45: 1191:
Incompressible Navier–Stokes momentum equation is a Cauchy momentum equation with the
3840: 3810: 3805: 3795: 3785: 3750: 3745: 3686: 3626: 3596: 3591: 3561: 3526: 3283: 3146: 2892: 2757: â€“ Set of quasilinear hyperbolic equations governing adiabatic and inviscid flow 2731: 1963:{\displaystyle \mathrm {Fr} ={\frac {u}{\sqrt {\beta h+s_{g}\left(x_{d}-x\right)}}},} 304: 150: 142: 3815: 3755: 3671: 3641: 3601: 3576: 3536: 3430: 3167: 2784: 1881:
take place on inclined slopes which then merge into gentle and flat run-out zones.
3317:
Normand, J.A. (1888). "On the Fineness of vessels in relation to size and speed".
17: 3447: 3397: 3205: 3154:
Alexander, RM (1989). "Optimization and gaits in the locomotion of vertebrates".
3676: 3581: 3541: 1878: 1011: 165: 3267: 3138: 2737: 1192: 1033: 83: 3275: 2988: 2941: 3299: 3022: 1874: 1858: 79: 3438: 3373: 3347: 3125:
Alexander, R. McN. (1984). "The Gaits of Bipedal and Quadrupedal Animals".
1536:
in some notations. It is an important parameter with respect to the ship's
265:{\displaystyle {\text{speed–length ratio}}={\frac {u}{\sqrt {\text{LWL}}}}} 27:
Dimensionless number; ratio of a fluid's flow inertia to the external field
3175: 2253:
becomes fluidized, at least in some part of the blender, promoting mixing
3046: 3044: 2549: 2413: 3355: 3332:"Estimating dinosaur maximum running speeds using evolutionary robotics" 2996: 2956: 2685: 1635: 1621: 321:
In order to make the equations dimensionless, a characteristic length r
87: 1753:{\displaystyle \mathrm {Fr} ={\frac {U}{\sqrt {g{\dfrac {A}{B}}}}}.} 221:
Quantifying resistance of floating objects is generally credited to
2561:
The Froude number may also be calculated from the stride frequency
1606:{\displaystyle \mathrm {Fn} _{V}={\frac {u}{\sqrt {g{\sqrt{V}}}}}.} 733:{\displaystyle \mathrm {Eu} ={\frac {p_{0}}{\rho _{0}u_{0}^{2}}},} 657:{\displaystyle \mathrm {Fr} ={\frac {u_{0}}{\sqrt {g_{0}r_{0}}}},} 204: 3483: 1444:
Wave pattern versus speed, illustrating various Froude numbers.
1032:
Euler momentum equation is a Cauchy momentum equation with the
2763: â€“ Ratio of inertial to viscous forces acting on a liquid 3080: 3078: 63: 2387:{\displaystyle g'=g{\frac {\rho _{1}-\rho _{2}}{\rho _{1}}}} 2245:{\displaystyle \mathrm {Fr} =\omega {\sqrt {\frac {r}{g}}}.} 1644:, is equal to the square root of gravitational acceleration 1865:
of terrestrial animals, including antelope and dinosaurs.
1498:{\displaystyle \mathrm {Fn} _{L}={\frac {u}{\sqrt {gL}}},} 3065: 3063: 3061: 3059: 2740: â€“ Force which acts throughout the volume of a body 1511:
is the relative flow velocity between the sea and ship,
3336:
Proceedings of the Royal Society B: Biological Sciences
863:(corresponding to negligible external field) are named 3399:
Debris Flow: Mechanics, Prediction and Countermeasures
3330:
Sellers, William Irvin; Manning, Phillip Lars (2007).
2310:{\displaystyle \mathrm {Fr} ={\frac {u}{\sqrt {g'h}}}} 1805:{\displaystyle \mathrm {Fr} ={\frac {U}{\sqrt {gd}}}.} 1527:
is the length of the ship at the water line level, or
2573: 2422: 2330: 2275: 2212: 2035: 1891: 1772: 1733: 1711: 1668: 1557: 1458: 1288: 1205: 1075: 1062:{\displaystyle {\boldsymbol {\sigma }}=p\mathbf {I} } 1042: 898: 761: 674: 603: 335: 241: 130:{\displaystyle \mathrm {Fr} ={\frac {u}{\sqrt {gL}}}} 100: 57: 3210:(2nd ed.). Butterworth–Heinemann. p. 650. 66: 60: 3319:
Transactions of the Institution of Naval Architects
3050: 54: 2673: 2512: 2386: 2309: 2244: 2048: 1962: 1804: 1760:For rectangular cross-sections with uniform depth 1752: 1697: 1605: 1497: 1407: 1274: 1187:Navier–Stokes equations § Incompressible flow 1163: 1061: 995: 848: 732: 656: 587: 264: 129: 3108: 2881:"Chapter 2. Body Support, Scaling, and Allometry" 2404:moves with a front Froude number of about unity. 3207:Hydraulics of Open Channel Flow: An Introduction 2918:"Allometry of the limbs of antelopes (Bovidae)" 859:Cauchy-type equations in the high Froude limit 86:(the latter in many applications simply due to 3127:The International Journal of Robotics Research 3084: 2707:In free-surface flow, the nature of the flow ( 1181:Incompressible Navier–Stokes momentum equation 740:the equations are finally expressed (with the 3495: 8: 2887:. Harvard University Press. pp. 26–37. 2704:between bodies of various sizes and shapes. 1698:{\displaystyle c={\sqrt {g{\frac {A}{B}}}},} 867:. On the other hand, in the low Euler limit 164:The Froude number has some analogy with the 1857:The Froude number has also been applied in 3502: 3488: 3480: 3196:] (in French). Paris: Carilian-Goeury. 2473: 2450: 1766:, the Froude number can be simplified to: 1705:so the Froude number in shallow water is: 3363: 3096: 3069: 3009: 2700:The Froude number is used to compare the 2656: 2646: 2626: 2610: 2591: 2585: 2574: 2572: 2494: 2488: 2461: 2451: 2447: 2434: 2423: 2421: 2376: 2365: 2352: 2345: 2329: 2287: 2276: 2274: 2227: 2213: 2211: 2040: 2034: 1937: 1922: 1903: 1892: 1890: 1784: 1773: 1771: 1732: 1723: 1712: 1710: 1680: 1675: 1667: 1590: 1585: 1576: 1567: 1559: 1556: 1477: 1468: 1460: 1457: 1394: 1393: 1385: 1377: 1371: 1359: 1345: 1340: 1322: 1314: 1295: 1289: 1287: 1282:in nondimensional convective form it is: 1260: 1259: 1250: 1236: 1217: 1206: 1204: 1199:being the stress constitutive relations: 1150: 1149: 1141: 1133: 1127: 1109: 1101: 1082: 1076: 1074: 1054: 1043: 1041: 988: 980: 972: 966: 953: 945: 935: 905: 899: 897: 841: 833: 825: 819: 811: 795: 787: 768: 762: 760: 718: 713: 703: 692: 686: 675: 673: 642: 632: 621: 615: 604: 602: 574: 565: 556: 551: 538: 529: 527: 518: 513: 499: 486: 467: 457: 451: 442: 426: 417: 408: 392: 383: 374: 358: 349: 340: 334: 250: 242: 240: 112: 101: 99: 3847:Dimensionless numbers of fluid mechanics 3511:Dimensionless numbers in fluid mechanics 3383:"Chapter 6 Incompressible Inviscid Flow" 1540:, or resistance, especially in terms of 1439: 1036:being the stress constitutive relation: 198: 3246:10.1061/(ASCE)0733-9429(2009)135:3(159) 2842: 2830: 2818: 2772: 1207: 1044: 812: 567: 552: 2866: 2196:is the impeller frequency (usually in 2029:is the channel downslope position and 1261: 1069:in nondimensional Lagrangian form is: 2806: 2751: â€“ Partial differential equation 90:). The Froude number is based on the 7: 3256:Mining, Metallurgy & Exploration 2879:Alexander, R. McNeill (2013-10-01). 2854: 2794: 2779:Merriam Webster Online (for brother 1423:. Free Navier–Stokes equations are 2981:10.1038/scientificamerican0491-130 2934:10.1111/j.1469-7998.1977.tb04177.x 2578: 2575: 2427: 2424: 2280: 2277: 2217: 2214: 1896: 1893: 1777: 1774: 1716: 1713: 1563: 1560: 1464: 1461: 1381: 1378: 1356: 1349: 1346: 1325: 1318: 1315: 1247: 1233: 1137: 1134: 1112: 1105: 1102: 976: 973: 924: 912: 902: 829: 826: 805: 791: 788: 679: 676: 608: 605: 505: 483: 105: 102: 25: 3452:(4th ed.). WCB/McGraw-Hill. 1620:For shallow water waves, such as 325:, and a characteristic velocity u 233:in 1868 in dimensional terms as: 3234:Journal of Hydraulic Engineering 2893:10.4159/harvard.9780674184404.c2 2885:Functional Vertebrate Morphology 2755:Euler equations (fluid dynamics) 2261:When used in the context of the 1656:, divided by free-surface width 1296: 1251: 1237: 1218: 1083: 1055: 1028:Euler equations (fluid dynamics) 989: 954: 946: 906: 889:nondimensional conservation form 842: 769: 530: 514: 50: 3109:Jikar, Dhokey & Shinde 2021 1873:Geophysical mass flows such as 744:and now omitting the indexes): 549: 511: 481: 437: 403: 369: 299:Definition and main application 3431:10.1016/j.gaitpost.2004.01.011 3168:10.1152/physrev.1989.69.4.1199 2955:Alexander, R. McNeill (1991). 2623: 2613: 2532:is the characteristic length, 1628:, the characteristic velocity 1399: 1256: 1244: 1155: 1006:This is an inhomogeneous pure 752:nondimensional convective form 1: 1824:the flow is characterised as 1650:, times cross-sectional area 3298:. Cambridge, Massachusetts: 2552:. The characteristic length 78:defined as the ratio of the 3396:Takahashi, Tamotsu (2007). 3051:Vaughan & O'Malley 2005 2916:Alexander, R. McN. (1977). 2540:acceleration due to gravity 1976:is the mean flow velocity, 1519:acceleration due to gravity 877:(here we make explicit the 3873: 3381:Shih, Y.C. (Spring 2009), 3268:10.1007/s42461-021-00516-6 3139:10.1177/027836498400300205 3085:Sellers & Manning 2007 1998:earth pressure coefficient 1549:displacement Froude number 1184: 1025: 314: 3517: 2267:densimetric Froude number 2257:Densimetric Froude number 244:speed–length ratio 3446:White, Frank M. (1999). 3225:Chanson, Hubert (2009). 2744:Cauchy momentum equation 2324:is the reduced gravity: 2263:Boussinesq approximation 748:Cauchy momentum equation 317:Cauchy momentum equation 311:Cauchy momentum equation 3184:Belanger, Jean Baptiste 1832:the flow is denoted as 1022:Euler momentum equation 3348:10.1098/rspb.2007.0846 2702:wave making resistance 2675: 2514: 2388: 2311: 2246: 2050: 1964: 1869:Extended Froude number 1806: 1754: 1699: 1607: 1542:wave making resistance 1499: 1445: 1409: 1276: 1165: 1063: 997: 850: 734: 658: 589: 295:after Frederic Reech. 266: 218: 179:conservation equations 131: 3292:Newman, John Nicholas 3262:. Springer: 139–152. 3156:Physiological Reviews 2676: 2515: 2408:Walking Froude number 2389: 2312: 2247: 2051: 2049:{\displaystyle x_{d}} 1965: 1816:the flow is called a 1807: 1755: 1700: 1608: 1517:is in particular the 1500: 1443: 1410: 1277: 1166: 1064: 998: 851: 735: 659: 590: 287:= length of waterline 267: 208: 159:characteristic length 132: 94:which he defined as: 3296:Marine hydrodynamics 2781:James Anthony Froude 2571: 2420: 2328: 2273: 2210: 2033: 1889: 1770: 1709: 1666: 1555: 1456: 1427:(non conservative). 1286: 1203: 1073: 1040: 896: 759: 672: 601: 333: 239: 98: 84:external force field 76:dimensionless number 3053:, pp. 350–362. 2973:1991SciAm.264d.130A 2961:Scientific American 2957:"How Dinosaurs Ran" 2833:, pp. 257–261. 2821:, pp. 159–163. 2440:gravitational force 1616:Shallow water waves 1452:and is defined as: 1175:perturbation theory 879:material derivative 742:material derivative 723: 293:Reech–Froude number 32:continuum mechanics 3857:Naval architecture 3657:Keulegan–Carpenter 3419:Gait & Posture 2922:Journal of Zoology 2671: 2510: 2384: 2307: 2242: 2046: 1960: 1826:supercritical flow 1802: 1750: 1742: 1695: 1603: 1495: 1446: 1436:Ship hydrodynamics 1431:Other applications 1405: 1272: 1161: 1059: 1016:diffusion equation 1008:advection equation 993: 846: 730: 709: 654: 585: 262: 219: 195:open channel flows 183:naval architecture 127: 92:speed–length ratio 18:Speed–length ratio 3834: 3833: 3459:978-0-07-116848-9 3409:978-0-203-94628-2 3309:978-0-262-14026-3 3217:978-0-7506-5978-9 3027:powderprocess.net 2902:978-0-674-18440-4 2749:Burgers' equation 2666: 2641: 2605: 2508: 2483: 2471: 2442: 2441: 2438: 2437:centripetal force 2398:Richardson number 2382: 2305: 2304: 2237: 2236: 1955: 1954: 1844:When considering 1797: 1796: 1745: 1744: 1741: 1690: 1688: 1598: 1597: 1595: 1490: 1489: 1402: 1391: 1353: 1335: 1309: 1158: 1147: 1122: 1096: 1010:, as much as the 986: 943: 919: 839: 803: 782: 725: 649: 648: 580: 544: 473: 432: 398: 364: 260: 259: 258: 245: 231:Law of Comparison 168:. In theoretical 125: 124: 16:(Redirected from 3864: 3504: 3497: 3490: 3481: 3463: 3442: 3413: 3392: 3387: 3377: 3367: 3342:(1626): 2711–6. 3326: 3313: 3287: 3249: 3231: 3221: 3197: 3179: 3150: 3112: 3106: 3100: 3094: 3088: 3082: 3073: 3067: 3054: 3048: 3039: 3038: 3036: 3034: 3019: 3013: 3007: 3001: 3000: 2952: 2946: 2945: 2913: 2907: 2906: 2876: 2870: 2864: 2858: 2852: 2846: 2845:, p. xxvii. 2840: 2834: 2828: 2822: 2816: 2810: 2804: 2798: 2792: 2786: 2777: 2691: 2680: 2678: 2677: 2672: 2667: 2662: 2661: 2660: 2647: 2642: 2640: 2632: 2631: 2630: 2611: 2606: 2604: 2596: 2595: 2586: 2581: 2566: 2557: 2547: 2537: 2531: 2525: 2519: 2517: 2516: 2511: 2509: 2507: 2499: 2498: 2489: 2484: 2482: 2474: 2472: 2467: 2466: 2465: 2452: 2448: 2443: 2439: 2436: 2435: 2430: 2393: 2391: 2390: 2385: 2383: 2381: 2380: 2371: 2370: 2369: 2357: 2356: 2346: 2338: 2323: 2316: 2314: 2313: 2308: 2306: 2300: 2292: 2288: 2283: 2251: 2249: 2248: 2243: 2238: 2229: 2228: 2220: 2205: 2195: 2185: 2171: 2167: 2161: 2140: 2134: 2127: 2121: 2120: 2119: 2106: 2086: 2085: 2073: 2068: 2067: 2055: 2053: 2052: 2047: 2045: 2044: 2028: 2022: 2005: 1995: 1989: 1975: 1969: 1967: 1966: 1961: 1956: 1953: 1949: 1942: 1941: 1927: 1926: 1908: 1904: 1899: 1861:to studying the 1840:Wind engineering 1831: 1823: 1818:subcritical flow 1815: 1811: 1809: 1808: 1803: 1798: 1789: 1785: 1780: 1765: 1759: 1757: 1756: 1751: 1746: 1743: 1734: 1728: 1724: 1719: 1704: 1702: 1701: 1696: 1691: 1689: 1681: 1676: 1661: 1655: 1649: 1643: 1633: 1612: 1610: 1609: 1604: 1599: 1596: 1594: 1586: 1581: 1577: 1572: 1571: 1566: 1535: 1526: 1516: 1510: 1504: 1502: 1501: 1496: 1491: 1482: 1478: 1473: 1472: 1467: 1451: 1418: 1414: 1412: 1411: 1406: 1404: 1403: 1395: 1392: 1390: 1389: 1384: 1372: 1364: 1363: 1354: 1352: 1341: 1336: 1331: 1323: 1321: 1310: 1308: 1300: 1299: 1290: 1281: 1279: 1278: 1273: 1271: 1267: 1266: 1265: 1264: 1254: 1240: 1221: 1210: 1170: 1168: 1167: 1162: 1160: 1159: 1151: 1148: 1146: 1145: 1140: 1128: 1123: 1118: 1110: 1108: 1097: 1095: 1087: 1086: 1077: 1068: 1066: 1065: 1060: 1058: 1047: 1002: 1000: 999: 994: 992: 987: 985: 984: 979: 967: 962: 958: 957: 949: 944: 936: 920: 918: 910: 909: 900: 885:Burgers equation 874:Burgers equation 870: 862: 855: 853: 852: 847: 845: 840: 838: 837: 832: 820: 815: 804: 796: 794: 783: 781: 773: 772: 763: 739: 737: 736: 731: 726: 724: 722: 717: 708: 707: 697: 696: 687: 682: 663: 661: 660: 655: 650: 647: 646: 637: 636: 627: 626: 625: 616: 611: 594: 592: 591: 586: 581: 579: 578: 566: 561: 560: 555: 545: 543: 542: 533: 528: 523: 522: 517: 504: 503: 491: 490: 474: 472: 471: 462: 461: 452: 447: 446: 433: 431: 430: 418: 413: 412: 399: 397: 396: 384: 379: 378: 365: 363: 362: 350: 345: 344: 286: 280: 271: 269: 268: 263: 261: 256: 255: 251: 246: 243: 156: 148: 140: 136: 134: 133: 128: 126: 117: 113: 108: 73: 72: 69: 68: 65: 62: 59: 56: 43: 21: 3872: 3871: 3867: 3866: 3865: 3863: 3862: 3861: 3837: 3836: 3835: 3830: 3513: 3508: 3471: 3466: 3460: 3449:Fluid mechanics 3445: 3416: 3410: 3395: 3390:Fluid Mechanics 3385: 3380: 3329: 3316: 3310: 3290: 3252: 3229: 3224: 3218: 3202:Chanson, Hubert 3200: 3182: 3162:(4): 1199–227. 3153: 3124: 3120: 3115: 3107: 3103: 3095: 3091: 3083: 3076: 3068: 3057: 3049: 3042: 3032: 3030: 3021: 3020: 3016: 3008: 3004: 2954: 2953: 2949: 2915: 2914: 2910: 2903: 2878: 2877: 2873: 2865: 2861: 2853: 2849: 2841: 2837: 2829: 2825: 2817: 2813: 2805: 2801: 2793: 2789: 2778: 2774: 2770: 2761:Reynolds number 2728: 2698: 2689: 2652: 2648: 2633: 2622: 2612: 2597: 2587: 2569: 2568: 2562: 2553: 2543: 2533: 2527: 2521: 2500: 2490: 2475: 2457: 2453: 2449: 2418: 2417: 2410: 2402:gravity current 2372: 2361: 2348: 2347: 2331: 2326: 2325: 2318: 2293: 2271: 2270: 2259: 2208: 2207: 2201: 2191: 2188:circular motion 2181: 2178: 2169: 2163: 2154: 2147: 2142: 2136: 2129: 2123: 2118: 2115: 2114: 2113: 2109: 2099: 2092: 2084: 2081: 2080: 2079: 2075: 2066: 2063: 2062: 2061: 2057: 2036: 2031: 2030: 2024: 2012: 2007: 2006:is the slope), 2001: 1991: 1977: 1971: 1933: 1932: 1928: 1918: 1887: 1886: 1871: 1855: 1842: 1829: 1821: 1813: 1768: 1767: 1761: 1707: 1706: 1664: 1663: 1657: 1651: 1645: 1639: 1629: 1626:hydraulic jumps 1618: 1558: 1553: 1552: 1534: 1528: 1522: 1512: 1506: 1459: 1454: 1453: 1449: 1438: 1433: 1421:Reynolds number 1416: 1376: 1355: 1324: 1301: 1291: 1284: 1283: 1255: 1232: 1228: 1201: 1200: 1189: 1183: 1132: 1111: 1088: 1078: 1071: 1070: 1038: 1037: 1030: 1024: 1012:Stokes equation 1004: 971: 934: 930: 911: 901: 894: 893: 868: 860: 857: 824: 774: 764: 757: 756: 699: 698: 688: 670: 669: 638: 628: 617: 599: 598: 570: 550: 534: 512: 495: 482: 463: 453: 438: 422: 404: 388: 370: 354: 336: 331: 330: 328: 324: 319: 313: 301: 284: 276: 237: 236: 191: 175:Euler equations 154: 146: 138: 96: 95: 53: 49: 39: 28: 23: 22: 15: 12: 11: 5: 3870: 3868: 3860: 3859: 3854: 3852:Fluid dynamics 3849: 3839: 3838: 3832: 3831: 3829: 3828: 3823: 3818: 3813: 3808: 3803: 3798: 3793: 3788: 3783: 3778: 3773: 3768: 3763: 3758: 3753: 3748: 3743: 3738: 3737: 3736: 3726: 3721: 3720: 3719: 3714: 3704: 3699: 3694: 3689: 3684: 3679: 3674: 3669: 3664: 3659: 3654: 3649: 3644: 3639: 3634: 3629: 3624: 3619: 3614: 3609: 3604: 3599: 3594: 3589: 3584: 3579: 3574: 3569: 3564: 3559: 3554: 3549: 3544: 3539: 3534: 3529: 3524: 3518: 3515: 3514: 3509: 3507: 3506: 3499: 3492: 3484: 3478: 3477: 3470: 3469:External links 3467: 3465: 3464: 3458: 3443: 3414: 3408: 3393: 3378: 3327: 3314: 3308: 3288: 3250: 3222: 3216: 3198: 3180: 3151: 3121: 3119: 3116: 3114: 3113: 3101: 3097:Alexander 1989 3089: 3074: 3070:Alexander 1984 3055: 3040: 3014: 3010:Takahashi 2007 3002: 2967:(4): 130–137. 2947: 2928:(1): 125–146. 2908: 2901: 2871: 2859: 2847: 2835: 2823: 2811: 2809:, p. 294. 2799: 2787: 2771: 2769: 2766: 2765: 2764: 2758: 2752: 2746: 2741: 2735: 2727: 2724: 2697: 2694: 2670: 2665: 2659: 2655: 2651: 2645: 2639: 2636: 2629: 2625: 2621: 2618: 2615: 2609: 2603: 2600: 2594: 2590: 2584: 2580: 2577: 2506: 2503: 2497: 2493: 2487: 2481: 2478: 2470: 2464: 2460: 2456: 2446: 2433: 2429: 2426: 2409: 2406: 2379: 2375: 2368: 2364: 2360: 2355: 2351: 2344: 2341: 2337: 2334: 2303: 2299: 2296: 2291: 2286: 2282: 2279: 2269:is defined as 2258: 2255: 2241: 2235: 2232: 2226: 2223: 2219: 2216: 2177: 2174: 2152: 2145: 2116: 2097: 2090: 2082: 2064: 2043: 2039: 2010: 1959: 1952: 1948: 1945: 1940: 1936: 1931: 1925: 1921: 1917: 1914: 1911: 1907: 1902: 1898: 1895: 1870: 1867: 1854: 1851: 1841: 1838: 1820:, further for 1801: 1795: 1792: 1788: 1783: 1779: 1776: 1749: 1740: 1737: 1731: 1727: 1722: 1718: 1715: 1694: 1687: 1684: 1679: 1674: 1671: 1617: 1614: 1602: 1593: 1589: 1584: 1580: 1575: 1570: 1565: 1562: 1532: 1494: 1488: 1485: 1481: 1476: 1471: 1466: 1463: 1437: 1434: 1432: 1429: 1401: 1398: 1388: 1383: 1380: 1375: 1370: 1367: 1362: 1358: 1351: 1348: 1344: 1339: 1334: 1330: 1327: 1320: 1317: 1313: 1307: 1304: 1298: 1294: 1270: 1263: 1258: 1253: 1249: 1246: 1243: 1239: 1235: 1231: 1227: 1224: 1220: 1216: 1213: 1209: 1182: 1179: 1157: 1154: 1144: 1139: 1136: 1131: 1126: 1121: 1117: 1114: 1107: 1104: 1100: 1094: 1091: 1085: 1081: 1057: 1053: 1050: 1046: 1023: 1020: 991: 983: 978: 975: 970: 965: 961: 956: 952: 948: 942: 939: 933: 929: 926: 923: 917: 914: 908: 904: 883: 865:free equations 844: 836: 831: 828: 823: 818: 814: 810: 807: 802: 799: 793: 790: 786: 780: 777: 771: 767: 746: 729: 721: 716: 712: 706: 702: 695: 691: 685: 681: 678: 653: 645: 641: 635: 631: 624: 620: 614: 610: 607: 584: 577: 573: 569: 564: 559: 554: 548: 541: 537: 532: 526: 521: 516: 510: 507: 502: 498: 494: 489: 485: 480: 477: 470: 466: 460: 456: 450: 445: 441: 436: 429: 425: 421: 416: 411: 407: 402: 395: 391: 387: 382: 377: 373: 368: 361: 357: 353: 348: 343: 339: 326: 322: 312: 309: 300: 297: 289: 288: 282: 254: 249: 227:Frederic Reech 223:William Froude 190: 187: 181:. However, in 170:fluid dynamics 153:(in m/s), and 123: 120: 116: 111: 107: 104: 46:William Froude 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 3869: 3858: 3855: 3853: 3850: 3848: 3845: 3844: 3842: 3827: 3824: 3822: 3819: 3817: 3814: 3812: 3809: 3807: 3804: 3802: 3799: 3797: 3794: 3792: 3789: 3787: 3784: 3782: 3779: 3777: 3774: 3772: 3769: 3767: 3764: 3762: 3759: 3757: 3754: 3752: 3749: 3747: 3744: 3742: 3739: 3735: 3732: 3731: 3730: 3727: 3725: 3722: 3718: 3715: 3713: 3710: 3709: 3708: 3705: 3703: 3700: 3698: 3695: 3693: 3690: 3688: 3685: 3683: 3680: 3678: 3675: 3673: 3670: 3668: 3665: 3663: 3660: 3658: 3655: 3653: 3650: 3648: 3645: 3643: 3640: 3638: 3635: 3633: 3630: 3628: 3625: 3623: 3620: 3618: 3615: 3613: 3610: 3608: 3605: 3603: 3600: 3598: 3595: 3593: 3590: 3588: 3585: 3583: 3580: 3578: 3575: 3573: 3570: 3568: 3567:Chandrasekhar 3565: 3563: 3560: 3558: 3555: 3553: 3550: 3548: 3545: 3543: 3540: 3538: 3535: 3533: 3530: 3528: 3525: 3523: 3520: 3519: 3516: 3512: 3505: 3500: 3498: 3493: 3491: 3486: 3485: 3482: 3476: 3473: 3472: 3468: 3461: 3455: 3451: 3450: 3444: 3440: 3436: 3432: 3428: 3425:(3): 350–62. 3424: 3420: 3415: 3411: 3405: 3402:. CRC Press. 3401: 3400: 3394: 3391: 3384: 3379: 3375: 3371: 3366: 3361: 3357: 3353: 3349: 3345: 3341: 3337: 3333: 3328: 3324: 3320: 3315: 3311: 3305: 3301: 3297: 3293: 3289: 3285: 3281: 3277: 3273: 3269: 3265: 3261: 3257: 3251: 3247: 3243: 3240:(3): 159–63. 3239: 3235: 3228: 3223: 3219: 3213: 3209: 3208: 3203: 3199: 3195: 3191: 3190: 3185: 3181: 3177: 3173: 3169: 3165: 3161: 3157: 3152: 3148: 3144: 3140: 3136: 3132: 3128: 3123: 3122: 3117: 3110: 3105: 3102: 3098: 3093: 3090: 3086: 3081: 3079: 3075: 3071: 3066: 3064: 3062: 3060: 3056: 3052: 3047: 3045: 3041: 3028: 3024: 3018: 3015: 3011: 3006: 3003: 2998: 2994: 2990: 2986: 2982: 2978: 2974: 2970: 2966: 2962: 2958: 2951: 2948: 2943: 2939: 2935: 2931: 2927: 2923: 2919: 2912: 2909: 2904: 2898: 2894: 2890: 2886: 2882: 2875: 2872: 2869:, p. 28. 2868: 2863: 2860: 2856: 2851: 2848: 2844: 2839: 2836: 2832: 2827: 2824: 2820: 2815: 2812: 2808: 2803: 2800: 2796: 2791: 2788: 2785: 2782: 2776: 2773: 2767: 2762: 2759: 2756: 2753: 2750: 2747: 2745: 2742: 2739: 2736: 2733: 2732:Flow velocity 2730: 2729: 2725: 2723: 2720: 2716: 2712: 2710: 2709:supercritical 2705: 2703: 2695: 2693: 2687: 2681: 2668: 2663: 2657: 2653: 2649: 2643: 2637: 2634: 2627: 2619: 2616: 2607: 2601: 2598: 2592: 2588: 2582: 2565: 2559: 2556: 2551: 2546: 2541: 2536: 2530: 2526:is the mass, 2524: 2504: 2501: 2495: 2491: 2485: 2479: 2476: 2468: 2462: 2458: 2454: 2444: 2431: 2415: 2407: 2405: 2403: 2399: 2394: 2377: 2373: 2366: 2362: 2358: 2353: 2349: 2342: 2339: 2335: 2332: 2321: 2301: 2297: 2294: 2289: 2284: 2268: 2264: 2256: 2254: 2239: 2233: 2230: 2224: 2221: 2204: 2199: 2194: 2189: 2184: 2176:Stirred tanks 2175: 2173: 2166: 2159: 2155: 2148: 2139: 2132: 2126: 2112: 2104: 2100: 2093: 2078: 2072: 2060: 2041: 2037: 2027: 2021: 2017: 2013: 2004: 1999: 1994: 1988: 1984: 1980: 1974: 1957: 1950: 1946: 1943: 1938: 1934: 1929: 1923: 1919: 1915: 1912: 1909: 1905: 1900: 1882: 1880: 1876: 1868: 1866: 1864: 1860: 1852: 1850: 1847: 1839: 1837: 1835: 1834:critical flow 1827: 1819: 1799: 1793: 1790: 1786: 1781: 1764: 1747: 1738: 1735: 1729: 1725: 1720: 1692: 1685: 1682: 1677: 1672: 1669: 1660: 1654: 1648: 1642: 1637: 1632: 1627: 1623: 1615: 1613: 1600: 1591: 1587: 1582: 1578: 1573: 1568: 1550: 1545: 1543: 1539: 1531: 1525: 1520: 1515: 1509: 1492: 1486: 1483: 1479: 1474: 1469: 1442: 1435: 1430: 1428: 1426: 1422: 1396: 1386: 1373: 1368: 1365: 1360: 1342: 1337: 1332: 1328: 1311: 1305: 1302: 1292: 1268: 1241: 1229: 1225: 1222: 1214: 1211: 1198: 1194: 1188: 1180: 1178: 1176: 1171: 1152: 1142: 1129: 1124: 1119: 1115: 1098: 1092: 1089: 1079: 1051: 1048: 1035: 1029: 1021: 1019: 1017: 1013: 1009: 1003: 981: 968: 963: 959: 950: 940: 937: 931: 927: 921: 915: 890: 886: 882: 880: 876: 875: 866: 856: 834: 821: 816: 808: 800: 797: 784: 778: 775: 765: 753: 749: 745: 743: 727: 719: 714: 710: 704: 700: 693: 689: 683: 667: 651: 643: 639: 633: 629: 622: 618: 612: 595: 582: 575: 571: 562: 557: 546: 539: 535: 524: 519: 508: 500: 496: 492: 487: 478: 475: 468: 464: 458: 454: 448: 443: 439: 434: 427: 423: 419: 414: 409: 405: 400: 393: 389: 385: 380: 375: 371: 366: 359: 355: 351: 346: 341: 337: 318: 310: 308: 306: 305:hydrodynamics 298: 296: 294: 283: 279: 275: 274: 273: 252: 247: 234: 232: 228: 224: 216: 212: 209:The hulls of 207: 203: 200: 199:Belanger 1828 196: 188: 186: 184: 180: 176: 171: 167: 162: 160: 152: 151:gravity field 149:is the local 144: 143:flow velocity 141:is the local 121: 118: 114: 109: 93: 89: 85: 81: 77: 71: 47: 42: 37: 36:Froude number 33: 19: 3616: 3448: 3422: 3418: 3398: 3389: 3339: 3335: 3322: 3318: 3295: 3259: 3255: 3237: 3233: 3206: 3193: 3188: 3159: 3155: 3133:(2): 49–59. 3130: 3126: 3104: 3092: 3031:. Retrieved 3026: 3017: 3012:, p. 6. 3005: 2964: 2960: 2950: 2925: 2921: 2911: 2884: 2874: 2862: 2850: 2843:Chanson 2004 2838: 2831:Normand 1888 2826: 2819:Chanson 2009 2814: 2802: 2797:, p. 7. 2790: 2775: 2721: 2717: 2713: 2706: 2699: 2688:occurs with 2682: 2567:as follows: 2563: 2560: 2554: 2544: 2534: 2528: 2522: 2411: 2395: 2319: 2266: 2260: 2202: 2192: 2182: 2179: 2164: 2157: 2150: 2143: 2137: 2130: 2124: 2110: 2102: 2095: 2088: 2076: 2070: 2058: 2025: 2019: 2015: 2008: 2002: 1992: 1986: 1982: 1978: 1972: 1883: 1879:debris flows 1872: 1856: 1846:wind effects 1843: 1833: 1762: 1658: 1652: 1646: 1640: 1630: 1619: 1548: 1546: 1529: 1523: 1513: 1507: 1447: 1197:Stokes's law 1190: 1172: 1031: 1005: 892: 888: 884: 872: 864: 858: 755: 751: 747: 666:Euler number 596: 320: 302: 292: 290: 281:= flow speed 277: 235: 230: 220: 214: 213:(above) and 210: 192: 163: 91: 80:flow inertia 40: 35: 29: 3821:Weissenberg 2867:Newman 1977 1425:dissipative 166:Mach number 3841:Categories 3741:Richardson 3522:Archimedes 3325:: 257–261. 3118:References 2807:White 1999 2738:Body force 1875:avalanches 1863:locomotion 1193:Pascal law 1185:See also: 1034:Pascal law 1026:See also: 1014:is a pure 315:See also: 145:(in m/s), 3826:Womersley 3717:turbulent 3697:Ohnesorge 3682:Marangoni 3647:Iribarren 3572:Damköhler 3557:Capillary 3300:MIT Press 3284:244507908 3276:2524-3462 3147:120138903 2989:0036-8733 2942:0952-8369 2855:Shih 2009 2795:Shih 2009 2374:ρ 2363:ρ 2359:− 2350:ρ 2225:ω 2190:), where 1944:− 1910:β 1859:allometry 1853:Allometry 1822:Fr > 1 1814:Fr < 1 1400:^ 1357:∇ 1333:ρ 1326:∇ 1248:∇ 1234:∇ 1226:μ 1208:σ 1156:^ 1120:ρ 1113:∇ 1045:σ 951:⊗ 928:⋅ 925:∇ 913:∂ 903:∂ 813:σ 809:⋅ 806:∇ 801:ρ 701:ρ 568:σ 563:≡ 558:∗ 553:σ 525:≡ 520:∗ 506:∇ 493:≡ 488:∗ 484:∇ 449:≡ 444:∗ 415:≡ 410:∗ 381:≡ 376:∗ 356:ρ 352:ρ 347:≡ 342:∗ 338:ρ 161:(in m). 3801:Suratman 3791:Strouhal 3771:Sherwood 3734:magnetic 3729:Reynolds 3724:Rayleigh 3712:magnetic 3552:Brinkman 3439:15760752 3374:17711833 3356:25249388 3294:(1977). 3204:(2004). 3186:(1828). 2997:24936872 2726:See also 2690:Fr ≈ 0.5 2550:velocity 2414:pendulum 2336:′ 2298:′ 2135:, while 1622:tsunamis 664:and the 44:, after 3781:Stanton 3776:Shields 3766:Scruton 3761:Schmidt 3707:Prandtl 3692:Nusselt 3667:Laplace 3662:Knudsen 3652:Kapitza 3637:Görtler 3632:Grashof 3622:Galilei 3587:Deborah 3532:Bagnold 3365:2279215 3176:2678167 2969:Bibcode 2686:running 2548:is the 2538:is the 1996:is the 1828:. When 1636:average 1634:is the 1419:is the 272:where: 189:Origins 88:gravity 82:to the 74:) is a 3811:Ursell 3806:Taylor 3796:Stuart 3786:Stokes 3751:Rossby 3746:Roshko 3702:PĂ©clet 3687:Morton 3627:Graetz 3617:Froude 3607:Eötvös 3597:Eckert 3592:Dukhin 3562:Cauchy 3527:Atwood 3456:  3437:  3406:  3372:  3362:  3354:  3306:  3282:  3274:  3214:  3174:  3145:  3033:31 May 2995:  2987:  2940:  2899:  2520:where 2317:where 2200:) and 1970:where 1830:Fr ≈ 1 1521:, and 1505:where 1415:where 869:Eu → 0 861:Fr → ∞ 137:where 34:, the 3816:Weber 3756:Rouse 3672:Lewis 3642:Hagen 3612:Euler 3602:Ekman 3577:Darcy 3537:Bejan 3386:(PDF) 3352:JSTOR 3280:S2CID 3230:(PDF) 3192:[ 3143:S2CID 3029:. n.d 2993:JSTOR 2768:Notes 2696:Usage 215:raven 157:is a 3677:Mach 3582:Dean 3547:Bond 3542:Biot 3454:ISBN 3435:PMID 3404:ISBN 3370:PMID 3304:ISBN 3272:ISSN 3212:ISBN 3172:PMID 3035:2019 2985:ISSN 2938:ISSN 2897:ISBN 2542:and 2265:the 2141:and 2074:and 2018:sin 1985:cos 1877:and 1812:For 1624:and 1538:drag 1195:and 211:swan 177:are 3427:doi 3360:PMC 3344:doi 3340:274 3264:doi 3242:doi 3238:135 3164:doi 3135:doi 2977:doi 2965:264 2930:doi 2926:183 2889:doi 2198:rpm 2133:â‰Ș 1 2117:pot 2083:pot 2065:pot 1990:, ( 881:): 285:LWL 257:LWL 193:In 30:In 3843:: 3433:. 3423:21 3421:. 3388:, 3368:. 3358:. 3350:. 3338:. 3334:. 3323:29 3321:. 3302:. 3278:. 3270:. 3260:39 3258:. 3236:. 3232:. 3170:. 3160:69 3158:. 3141:. 3129:. 3077:^ 3058:^ 3043:^ 3025:. 2991:. 2983:. 2975:. 2963:. 2959:. 2936:. 2924:. 2920:. 2895:. 2883:. 2783:) 2183:ωr 2170:Fr 2165:ÎČh 2156:− 2131:ÎČh 2125:ÎČh 2101:− 2087:= 2071:ÎČh 2069:= 2023:, 2014:= 2000:, 1983:gK 1981:= 1836:. 1662:: 1544:. 1533:wl 1450:Fn 1417:Re 1177:. 1018:. 891:) 754:) 668:: 197:, 64:uː 48:, 41:Fr 3503:e 3496:t 3489:v 3462:. 3441:. 3429:: 3412:. 3376:. 3346:: 3312:. 3286:. 3266:: 3248:. 3244:: 3220:. 3178:. 3166:: 3149:. 3137:: 3131:3 3111:. 3099:. 3087:. 3072:. 3037:. 2999:. 2979:: 2971:: 2944:. 2932:: 2905:. 2891:: 2857:. 2669:. 2664:g 2658:2 2654:f 2650:l 2644:= 2638:l 2635:g 2628:2 2624:) 2620:f 2617:l 2614:( 2608:= 2602:l 2599:g 2593:2 2589:v 2583:= 2579:r 2576:F 2564:f 2555:l 2545:v 2535:g 2529:l 2523:m 2505:l 2502:g 2496:2 2492:v 2486:= 2480:g 2477:m 2469:l 2463:2 2459:v 2455:m 2445:= 2432:= 2428:r 2425:F 2378:1 2367:2 2354:1 2343:g 2340:= 2333:g 2322:â€Č 2320:g 2302:h 2295:g 2290:u 2285:= 2281:r 2278:F 2240:. 2234:g 2231:r 2222:= 2218:r 2215:F 2203:r 2193:ω 2186:( 2160:) 2158:x 2153:d 2151:x 2149:( 2146:g 2144:s 2138:u 2111:E 2105:) 2103:x 2098:d 2096:x 2094:( 2091:g 2089:s 2077:E 2059:E 2042:d 2038:x 2026:x 2020:ζ 2016:g 2011:g 2009:s 2003:ζ 1993:K 1987:ζ 1979:ÎČ 1973:u 1958:, 1951:) 1947:x 1939:d 1935:x 1930:( 1924:g 1920:s 1916:+ 1913:h 1906:u 1901:= 1897:r 1894:F 1800:. 1794:d 1791:g 1787:U 1782:= 1778:r 1775:F 1763:d 1748:. 1739:B 1736:A 1730:g 1726:U 1721:= 1717:r 1714:F 1693:, 1686:B 1683:A 1678:g 1673:= 1670:c 1659:B 1653:A 1647:g 1641:c 1631:U 1601:. 1592:3 1588:V 1583:g 1579:u 1574:= 1569:V 1564:n 1561:F 1530:L 1524:L 1514:g 1508:u 1493:, 1487:L 1484:g 1480:u 1475:= 1470:L 1465:n 1462:F 1397:g 1387:2 1382:r 1379:F 1374:1 1369:+ 1366:u 1361:2 1350:e 1347:R 1343:1 1338:= 1329:p 1319:u 1316:E 1312:+ 1306:t 1303:D 1297:u 1293:D 1269:) 1262:T 1257:) 1252:u 1245:( 1242:+ 1238:u 1230:( 1223:+ 1219:I 1215:p 1212:= 1153:g 1143:2 1138:r 1135:F 1130:1 1125:= 1116:p 1106:u 1103:E 1099:+ 1093:t 1090:D 1084:u 1080:D 1056:I 1052:p 1049:= 990:g 982:2 977:r 974:F 969:1 964:= 960:) 955:u 947:u 941:2 938:1 932:( 922:+ 916:t 907:u 887:( 843:g 835:2 830:r 827:F 822:1 817:= 798:1 792:u 789:E 785:+ 779:t 776:D 770:u 766:D 750:( 728:, 720:2 715:0 711:u 705:0 694:0 690:p 684:= 680:u 677:E 652:, 644:0 640:r 634:0 630:g 623:0 619:u 613:= 609:r 606:F 583:, 576:0 572:p 547:, 540:0 536:g 531:g 515:g 509:, 501:0 497:r 479:, 476:t 469:0 465:r 459:0 455:u 440:t 435:, 428:0 424:r 420:r 406:r 401:, 394:0 390:u 386:u 372:u 367:, 360:0 327:0 323:0 278:u 253:u 248:= 155:L 147:g 139:u 122:L 119:g 115:u 110:= 106:r 103:F 70:/ 67:d 61:r 58:f 55:ˈ 52:/ 38:( 20:)

Index

Speed–length ratio
continuum mechanics
William Froude
/ˈfruːd/
dimensionless number
flow inertia
external force field
gravity
flow velocity
gravity field
characteristic length
Mach number
fluid dynamics
Euler equations
conservation equations
naval architecture
open channel flows
Belanger 1828

William Froude
Frederic Reech
hydrodynamics
Cauchy momentum equation
Euler number
material derivative
Burgers equation
material derivative
advection equation
Stokes equation
diffusion equation

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑